Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-68ccn Total loading time: 0 Render date: 2024-07-11T14:15:03.847Z Has data issue: false hasContentIssue false

5 - The serotonin transporter and animal models of depression

Published online by Cambridge University Press:  06 July 2010

Allan V. Kalueff
Affiliation:
Georgetown University Medical Center
Justin L. LaPorte
Affiliation:
National Institute of Mental Health
Get access

Summary

ABSTRACT

The serotonin transporter (SERT), a membrane protein responsible for the reuptake of extracellular serotonin, is a prominent target of antidepressants. Moreover, a polymorphism of this gene that decreases serotonin uptake has been linked to depression. However, the role of SERT in depression is poorly understood. Several functional impairments, notably in behavior, sleep, and response to stress, are consistently found in animal models of depression, but consistent correlation with serotonergic dysfunction has not been demonstrated. Nevertheless, in certain genetic backgrounds, the same impairments are also found in mutant rodents in which serotonin transport has been abolished. These impairments are also observed in adult rodents after a transient disruption of serotonin transport during the first postnatal month. Conversely, they may be prevented in mutant rodents by normalizing serotonergic transmission postnatally. Therefore, the function of the serotonin transporter during postnatal development is critical for the proper maturation of brain circuits, while susceptibility to depression caused by reduced serotonin transporter function may be determined, in part, during development.

INTRODUCTION

Depression is one of the most common psychiatric disorders in developed countries. This disease affects mood, psychomotor activity, neurovegetative functions, and cognition (Fava and Kendler,2000). Estimates indicate a lifetime prevalence up to 20% for major depression (Blazer, 2000; Fava and Kendler, 2000; Kornstein et al., 2000), and the likelihood of experiencing this disorder is twice as high in women as in men (Kornstein et al., 2000). Depression can be a lifelong episodic disorder with multiple recurrences.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrien, J, Dugovic, C, Martin, P (1991). Sleep-wakefulness patterns in the helpless rat. Physiol Behav 49: 257–62.CrossRefGoogle ScholarPubMed
Aisa, B, Tordera, R, Lasheras, B, Del Rio, J, Ramirez, M J (2007). Cognitive impairment associated to HPA axis hyperactivity after maternal separation in rats. Psychoneuroendocrinology 32: 256–66.CrossRefGoogle ScholarPubMed
Aisa, B, Tordera, R, Lasheras, B, Del Rio, J, Ramirez, M J (2008). Effects of maternal separation on hypothalamic–pituitary–adrenal responses, cognition and vulnerability to stress in adult female rats. Neuroscience 154: 1218–26.CrossRefGoogle ScholarPubMed
Alexandre, C, Popa, D, Fabre, V, et al. (2006). Early life blockade of 5-hydroxytryptamine 1A receptors normalizes sleep and depression-like behavior in adult knock-out mice lacking the serotonin transporter. J Neurosci 26: 5554–64.CrossRefGoogle ScholarPubMed
Alonso, S J, Castellano, M A, Quintero, M, Navarro, E (1999). Action of antidepressant drugs on maternal stress-induced hypoactivity in female rats. Methods Find Exp Clin Pharmacol 21: 291–5.CrossRefGoogle ScholarPubMed
Ansorge, M S, Morelli, E, Gingrich, J A (2008). Inhibition of serotonin but not norepinephrine transport during development produces delayed, persistent perturbations of emotional behaviors in mice. J Neurosci 28: 199–207.CrossRefGoogle Scholar
Ansorge, M S, Zhou, M, Lira, A, Hen, R, Gingrich, J A (2004). Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306: 879–81.CrossRefGoogle ScholarPubMed
Arborelius, L, Hawks, B W, Owens, M J, Plotsky, P M, Nemeroff, C B (2004). Increased responsiveness of presumed 5-HT cells to citalopram in adult rats subjected to prolonged maternal separation relative to brief separation. Psychopharmacology (Berl) 176: 248–55.CrossRefGoogle ScholarPubMed
Arborelius, L, Owens, M J, Plotsky, P M, Nemeroff, C B (1999). The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 160: 1–12.CrossRefGoogle ScholarPubMed
Artigas, F, Adell, A, Celada, P (2006). Pindolol augmentation of antidepressant response. Curr Drug Targets 7: 139–47.CrossRefGoogle ScholarPubMed
Avery, D H, Shah, S H, Eder, D N, Wildschiodtz, G (1999). Nocturnal sweating and temperature in depression. Acta Psychiatr Scand 100: 295–301.CrossRefGoogle ScholarPubMed
Azmitia, E C (2001). Modern views on an ancient chemical: serotonin effects on cell proliferation, maturation, and apoptosis. Brain Res Bull 56: 413–24.CrossRefGoogle ScholarPubMed
Bagdy, G (1996). Role of the hypothalamic paraventricular nucleus in 5-HT1A, 5-HT2A and 5-HT2C receptor-mediated oxytocin, prolactin and ACTH/corticosterone responses. Behav Brain Res 73: 277–80.CrossRefGoogle ScholarPubMed
Barden, N (2004). Implication of the hypothalamic–pituitary–adrenal axis in the physiopathology of depression. J Psychiatry Neurosci 29: 185–93.Google Scholar
Barden, N, Reul, J M, Holsboer, F (1995). Do antidepressants stabilize mood through actions on the hypothalamic–pituitary–adrenocortical system?Trends Neurosci 18: 6–11.CrossRefGoogle ScholarPubMed
Barr, C S, Newman, T K, Shannon, C, et al. (2004). Rearing condition and rh5-HTTLPR interact to influence limbic–hypothalamic–pituitary–adrenal axis response to stress in infant macaques. Biol Psychiatry 55: 733–8.CrossRefGoogle ScholarPubMed
