Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-jwnkl Total loading time: 0 Render date: 2024-07-12T06:52:42.116Z Has data issue: false hasContentIssue false

Chapter VI - Finite Elements in Solid Mechanics

Published online by Cambridge University Press:  01 March 2010

Dietrich Braess
Affiliation:
Ruhr-Universität, Bochum, Germany
Get access

Summary

Finite element methods are the most widely used tools for computing the deformations and stresses of elastic and inelastic bodies subject to loads. These types of problems involve systems of differential equations with the following special feature: the equations are invariant under translations and orthogonal transformations since the elastic energy of a body does not change under so-called rigid body motions.

Practical problems in structural mechanics often involve small parameters which can appear in both obvious and more subtle ways. For example, for beams, membranes, plates, and shells, the thickness is very small in comparison with the other dimensions. On the other hand, for a cantilever beam, the part of the boundary on which Dirichlet boundary conditions are prescribed is very small. Finally, many materials allow only very small changes in density. These various cases require different variational formulations of the finite element computations. Using an incorrect formulation leads to so-called locking. Often, mixed formulations provide a suitable framework for both the computation and a rigorous mathematical analysis.

Most of the characteristic properties appear already in the so-called linear theory, i.e., for small deformations where no genuine nonlinear phenomenon occurs. However, strictly speaking, there is no complete linear elasticity theory, since the above-mentioned invariance under rigid body motions cannot be completely modeled in a linear theory. For this reason, we don't restrict ourselves to the linear theory until later.

Type
Chapter
Information
Finite Elements
Theory, Fast Solvers, and Applications in Solid Mechanics
, pp. 278 - 347
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×