Skip to main content Accessibility help
×
  • Cited by 18
Publisher:
Cambridge University Press
Online publication date:
October 2017
Print publication year:
2017
Online ISBN:
9781316823736

Book description

Fluid mechanics is a branch of classical physics that has a rich tradition in applied mathematics and numerical methods. It is at work virtually everywhere, from nature to technology. This broad and fundamental coverage of computational fluid dynamics (CFD) begins with a presentation of basic numerical methods and flows into a rigorous introduction to the subject. A heavy emphasis is placed on the exploration of fluid mechanical physics through CFD, making this book an ideal text for any new course that simultaneously covers intermediate fluid mechanics and computation. Ample examples, problems and computer exercises are provided to allow students to test their understanding of a variety of numerical methods for solving flow physics problems, including the point-vortex method, numerical methods for hydrodynamic stability analysis, spectral methods and traditional CFD topics.

Reviews

'The strength of this book lies in its emphasis on a complete presentation of the underlying theories followed by clear steps and concise formulation applied to a plethora of problems, which include basic numerical schemes such as Euler and Runge-Kutta methods and relatively advanced schemes such as the pseudo-spectral method, spectral methods with body fitted grids, and the immersed boundary method … These attributes make it highly attractive as a technical elective for engineering upperclassmen (following an introductory course in fluid mechanics) and forgraduate students, including those studying applied mathematics. Recommended.'