Benca, R (2000). Mood disorders. In Kryger, M, Roth, T, Dement, W, editors. Principles and practice of sleep medecine. Philadelphia: Saunders, pp. 1140–58.Google Scholar
Benca, R M, Okawa, M, Uchiyama, M, (1997). Sleep and mood disorders. Sleep Med Rev 1: 45–56.CrossRefGoogle ScholarPubMed
Bengel, D, Murphy, D L, Andrews, A M, et al. (1998). Altered brain serotonin homeostasis and locomotor insensitivity to 3,4-methylenedioxymethamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. Mol Pharmacol 53: 649–55.CrossRefGoogle Scholar
Berman, R M, Charney, D S (1999). Models of antidepressant action. J Clin Psychiatry 60 (Suppl 14): 16–20; discussion 31–15.Google ScholarPubMed
Berton, O, Durand, M, Aguerre, S, Mormede, P, Chaouloff, F (1999). Behavioral, neuroendocrine and serotonergic consequences of single social defeat and repeated fluoxetine pretreatment in the Lewis rat strain. Neuroscience 92: 327–41.CrossRefGoogle ScholarPubMed
Bevins, R A, Besheer, J (2005). Novelty reward as a measure of anhedonia. Neurosci Biobehav Revi 29: 707–14.CrossRefGoogle ScholarPubMed
Bill, D J, Knight, M, Forster, E A, Fletcher, A (1991). Direct evidence for an important species difference in the mechanism of 8-OH-DPAT-induced hypothermia. Br J Pharmacol 103: 1857–64.CrossRefGoogle ScholarPubMed
Blanchard, R J, McKittrick, C R, Blanchard, D C (2001). Animal models of social stress: effects on behavior and brain neurochemical systems. Physiol Behav 73: 261–71.CrossRefGoogle ScholarPubMed
Blazer, D G (2000). Mood disorders: epidemiology. In Sadock, B J, Sadock, V A, editors. Comprehensive textbook of psychiatry. New York: Lippincott, Williams & Wilkins, pp. 1298–308.Google Scholar
Blier, P (2003). The pharmacology of putative early-onset antidepressant strategies. Eur Neuropsychopharmacol 13: 57–66.CrossRefGoogle ScholarPubMed
Bligh-Glover, W, Kolli, T N, Shapiro-Kulnane, L, et al. (2000). The serotonin transporter in the midbrain of suicide victims with major depression. Biol Psychiatry 47: 1015–24.CrossRefGoogle ScholarPubMed
Bouali, S, Evrard, A, Chastanet, M, Lesch, K P, Hamon, M, Adrien, J (2003). Sex hormone-dependent desensitization of 5-HT1A autoreceptors in knockout mice deficient in the 5-HT transporter. Eur J Neurosci 18: 2203–12.CrossRefGoogle ScholarPubMed
Boutrel, B, Monaca, C, Hen, R, Hamon, M, Adrien, J (2002). Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 22: 4686–92.CrossRefGoogle ScholarPubMed
Bouyer, J J, Vallee, M, Deminiere, J M, Moal, M, Mayo, W (1998). Reaction of sleep–wakefulness cycle to stress is related to differences in hypothalamo–pituitary–adrenal axis reactivity in rat. Brain Res 804: 114–24.CrossRefGoogle ScholarPubMed
Breuer, M E, Groenink, L, Oosting, R S, Westenberg, H G, Olivier, B (2007). Long-term behavioral changes after cessation of chronic antidepressant treatment in olfactory bulbectomized rats. Biol Psychiatry 61: 990–5.CrossRefGoogle ScholarPubMed
Bunney, W E, Bunney, B G (2000). Molecular clock genes in man and lower animals: possible implications for circadian abnormalities in depression. Neuropsychopharmacology 22: 335–45.CrossRefGoogle ScholarPubMed
Buwalda, B, Boer, S F, Schmidt, E D, et al. (1999). Long-lasting deficient dexamethasone suppression of hypothalamic–pituitary–adrenocortical activation following peripheral CRF challenge in socially defeated rats. J Neuroendocrinol 11: 513–20.CrossRefGoogle ScholarPubMed
Caldji, C, Francis, D, Sharma, S, Plotsky, P M, Meaney, M J (2000). The effects of early rearing environment on the development of GABAA and central benzodiazepine receptor levels and novelty-induced fearfulness in the rat. Neuropsychopharmacology 22: 219–29.CrossRefGoogle ScholarPubMed
Caspi, A, Sugden, K, Moffitt, T E, et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301: 386–9.CrossRefGoogle ScholarPubMed
Castren, E, Voikar, V, Rantamaki, T (2007). Role of neurotrophic factors in depression. Curr Opin Pharmacol 7: 18–21.CrossRefGoogle ScholarPubMed
Champoux, M, Bennett, A, Shannon, C, Higley, J D, Lesch, K P, Suomi, S J (2002). Serotonin transporter gene polymorphism, differential early rearing, and behavior in rhesus monkey neonates. Mol Psychiatry 7: 1058–63.CrossRefGoogle ScholarPubMed
Cheeta, S, Ruigt, G, Proosdij, J, Willner, P (1997). Changes in sleep architecture following chronic mild stress. Biol Psychiatry 41: 419–27.CrossRefGoogle ScholarPubMed
Chourbaji, S, Zacher, C, Sanchis-Segura, C, Dormann, C, Vollmayr, B, Gass, P (2005). Learned helplessness: validity and reliability of depressive-like states in mice. Brain Res Brain Res Protoc 16: 70–8.CrossRefGoogle ScholarPubMed
Coppen, A (1967). The biochemistry of affective disorders. Br J Psychiatry 113: 1237–64.CrossRefGoogle ScholarPubMed
Crawley, J N, Paylor, R (1997). A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav 31: 197–211.CrossRefGoogle ScholarPubMed
Crowley, J J, Blendy, J A, Lucki, I (2005). Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology (Berl) 183: 257–64.CrossRefGoogle ScholarPubMed
Cryan, J F, Mombereau, C (2004). In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 9: 326–57.CrossRefGoogle ScholarPubMed
Cryan, J F, Mombereau, C, Vassout, A (2005). The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29: 571–625.CrossRefGoogle ScholarPubMed
Delgado, P L (2006). Monoamine depletion studies: implications for antidepressant discontinuation syndrome. J Clin Psychiatry 67 (Suppl 4): 22–6.Google ScholarPubMed
Drevets, W C, Thase, M E, Moses-Kolko, E L, et al. (2007). Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 34: 865–77.CrossRefGoogle ScholarPubMed
Dugovic, C, Maccari, S, Weibel, L, Turek, F W, Reeth, O (1999). High corticosterone levels in prenatally stressed rats predict persistent paradoxical sleep alterations. J Neurosci 19: 8656–64.CrossRefGoogle ScholarPubMed
El Yacoubi, M, Bouali, S, Popa, D, et al. (2003). Behavioral, neurochemical, and electrophysiological characterization of a genetic mouse model of depression. Proc Natl Acad Sci USA 100: 6227–32.CrossRefGoogle Scholar
Emerit, M B, Riad, M, Hamon, M (1992). Trophic effects of neurotransmitters during brain maturation. Biol Neonate 62: 193–201.CrossRefGoogle ScholarPubMed
Evrard, A, Barden, N, Hamon, M, Adrien, J (2006). Glucocorticoid receptor-dependent desensitization of 5-HT1A autoreceptors by sleep deprivation: studies in GR-i transgenic mice. Sleep 29: 31–6.CrossRefGoogle ScholarPubMed
Fabre, V, Beaufour, C, Evrard, A, et al. (2000). Altered expression and functions of serotonin 5-HT1A and 5-HT1B receptors in knock-out mice lacking the 5-HT transporter. Eur J Neurosci 12: 2299–310.CrossRefGoogle ScholarPubMed
Fava, M, Kendler, K S (2000). Major depressive disorder. Neuron 28: 335–41.CrossRefGoogle ScholarPubMed
Feng, P, Ma, Y (2003). Instrumental REM sleep deprivation in neonates leads to adult depression-like behaviors in rats. Sleep 26: 990–6.CrossRefGoogle ScholarPubMed
Fox, M A, Andrews, A M, Wendland, J R, Lesch, K P, Holmes, A, Murphy, D L (2007). A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. Psychopharmacology (Berl) 195: 147–66.CrossRefGoogle ScholarPubMed
Francis, D, Diorio, J, LaPlante, P, Weaver, S, Seckl, J R, Meaney, M J (1996). The role of early environmental events in regulating neuroendocrine development. Moms, pups, stress, and glucocorticoid receptors. Ann NY Acad Sci 794: 136–52.CrossRefGoogle ScholarPubMed
Frank, M G, Heller, H C (1997). Neonatal treatments with the serotonin uptake inhibitors clomipramine and zimelidine, but not the noradrenaline uptake inhibitor desipramine, disrupt sleep patterns in adult rats. Brain Res 768: 287–93.CrossRefGoogle Scholar
Geretsegger, C, Bitterlich, W, Stelzig, R, Stuppaeck, C, Bondy, B, Aichhorn, W (2008). Paroxetine with pindolol augmentation: a double-blind, randomized, placebo-controlled study in depressed in-patients. Eur Neuropsychopharmacol 18: 141–6.CrossRefGoogle ScholarPubMed
Gerlai, R (1996). Gene-targeting studies of mammalian behavior: is it the mutation or the background genotype?Trends Neurosci 19: 177–81.CrossRefGoogle ScholarPubMed
Gervasoni, D, Panconi, E, Henninot, V, et al. (2002). Effect of chronic treatment with milnacipran on sleep architecture in rats compared with paroxetine and imipramine. Pharmacol Biochem Behav 73: 557–63.CrossRefGoogle ScholarPubMed
Gillespie, C F, Nemeroff, C B (2005). Hypercortisolemia and depression. Psychosom Med 67 (Suppl 1): S26–8.CrossRefGoogle ScholarPubMed
Gobbi, G, Murphy, D L, Lesch, K, Blier, P (2001). Modifications of the serotonergic system in mice lacking serotonin transporters: an in vivo electrophysiological study. J Pharmacol Exp Ther 296: 987–95.Google Scholar
Goodwin, G M, Souza, R J, Green, A R (1985). The pharmacology of the hypothermic response in mice to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). A model of presynaptic 5-HT1 function. Neuropharmacology 24: 1187–94.CrossRefGoogle ScholarPubMed
Gronli, J, Murison, R, Bjorvatn, B, Sorensen, E, Portas, C M, Ursin, R (2004). Chronic mild stress affects sucrose intake and sleep in rats. Behav Brain Res 150: 139–47.CrossRefGoogle ScholarPubMed
Gross, C, Zhuang, X, Stark, K, et al. (2002). Serotonin1A receptor acts during development to establish normal anxiety-like behavior in the adult. Nature 416: 396–400.CrossRefGoogle ScholarPubMed
Guilloux, J P, David, D J, Guiard, B P, et al. (2006). Blockade of 5-HT1A receptors by (+/−)-pindolol potentiates cortical 5-HT outflow, but not antidepressant-like activity of paroxetine: microdialysis and behavioral approaches in 5-HT1A receptor knockout mice. Neuropsychopharmacology 31: 2162–72.Google Scholar
Hansen, H H, Sanchez, C, Meier, E (1997). Neonatal administration of the selective serotonin reuptake inhibitor Lu 10–134-C increases forced swimming-induced immobility in adult rats: a putative animal model of depression?J Pharmacol Exp Ther 283: 1333–41.Google ScholarPubMed
Hasler, G, Drevets, WC, Manji, H K, Charney, D S (2004). Discovering endophenotypes for major depression. Neuropsychopharmacology 29: 1765–81.CrossRefGoogle ScholarPubMed
Heisler, L K, Chu, H M, Brennan, T J, et al. (1998). Elevated anxiety and antidepressant-like responses in serotonin 5-HT1A receptor mutant mice. Proc Natl Acad Sci USA 95: 15 049–54.CrossRefGoogle ScholarPubMed
Henn, F A, Vollmayr, B (2005). Stress models of depression: forming genetically vulnerable strains. Neurosci Biobehav Rev 29: 799–804.CrossRefGoogle ScholarPubMed
Hensler, J G (2002). Differential regulation of 5-HT1A receptor-G protein interactions in brain following chronic antidepressant administration. Neuropsychopharmacology 26: 565–73.CrossRefGoogle ScholarPubMed
Heuser, I, Yassouridis, A, Holsboer, F (1994). The combined dexamethasone/CRH test: a refined laboratory test for psychiatric disorders. J Psychiatr Res 28: 341–56.CrossRefGoogle ScholarPubMed
Hilakivi, L A, Hilakivi, I(1987). Increased adult behavioral ‘despair’ in rats neonatally exposed to desipramine or zimeldine: an animal model of depression?Pharmacol Biochem Behav 28: 367–9.CrossRefGoogle ScholarPubMed