R. N. Laoulache Source: Choice

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Abramowitz, M. and Stegun, I. (eds.)(1965). Handbook of Mathematical Functions Google Scholar. Dover Publications.
Akiki, G. and Balachandar, S.(2016). Immersed boundary method with non- uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J. Comp. Phys. 307 CrossRef | Google Scholar, 34–59
Almgren, A.S., Bell, J.B., Colella, P. and Marthaler, T. (1997). A Cartesian grid projection method for the incompressible Euler equations in complex geome- tries. SIAM J. Sci. Comput. 18 CrossRef | Google Scholar, 1289.
Anderson, S.L. (1990). Random number generation on vector supercomputers and other advanced architectures. SIAM Rev. 32 CrossRef | Google Scholar, 221–51
Aref, H. (1979). Motion of three vortices. Phys. Fluids 22 CrossRef | Google Scholar, 393–400
Aref, H. (1982). Point vortex motions with a center of symmetry. Phys. Fluids 25 CrossRef | Google Scholar, 2183–7
Aref, H. (1983). Integrable, chaotic and turbulent vortex motion in two- dimensional flows. Ann. Rev. Fluid Mech. 15 CrossRef | Google Scholar, 345–89
Aref, H. (1984). Stirring by chaotic advection. J. Fluid Mech. 143 CrossRef | Google Scholar, 1–21
Aref, H. (2002). The development of chaotic advection. Phys. Fluids 14 CrossRef | Google Scholar, 1315–25
Aref, H. and Balachandar, S. (1986). Chaotic advection in a Stokes flow. Phys. Fluids 29 CrossRef | Google Scholar, 3515–21
Aref, H. and Jones, S.W. (1993). Chaotic motion of a solid through ideal fluid. Phys. Fluids 5 CrossRef | Google Scholar, 3026–8
Aref, H., Jones, S.W., Mofina, S. and Zawadzki, I. (1989). Vortices, kinematics and chaos. Physica D 37 CrossRef | Google Scholar, 423–40
Aref, H., Rott, N. and Thomann, H. (1992). Grobli's solution of the three-vortex problem. Ann. Rev. Fluid Mech. 24 CrossRef | Google Scholar, 1–20
Arnold, V.I. (1978). Mathematical Methods of Classical Mechanics CrossRef | Google Scholar. Springer.
Arnold, V.I. and Avez, A. (1968). Ergodic Problems of Classical Mechanics Google Scholar. W.A. Benjamin, Inc.
Augenbaum, J.M. (1989). An adaptive pseudospectral method for discontinuous problems. Appl. Numer. Math. 5 CrossRef | Google Scholar, 459–80
Axelsson, O. (1996). Iterative Solution Methods Google Scholar. Cambridge University Press.
Bagchi, P. and Balachandar, S. (2002a). Shear versus vortex-induced lift force on a rigid sphere at moderate Re. J. Fluid Mech. 473 Google Scholar, 379–88
Bagchi, P. and Balachandar, S. (2002b). Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14 Google Scholar, 2719–37
Bagchi, P. and Balachandar, S. (2002c). Steady planar straining flow past a rigid sphere at moderate Reynolds number. J. Fluid Mech. 466 Google Scholar, 365–407
Bagchi, P. and Balachandar, S. (2003). Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 CrossRef | Google Scholar(11), 3496–513
Bagchi, P. and Balachandar, S. (2004). Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518 CrossRef | Google Scholar, 95–123
Bai-Lin, H. (1984). Chaos Google Scholar. World Scientific Publishing Co.
Balachandar, S. and Eaton, J.K. (2010). Turbulent dispersed multiphase flow. Ann. Rev. Fluid Mech. 42 CrossRef | Google Scholar, 111–33
Balachandar, S. and Maxey, M.R. (1989). Methods for evaluating fluid velocities in spectral simulations of turbulence. J. Comp. Phys. 83 CrossRef | Google Scholar(1), 96–125
Ballal, B.Y. and Rivlin, R.S. (1976). Flow of a Newtonian fluid between eccentric rotating cylinders: inertial effects. Arch. Rational Mech. Anal. 62 CrossRef | Google Scholar(3), 237–94
Barenblatt, G.I. (1996). Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotics CrossRef | Google Scholar. Cambridge University Press.
Bashforth, F. and Adams, J.C. (1883). An Attempt to Test the Theories of Cap- illary Action: By Comparing the Theoretical and Measured Forms of Drops of Fluid Google Scholar. University Press.
Basset, A.B. (1888). A Treatise on Hydrodynamics Google Scholar. Deighton, Bell and Company.
Batchelor, G.K. (1967). An Introduction to Fluid Dynamics Google Scholar. Cambridge Univer- sity Press.
Ben-Jacob, E. and Garik, P. (1990). The formation of patterns in non-equilibrium growth. Nature 343 CrossRef | Google Scholar, 523–30
Berry, M.V., Percival, I.C. and Weiss, N.O. (1987). Dynamical Chaos. The Royal Society, London Google Scholar. (First published as Proc. R. Soc. London A 413, 1–199)
Birkhoff, G. and Fisher, J. (1959). Do vortex sheets roll up? Rend. Circ. Mat. Palermo 8 Google Scholar, 77–90
Boris, J.P. (1989). New directions in computational fluid dynamics. Ann. Rev. Fluid Mech. 21 CrossRef | Google Scholar, 345–85
Boussinesq, J. (1885). Sur la résistance qu'oppose un liquide indéfini au repos au mouvement varié d'une sphére solide. C. R. Acad. Sci. Paris 100 Google Scholar, 935–7
Boyd, J.P. (2001). Chebyshev and Fourier Spectral Methods Google Scholar. Courier Dover Publications.
Brachet, M.E., Meiron, D.I., Orszag, S.A., Nickel, B.G., Morf, R.H. and Frisch, U. (1983). Small scale structure of the Taylor–Green vortex. J. Fluid Mech. 130 CrossRef | Google Scholar, 411–52
Brown, D.L., Cortez, R. and Minion, M.L. (2001). Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168 CrossRef | Google Scholar(2), 464– 99.