Holick, K A, Lee, D C, Hen, R, Dulawa, S C (2008). Behavioral effects of chronic fluoxetine in BALB/cJ mice do not require adult hippocampal neurogenesis or the serotonin 1A receptor. Neuropsychopharmacology 33: 406–17.CrossRefGoogle ScholarPubMed
Holmes, A, Lit, Q, Murphy, D L, Gold, E, Crawley, J N (2003a). Abnormal anxiety-related behavior in serotonin transporter null mutant mice: the influence of genetic background. Genes Brain Behav 2: 365–80.CrossRefGoogle ScholarPubMed
Holmes, A, Murphy, D L, Crawley, J N (2002a). Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology (Berl) 161: 160–7.CrossRefGoogle ScholarPubMed
Holmes, A, Yang, R J, Lesch, K P, Crawley, J N, Murphy, D L (2003b). Mice lacking the serotonin transporter exhibit 5-HT(1A) receptor-mediated abnormalities in tests for anxiety-like behavior. Neuropsychopharmacology 28: 2077–88.CrossRefGoogle ScholarPubMed
Holmes, A, Yang, R J, Murphy, D L, Crawley, J N (2002b). Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 27: 914–23.CrossRefGoogle ScholarPubMed
Holsboer, F (2000). The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 23: 477–501.CrossRefGoogle Scholar
Homberg, J R, Olivier, J D, Smits, B M, et al. (2007). Characterization of the serotonin transporter knockout rat: a selective change in the functioning of the serotonergic system. Neuroscience 146: 1662–76.CrossRefGoogle ScholarPubMed
Hubain, P P, Staner, L, Dramaix, M, et al. (1998). The dexamethasone suppression test and sleep electroencephalogram in nonbipolar major depressed inpatients: a multivariate analysis. Biol Psychiatry 43: 220–9.CrossRefGoogle ScholarPubMed
Ishiwata, H, Shiga, T, Okado, N (2005). Selective serotonin reuptake inhibitor treatment of early postnatal mice reverses their prenatal stress-induced brain dysfunction. Neuroscience 133: 893–901.CrossRefGoogle ScholarPubMed
Jennings, K A, Loder, M K, Sheward, W J, et al. (2006). Increased expression of the 5-HT transporter confers a low-anxiety phenotype linked to decreased 5-HT transmission. J Neurosci 26: 8955–64.CrossRefGoogle ScholarPubMed
Kalueff, A V, Gallagher, P S, Murphy, D L (2006). Are serotonin transporter knockout mice ‘depressed’? Hypoactivity but no anhedonia. Neuroreport 17: 1347–51.CrossRefGoogle ScholarPubMed
Kalueff, A V, Ren-Patterson, R F, Murphy, D L (2007). The developing use of heterozygous mutant mouse models in brain monoamine transporter research. Trends Pharmacol Sci 28: 122–7.CrossRefGoogle ScholarPubMed
Kaufman, J, Yang, B Z, Douglas-Palumberi, H, et al. (2006). Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry 59: 673–80.CrossRefGoogle ScholarPubMed
Kim, D K, Tolliver, T J, Huang, S J, et al. (2005). Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. Neuropharmacology 49: 798–810.CrossRefGoogle ScholarPubMed
Kirsch, I, Deacon, B J, Huedo-Medina, T B, Scoboria, A, Moore, T J, Johnson, B (2008). Initial severity and antidepressant benefits: a meta-analysis of data submitted to the Food and Drug Administration. PLoS Med 5: e45.CrossRefGoogle ScholarPubMed
Klimek, V, Roberson, G, Stockmeier, C A, Ordway, G A (2003). Serotonin transporter and MAO-B levels in monoamine nuclei of the human brainstem are normal in major depression. J Psychiatr Res 37: 387–97.CrossRefGoogle ScholarPubMed
Kline, N S (1958). Clinical experience with iproniazid (marsilid). J Clin Exp Psychopathol 19: 72–8; discussion 78–9.Google Scholar
Kornstein, S G, Schatzberg, A F, Thase, M E, et al. (2000). Gender differences in chronic major and double depression. J Affect Disord 60: 1–11.CrossRefGoogle ScholarPubMed
Kozisek, M E, Middlemas, D, Bylund, D B (2008). Brain-derived neurotrophic factor and its receptor tropomyosin-related kinase B in the mechanism of action of antidepressant therapies. Pharmacol Ther 117: 30–51.CrossRefGoogle ScholarPubMed
Kusserow, H, Davies, B, Hortnagl, H, et al. (2004). Reduced anxiety-related behavior in transgenic mice overexpressing serotonin 1A receptors. Brain Res Mol Brain Res 129: 104–16.CrossRefGoogle ScholarPubMed
Lacasse, J R, Leo, J (2005). Serotonin and depression: a disconnect between the advertisements and the scientific literature. PLoS Med 2: e392.CrossRefGoogle ScholarPubMed
Lachman, H M, Papolos, D F, Weiner, E D, et al. (1992). Hippocampal neuropeptide Y mRNA is reduced in a strain of learned helpless resistant rats. Brain Res Mol Brain Res 14: 94–100.CrossRefGoogle Scholar
Ladd, C O, Huot, R L, Thrivikraman, K V, Nemeroff, C B, Meaney, M J, Plotsky, P M (2000). Long-term behavioral and neuroendocrine adaptations to adverse early experience. Prog Brain Res 122: 81–103.CrossRefGoogle ScholarPubMed
Ladd, C O, Huot, R L, Thrivikraman, K V, Nemeroff, C B, Plotsky, P M (2004). Long-term adaptations in glucocorticoid receptor and mineralocorticoid receptor mRNA and negative feedback on the hypothalamo–pituitary–adrenal axis following neonatal maternal separation. Biol Psychiatry 55: 367–75.CrossRefGoogle ScholarPubMed
Lanfumey, L, Mongeau, R, Cohen-Salmon, C, Hamon, M (2008). Corticosteroid–serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Biobehav Rev 32: 1174–84.CrossRefGoogle ScholarPubMed
Lauder, J M (1990). Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal. Ann NY Acad Sci 600: 297–313; discussion 314.CrossRefGoogle ScholarPubMed
Lavdas, A A, Blue, M E, Lincoln, J, Parnavelas, J G (1997). Serotonin promotes the differentiation of glutamate neurons in organotypic slice cultures of the developing cerebral cortex. J Neurosci 17: 7872–80.CrossRefGoogle ScholarPubMed
Lazary, J, Lazary, A, Gonda, X, et al. (2008). New evidence for the association of the serotonin transporter gene (SLC6A4) haplotypes, threatening life events, and depressive phenotype. Biol Psychiatry 64: 498–504.CrossRefGoogle ScholarPubMed
Poul, E, Laaris, N, Doucet, E, Laporte, A M, Hamon, M, Lanfumey, L (1995). Early desensitization of somato-dendritic 5-HT1A autoreceptors in rats treated with fluoxetine or paroxetine. Naunyn Schmiedebergs Arch Pharmacol 352: 141–8.CrossRefGoogle ScholarPubMed
Lee, H J, Lee, M S, Kang, R H, et al. (2005). Influence of the serotonin transporter promoter gene polymorphism on susceptibility to posttraumatic stress disorder. Depress Anxiety 21: 135–9.CrossRefGoogle ScholarPubMed
Lee, J H, Kim, H J, Kim, J G, et al. (2007). Depressive behaviors and decreased expression of serotonin reuptake transporter in rats that experienced neonatal maternal separation. Neurosci Res 58: 32–9.CrossRefGoogle ScholarPubMed
Lena, C, Popa, D, Grailhe, R, Escourrou, P, Changeux, J P, Adrien, J (2004). Beta2-containing nicotinic receptors contribute to the organization of sleep and regulate putative micro-arousals in mice. J Neurosci 24: 5711–8.CrossRefGoogle ScholarPubMed
Lesch, K P, Bengel, D, Heils, A, et al. (1996). Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 274: 1527–31.CrossRefGoogle ScholarPubMed
Levinson, D F (2006). The genetics of depression: a review. Biol Psychiatry 60: 84–92.CrossRefGoogle ScholarPubMed
Li, Q, Wichems, C, Heils, A, Lesch, K P, Murphy, D L (2000). Reduction in the density and expression, but not G-protein coupling, of serotonin receptors (5-HT1A) in 5-HT transporter knock-out mice: gender and brain region differences. J Neurosci 20: 7888–95.CrossRefGoogle Scholar
Li, Q, Wichems, C, Heils, A, Kar, L D, Lesch, K P, Murphy, D L (1999). Reduction of 5-hydroxytryptamine (5-HT)(1A)-mediated temperature and neuroendocrine responses and 5-HT(1A) binding sites in 5-HT transporter knockout mice. J Pharmacol Exp Ther 291: 999–1007.Google ScholarPubMed
Li, S, Wang, C, Wang, W, Dong, H, Hou, P, Tang, Y (2008). Chronic mild stress impairs cognition in mice: from brain homeostasis to behavior. Life Sci 82: 934–42.CrossRefGoogle Scholar
Lira, A, Zhou, M, Castanon, N, et al. (2003). Altered depression-related behaviors and functional changes in the dorsal raphe nucleus of serotonin transporter-deficient mice. Biol Psychiatry 54: 960–71.CrossRefGoogle ScholarPubMed
Liu, X, Gershenfeld, H K (2001). Genetic differences in the tail-suspension test and its relationship to imipramine response among 11 inbred strains of mice. Biol Psychiatry 49: 575–81.CrossRefGoogle ScholarPubMed
Lucki, I, Dalvi, A, Mayorga, A J (2001). Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology (Berl) 155: 315–22.CrossRefGoogle Scholar
Maciag, D, Simpson, K L, Coppinger, D, et al. (2006a). Neonatal antidepressant exposure has lasting effects on behavior and serotonin circuitry. Neuropsychopharmacology 31: 47–57.CrossRefGoogle ScholarPubMed
Maciag, D, Williams, L, Coppinger, D, Paul, I A (2006b). Neonatal citalopram exposure produces lasting changes in behavior which are reversed by adult imipramine treatment. Eur J Pharmacol 532: 265–9.CrossRefGoogle ScholarPubMed
Malberg, J E, Eisch, A J, Nestler, E J, Duman, R S (2000). Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20: 9104–10.CrossRefGoogle ScholarPubMed
Mannoury la Cour, C, Boni, C, Hanoun, N, Lesch, K P, Hamon, M, Lanfumey, L (2001). Functional consequences of 5-HT transporter gene disruption on 5-HT(1A) receptor-mediated regulation of dorsal raphe and hippocampal cell activity. J Neurosci 21: 2178–85.CrossRefGoogle ScholarPubMed
Mansour, H A, Talkowski, M E, Wood, J, et al. (2005). Serotonin gene polymorphisms and bipolar I disorder: focus on the serotonin transporter. Ann Med 37: 590–602.CrossRefGoogle ScholarPubMed
Marinesco, S, Bonnet, C, Cespuglio, R (1999). Influence of stress duration on the sleep rebound induced by immobilization in the rat: a possible role for corticosterone. Neuroscience 92: 921–33.CrossRefGoogle ScholarPubMed
Matthews, K, Christmas, D, Swan, J, Sorrell, E (2005). Animal models of depression: navigating through the clinical fog. Neurosci Biobehav Rev 29: 503–13.CrossRefGoogle ScholarPubMed
Maudhuit, C, Hamon, M, Adrien, J (1995). Electrophysiological activity of raphe dorsalis serotoninergic neurones in a possible model of endogenous depression. Neuroreport 6: 681–4.CrossRefGoogle Scholar
Maudhuit, C, Hamon, M, Adrien, J (1996a). Effects of chronic treatment with zimelidine and REM sleep deprivation on the regulation of raphe neuronal activity in a rat model of depression. Psychopharmacology (Berl) 124: 267–74.CrossRefGoogle Scholar
Maudhuit, C, Jolas, T, Chastanet, M, Hamon, M, Adrien, J (1996b). Reduced inhibitory potency of serotonin reuptake blockers on central serotoninergic neurons in rats selectively deprived of rapid eye movement sleep. Biol Psychiatry 40: 1000–07.CrossRefGoogle ScholarPubMed
Maudhuit, C, Jolas, T, Lainey, E, Hamon, M, Adrien, J (1994). Effects of acute and chronic treatment with amoxapine and cericlamine on the sleep–wakefulness cycle in the rat. Neuropharmacology 33: 1017–25.CrossRefGoogle ScholarPubMed
Maudhuit, C, Prevot, E, Dangoumau, L, Martin, P, Hamon, M, Adrien, J (1997). Antidepressant treatment in helpless rats: effect on the electrophysiological activity of raphe dorsalis serotonergic neurons. Psychopharmacology (Berl) 130: 269–75.CrossRefGoogle ScholarPubMed
Mayers, A G, Baldwin, D S (2005). Antidepressants and their effect on sleep. Hum Psychopharmacol 20: 533–59.CrossRefGoogle Scholar
McClung, C A (2007). Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114: 222–32.CrossRefGoogle ScholarPubMed
Meaney, M J (2001). Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci 24: 1161–92.CrossRefGoogle Scholar
Meyer, J H (2007). Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci 32: 86–102.Google ScholarPubMed
Meyer, J H, Houle, S, Sagrati, S, et al. (2004). Brain serotonin transporter binding potential measured with carbon 11-labeled DASB positron emission tomography: effects of major depressive episodes and severity of dysfunctional attitudes. Arch Gen Psychiatry 61: 1271–9.CrossRefGoogle ScholarPubMed
Mineur, Y S, Belzung, C, Crusio, W E (2006). Effects of unpredictable chronic mild stress on anxiety and depression-like behavior in mice. Behav Brain Res 175: 43–50.CrossRefGoogle ScholarPubMed
Mirmiran, M, Scholtens, J, Poll, N E, Uylings, H B, Gugten, J, Boer, G J (1983). Effects of experimental suppression of active (REM) sleep during early development upon adult brain and behavior in the rat. Brain Res 283: 277–86.CrossRefGoogle ScholarPubMed
Mirmiran, M, Poll, N E, Corner, M A, Oyen, H G, Bour, H L (1981). Suppression of active sleep by chronic treatment with chlorimipramine during early postnatal development: effects upon adult sleep and behavior in the rat. Brain Res 204: 129–46.CrossRefGoogle ScholarPubMed
Monaca, C, Boutrel, B, Hen, R, Hamon, M, Adrien, J (2003). 5-HT 1A/1B receptor-mediated effects of the selective serotonin reuptake inhibitor, citalopram, on sleep: studies in 5-HT 1A and 5-HT 1B knockout mice. Neuropsychopharmacology 28: 850–6.CrossRefGoogle ScholarPubMed
Montkowski, A, Poettig, M, Mederer, A, Holsboer, F (1997). Behavioural performance in three substrains of mouse strain 129. Brain Res 762: 12–18.CrossRefGoogle ScholarPubMed
Moreau, J L, Scherschlicht, R, Jenck, F, Martin, J R (1995). Chronic mild stress-induced anhedonia model of depression; sleep abnormalities and curative effects of electroshock treatment. Behav Pharmacol 6: 682–7.CrossRefGoogle ScholarPubMed
Moreno, F A, Gelenberg, A J, Heninger, G R, et al. (1999). Tryptophan depletion and depressive vulnerability. Biol Psychiatry 46: 498–505.CrossRefGoogle ScholarPubMed
Morley-Fletcher, S, Darnaudery, M, Mocaer, E, et al. (2004). Chronic treatment with imipramine reverses immobility behavior, hippocampal corticosteroid receptors and cortical 5-HT(1A) receptor mRNA in prenatally stressed rats. Neuropharmacology 47: 841–7.CrossRefGoogle ScholarPubMed
Moser, P C, Sanger, D J (1999). 5-HT1A receptor antagonists neither potentiate nor inhibit the effects of fluoxetine and befloxatone in the forced swim test in rats. Eur J Pharmacol 372: 127–34.CrossRefGoogle ScholarPubMed
Naudon, L, El Yacoubi, M, Vaugeois, J M, Leroux-Nicollet, I, Costentin, J (2002). A chronic treatment with fluoxetine decreases 5-HT(1A) receptors labeling in mice selected as a genetic model of helplessness. Brain Res 936: 68–75.CrossRefGoogle ScholarPubMed
Neckelmann, D, Bjorvatn, B, Bjorkum, A A, Ursin, R (1996). Citalopram: differential sleep/wake and EEG power spectrum effects after single dose and chronic administration. Behav Brain Res 79: 183–92.CrossRefGoogle ScholarPubMed
Nestler, E J, Barrot, M, DiLeone, R J, Eisch, A J, Gold, S J, Monteggia, L M (2002a). Neurobiology of depression. Neuron 34: 13–25.CrossRefGoogle Scholar
Nestler, E J, Gould, E, Manji, H, et al. (2002b). Preclinical models: status of basic research in depression. Biol Psychiatry 52: 503–28.CrossRefGoogle ScholarPubMed
Olivier, J D, Hart, M G, Swelm, R P, et al. (2008). A study in male and female 5-HT transporter knockout rats: an animal model for anxiety and depression disorders. Neuroscience 152: 573–84.CrossRefGoogle ScholarPubMed
Overstreet, D H (1993). The Flinders sensitive line rats: a genetic animal model of depression. Neurosci Biobehav Rev 17: 51–68.CrossRefGoogle ScholarPubMed
Overstreet, D H (2002). Behavioral characteristics of rat lines selected for differential hypothermic responses to cholinergic or serotonergic agonists. Behav Genet 32: 335–48.CrossRefGoogle ScholarPubMed
Overstreet, D H, Friedman, E, Mathe, A A, Yadid, G (2005). The Flinders Sensitive Line rat: a selectively bred putative animal model of depression. Neurosci Biobehav Rev 29: 739–59.CrossRefGoogle ScholarPubMed
Owens, M J, Nemeroff, C B (1994). Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem 40: 288–95.Google ScholarPubMed
Paizanis, E, Hamon, M, Lanfumey, L (2007). Hippocampal neurogenesis, depressive disorders, and antidepressant therapy. Neural Plasticity 2007: 73 754.CrossRefGoogle ScholarPubMed
Papakostas, G I, Thase, M E, Fava, M, Nelson, J C, Shelton, R C (2007). Are antidepressant drugs that combine serotonergic and noradrenergic mechanisms of action more effective than the selective serotonin reuptake inhibitors in treating major depressive disorder? A meta-analysis of studies of newer agents. Biol Psychiatry 62: 1217–27.CrossRefGoogle Scholar
Parks, C L, Robinson, P S, Sibille, E, Shenk, T, Toth, M (1998). Increased anxiety of mice lacking the serotonin1A receptor. Proc Natl Acad Sci USA 95: 10 734–9.CrossRefGoogle ScholarPubMed
Perry, E K, Marshall, E F, Blessed, G, Tomlinson, B E, Perry, R H (1983). Decreased imipramine binding in the brains of patients with depressive illness. Br J Psychiatry 142: 188–92.CrossRefGoogle ScholarPubMed
Phelps, E A, Delgado, M R, Nearing, K I, LeDoux, J E (2004). Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43: 897–905.CrossRefGoogle ScholarPubMed
Popa, D, El Yacoubi, M, Vaugeois, J M, Hamon, M, Adrien, J (2006). Homeostatic regulation of sleep in a genetic model of depression in the mouse: effects of muscarinic and 5-HT1A receptor activation. Neuropsychopharmacology 31: 1637–46.CrossRefGoogle Scholar
Popa, D, Lena, C, Alexandre, C, Adrien, J (2008). Lasting syndrome of depression produced by reduction in serotonin uptake during postnatal development: evidence from sleep, stress, and behavior. J Neurosci 28: 3546–54.CrossRefGoogle Scholar
Porsolt, R D (2000). Animal models of depression: utility for transgenic research. Rev Neurosci 11: 53–8.CrossRefGoogle ScholarPubMed
Porsolt, R D, Pichon, M, Jalfre, M (1977). Depression: a new animal model sensitive to antidepressant treatments. Nature 266: 730–2.CrossRefGoogle ScholarPubMed
Prathiba, J, Kumar, K B, Karanth, K S (1998). Hyperactivity of hypothalamic pituitary axis in neonatal clomipramine model of depression. J Neural Transm 105: 1335–9.CrossRefGoogle Scholar
Prevot, E, Maudhuit, C, Poul, E, Hamon, M, Adrien, J (1996). Sleep deprivation reduces the citalopram-induced inhibition of serotoninergic neuronal firing in the nucleus raphe dorsalis of the rat. J Sleep Res 5: 238–45.CrossRefGoogle ScholarPubMed
Pryce, C R, Ruedi-Bettschen, D, Dettling, A C, et al. (2005). Long-term effects of early-life environmental manipulations in rodents and primates: potential animal models in depression research. Neurosci Biobehav Rev 29: 649–74.CrossRefGoogle ScholarPubMed
Ramboz, S, Oosting, R, Amara, D A, et al. (1998). Serotonin receptor 1A knockout: an animal model of anxiety-related disorder. Proc Natl Acad Sci USA 95: 14 476–81.CrossRefGoogle ScholarPubMed
Rampin, C, Cespuglio, R, Chastrette, N, Jouvet, M (1991). Immobilisation stress induces a paradoxical sleep rebound in rat. Neurosci Lett 126: 113–8.CrossRefGoogle ScholarPubMed
Raone, A, Cassanelli, A, Scheggi, S, Rauggi, R, Danielli, B, Montis, M G (2007). Hypothalamus–pituitary–adrenal modifications consequent to chronic stress exposure in an experimental model of depression in rats. Neuroscience 146: 1734–42.CrossRefGoogle Scholar
Rausch, J L, Johnson, M E, Kasik, K E, Stahl, S M (2006). Temperature regulation in depression: functional 5HT1A receptor adaptation differentiates antidepressant response. Neuropsychopharmacology 31: 2274–80.Google ScholarPubMed
Redrobe, J P, MacSweeney, C P, Bourin, M (1996). The role of 5-HT1A and 5-HT1B receptors in antidepressant drug actions in the mouse forced swimming test. Eur J Pharmacol 318: 213–20.CrossRefGoogle ScholarPubMed
Rubenstein, J L (1998). Development of serotonergic neurons and their projections. Biol Psychiatry 44: 145–50.CrossRefGoogle ScholarPubMed
Rush, A J, Giles, D E, Roffwarg, H P, Parker, C R (1982). Sleep EEG and dexamethasone suppression test findings in outpatients with unipolar major depressive disorders. Biol Psychiatry 17: 327–41.Google ScholarPubMed
Santarelli, L, Saxe, M, Gross, C, et al. (2003). Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–09.CrossRefGoogle ScholarPubMed
Seligman, M E, Maier, S F (1967). Failure to escape traumatic shock. J Exp Psychol 74: 1–9.CrossRefGoogle ScholarPubMed
Sham, P C, Sterne, A, Purcell, S, et al. (2000). GENESiS: creating a composite index of the vulnerability to anxiety and depression in a community-based sample of siblings. Twin Res 3: 316–22.Google Scholar
Shiromani, P J, Overstreet, D, Levy, D, Goodrich, C A, Campbell, S S, Gillin, J C (1988). Increased REM sleep in rats selectively bred for cholinergic hyperactivity. Neuropsychopharmacology 1: 127–33.CrossRefGoogle ScholarPubMed
Siegle, G J, Steinhauer, S R, Thase, M E, Stenger, V A, Carter, C S (2002). Can't shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry 51: 693–707.CrossRefGoogle ScholarPubMed
Solberg, L C, Olson, S L, Turek, F W, Redei, E (2001). Altered hormone levels and circadian rhythm of activity in the WKY rat, a putative animal model of depression. Am J Physiol Regul Integr Comp Physiol 281: R786–94.CrossRefGoogle ScholarPubMed
Song, C, Leonard, B E (2005). The olfactory bulbectomised rat as a model of depression. Neurosci Biobehav Rev 29: 627–47.CrossRefGoogle Scholar
Souetre, E, Salvati, E, Belugou, J L, et al. (1989). Circadian rhythms in depression and recovery: evidence for blunted amplitude as the main chronobiological abnormality. Psychiatry Res 28: 263–78.CrossRefGoogle ScholarPubMed
Stamatakis, A, Mantelas, A, Papaioannou, A, Pondiki, S, Fameli, M, Stylianopoulou, F (2006). Effect of neonatal handling on serotonin 1A sub-type receptors in the rat hippocampus. Neuroscience 140: 1–11.CrossRefGoogle ScholarPubMed
Staner, L, Duval, F, Haba, J, Mokrani, M C, Macher, J P (2003). Disturbances in hypothalamo pituitary adrenal and thyroid axis identify different sleep EEG patterns in major depressed patients. J Psychiatr Res 37: 1–8.CrossRefGoogle ScholarPubMed
Steru, L, Chermat, R, Thierry, B, et al. (1987). The automated Tail Suspension Test: a computerized device which differentiates psychotropic drugs. Prog Neuropsychopharmacol Biol Psychiatry 11: 659–71.CrossRefGoogle ScholarPubMed
Stockmeier, C A (2003). Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37: 357–73.CrossRefGoogle ScholarPubMed
Stout, S C, Mortas, P, Owens, M J, Nemeroff, C B, Moreau, J (2000). Increased corticotropin-releasing factor concentrations in the bed nucleus of the stria terminalis of anhedonic rats. Eur J Pharmacol 401: 39–46.CrossRefGoogle ScholarPubMed
Strekalova, T, Spanagel, R, Bartsch, D, Henn, F A, Gass, P (2004). Stress-induced anhedonia in mice is associated with deficits in forced swimming and exploration. Neuropsychopharmacology 29: 2007–17.CrossRefGoogle ScholarPubMed
Sullivan, P F, Neale, M C, Kendler, K S (2000). Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry 157: 1552–62.CrossRefGoogle ScholarPubMed
Thakker, D R, Natt, F, Husken, D, et al. (2005). siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain. Mol Psychiatry 10: 714, 782–9.CrossRefGoogle ScholarPubMed
Tjurmina, O A, Armando, I, Saavedra, J M, Goldstein, D S, Murphy, D L (2002). Exaggerated adrenomedullary response to immobilization in mice with targeted disruption of the serotonin transporter gene. Endocrinology 143: 4520–6.CrossRefGoogle ScholarPubMed
Trullas, R, Jackson, B, Skolnick, P (1989). Genetic differences in a tail suspension test for evaluating antidepressant activity. Psychopharmacology (Berl) 99: 287–8.CrossRefGoogle Scholar
Urani, A, Chourbaji, S, Gass, P (2005). Mutant mouse models of depression: candidate genes and current mouse lines. Neurosci Biobehav Rev 29: 805–28.CrossRefGoogle ScholarPubMed
Ushijima, K, Morikawa, T, To, H, Higuchi, S, Ohdo, S (2006). Chronobiological disturbances with hyperthermia and hypercortisolism induced by chronic mild stress in rats. Behav Brain Res 173: 326–30.CrossRefGoogle ScholarPubMed
Heyden, J A, Molewijk, E, Olivier, B (1987). Strain differences in response to drugs in the tail suspension test for antidepressant activity. Psychopharmacology (Berl) 92: 127–30.CrossRefGoogle ScholarPubMed
Vaugeois, J M, Passera, G, Zuccaro, F, Costentin, J (1997). Individual differences in response to imipramine in the mouse tail suspension test. Psychopharmacology (Berl) 134: 387–91.CrossRefGoogle ScholarPubMed
Vazquez, V, Farley, S, Giros, B, Dauge, V (2005). Maternal deprivation increases behavioural reactivity to stressful situations in adulthood: suppression by the CCK2 antagonist L365,260. Psychopharmacology (Berl) 181: 706–13.CrossRefGoogle ScholarPubMed
Velazquez-Moctezuma, J, Diaz Ruiz, O (1992). Neonatal treatment with clomipramine increased immobility in the forced swim test: an attribute of animal models of depression. Pharmacol Biochem Behav 42: 737–9.CrossRefGoogle ScholarPubMed
Vicentic, A, Francis, D, Moffett, M, et al. (2006). Maternal separation alters serotonergic transporter densities and serotonergic 1A receptors in rat brain. Neuroscience 140: 355–65.CrossRefGoogle ScholarPubMed
Vogel, G, Neill, D, Hagler, M, Kors, D (1990a). A new animal model of endogenous depression: a summary of present findings. Neurosci Biobehav Rev 14: 85–91.CrossRefGoogle ScholarPubMed
Vogel, G, Neill, D, Kors, D, Hagler, M (1990b). REM sleep abnormalities in a new animal model of endogenous depression. Neurosci Biobehav Rev 14: 77–83.CrossRefGoogle Scholar
Voikar, V, Koks, S, Vasar, E, Rauvala, H (2001). Strain and gender differences in the behavior of mouse lines commonly used in transgenic studies. Physiol Behav 72: 271–81.CrossRefGoogle ScholarPubMed
Weiss, J M, Cierpial, M A, West, C H (1998). Selective breeding of rats for high and low motor activity in a swim test: toward a new animal model of depression. Pharmacol Biochem Behav 61: 49–66.CrossRefGoogle Scholar
Wellman, C L, Izquierdo, A, Garrett, J E, et al. (2007). Impaired stress-coping and fear extinction and abnormal corticolimbic morphology in serotonin transporter knock-out mice. J Neurosci 27: 684–91.CrossRefGoogle ScholarPubMed
West, C H, Weiss, J M (2005). A selective test for antidepressant treatments using rats bred for stress-induced reduction of motor activity in the swim test. Psychopharmacology (Berl) 182: 9–23.CrossRefGoogle ScholarPubMed
Whitaker-Azmitia, P M (2001). Serotonin and brain development: role in human developmental diseases. Brain Res Bull 56: 479–85.CrossRefGoogle ScholarPubMed
Wichers, M, Kenis, G, Jacobs, N, et al. (2008). The BDNF Val(66)Met × 5-HTTLPR × child adversity interaction and depressive symptoms: an attempt at replication. Am J Med Genet B Neuropsychiatr Genet 147B: 120–3.CrossRefGoogle ScholarPubMed
Willner, P (1984). The validity of animal models of depression. Psychopharmacology (Berl) 83: 1–16.CrossRefGoogle ScholarPubMed
Willner, P (1997). Validity, reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl) 134: 319–29.CrossRefGoogle ScholarPubMed
Willner, P (2005). Chronic mild stress (CMS) revisited: consistency and behavioural–neurobiological concordance in the effects of CMS. Neuropsychobiology 52: 90–110.CrossRefGoogle ScholarPubMed
Willner, P, Mitchell, P J (2002). The validity of animal models of predisposition to depression. Behav Pharmacol 13: 169–88.CrossRefGoogle ScholarPubMed
Wirz-Justice, A, Hoofdakker, R H (1999). Sleep deprivation in depression: what do we know, where do we go?Biol Psychiatry 46: 445–53.CrossRefGoogle Scholar
Wisor, J P, Wurts, S W, Hall, F S, et al. (2003). Altered rapid eye movement sleep timing in serotonin transporter knockout mice. Neuroreport 14: 233–8.CrossRefGoogle ScholarPubMed
Zhao, S, Edwards, J, Carroll, J, et al. (2006). Insertion mutation at the C-terminus of the serotonin transporter disrupts brain serotonin function and emotion-related behaviors in mice. Neuroscience 140: 321–34.CrossRefGoogle ScholarPubMed
Zhou, D, Grecksch, G, Becker, A, Frank, C, Pilz, J, Huether, G (1998). Serotonergic hyperinnervation of the frontal cortex in an animal model of depression, the bulbectomized rat. J Neurosci Res 54: 109–16.3.0.CO;2-2>CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×