Brucato, A., Grisafi, F. and Montante, G. (1998). Particle drag coefficients in turbulent fluids. Chem. Eng. Sci. 53 CrossRef | Google Scholar, 3295–314
Calhoun, D. and Leveque, R.J. (2000). A Cartesian grid finite-volume method for the advection–diffusion equation in irregular geometries. J. Comput. Phys. 157 CrossRef | Google Scholar, 143–80
Canuto, C., Hussaini, M.Y., Quarteroni, A. and Zang, T.A. (2006). Spectral Methods in Fluid Dynamics. Springer Google Scholar.
Carnahan, B., Luther, H.A. and Wilkes, J.O. (1969). Applied Numerical Methods. Wiley Google Scholar.
Chaiken, J., Chevray, R., Tabor, M. and Tan, Q.M. (1986). Experimental study of Lagrangian turbulence in a Stokes flow. Proc. R. Soc. London A 408 CrossRef | Google Scholar, 165–74
Chaiken, J., Chu, C.K., Tabor, M. and Tan, Q.M. (1987). Lagrangian turbulence and spatial complexity in a Stokes flow. Phys. Fluids 30 CrossRef | Google Scholar, 687–94
Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability Google Scholar. Oxford University Press.
Chang, E.J. and Maxey, M.R. (1994). Unsteady flow about a sphere at low to moderate Reynolds number. Part 1: Oscillatory motion. J. Fluid Mech. 277 Google Scholar, 347–79
Chapra, S.C. (2002). Numerical Methods for Engineers, 4th edn. McGraw–Hill Google Scholar.
Chorin, A.J. (1968). Numerical solution of the Navier–Stokes equations. Math. Comput. 22 CrossRef | Google Scholar, 745–62
Chorin, A.J. (1976). Random choice solution of hyperbolic systems. J. Comp. Phys. 22 CrossRef | Google Scholar(4), 517–33
Chung, T.J. (2010). Computational Fluid Dynamics CrossRef | Google Scholar. Cambridge University Press.
Clift, R., Grace, J.R. and Weber, M.E. (1978). Bubbles, Drops and Particles Google Scholar. Academic Press.
Cochran, W.G. (1934). The flow due to a rotating disk. Proc. Camb. Phil. Soc. 30 Google Scholar, 365–75
Collatz, L. (1960). The Numerical Treatment of Differential Equations. Springer Google Scholar.
Cossu, C. and Loiseleux, T. (1998). On the convective and absolute nature of instabilities in finite difference numerical simulations of open flows. J. Comp. Phys. 144 CrossRef | Google Scholar(1), 98–108
Criminale, W.O., Jackson, T.L. and Joslin, R.D. (2003). Theory and Computa- tion of Hydrodynamic Stability Google Scholar. Cambridge University Press.
Crutchfield, J.P., Farmer, J.D., Packard, N.H. and Shaw, R.S. (1986). Chaos. Sci. Amer. 255 CrossRef | Google Scholar, 46–57
Curle, N. (1957). On hydrodynamic stability in unlimited fields of viscous flow. Proc. Royal Soc. London A 238 CrossRef | Google Scholar, 489–501
Curry, J.H., Garnett, L. and Sullivan, D. (1983). On the iteration of a rational function: computer experiments with Newton's method. Comm. Math. Phys. 91 CrossRef | Google Scholar, 267–77
Curry, J.H., Herring, J.R., Loncaric, J. and Orszag, S.A. (1984). Order and disorder in two- and three-dimensional Benard convection. J. Fluid Mech. 147 CrossRef | Google Scholar, 1–38
Dandy, D.S. and Dwyer, H.A. (1990). A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag and heat transfer. J. Fluid Mech. 216 CrossRef | Google Scholar, 381–410
Devaney, R.L. (1989). An Introduction to Chaotic Dynamical Systems, 2nd edn. Addison–Wesley Google Scholar.
Deville, M.O., Fischer, P.F. and Mund, E.H. (2002). High-order Methods for Incompressible Fluid Flow CrossRef | Google Scholar. Cambridge University Press.
Dombre, T., Frisch, U., Greene, J.M., Hénon, M., Mehr, A. and Soward A.M. (1986). Chaotic streamlines and Lagrangian turbulence: the ABC flows. J. Fluid Mech. 167 Google Scholar, 353–91
Dongarra, J.J., Croz, J.D., Hammarling, S. and Duff, I.S. (1990). A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Software (TOMS) 16 CrossRef | Google Scholar(1), 1–17
Donnelly, R.J. (1991 CrossRef | Google Scholar). Taylor–Couette flow: the early days. Phys. Today, Novem- ber, 32–9
Drazin, P.G. and Reid, W.H. (2004). Hydrodynamic Stability Google Scholar, 2nd edn. Cambridge University Press.
Eckhardt, B. and Aref, H. (1988). Integrable and chaotic motions of four vortices V. Collision dynamics of vortex pairs. Phil. Trans. Royal Soc. London A 326 Google Scholar, 655–96
Edelsbrunner, H. (2001). Geometry and Topology for Mesh Generation CrossRef | Google Scholar. Cambridge University Press.
Eiseman, P.R. (1985). Grid generation for fluid mechanics computations. Ann. Rev. Fluid Mech. 17 CrossRef | Google Scholar, 4875–22
Emmons, H.W. (1970). Critique of numerical modelling of fluid mechanics phe- nomena. Ann. Rev. Fluid Mech. 2 Google Scholar, 15–37
Eswaran, V. and Pope, S.B. (1988). An examination of forcing in direct numerical simulations of turbulence. Comp. Fluid. 16 CrossRef | Google Scholar(3), 257–78
Evans, G., Blackledge, J. and Yardley, P. (2012). Numerical Methods for Partial Differential Equations. Springer Google Scholar.
Fadlun, E.A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J. (2000). Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161 CrossRef | Google Scholar, 35–60
Fatou, P. (1919). Sur les equations fontionelles. Bull. Soc. Math. France 47 Google Scholar, 161–271 also 48, 33–94 208–314
Feigenbaum, M.J. (1978). Quantitative universality for a class of non-linear transformations. J. Stat. Phys. 19 Google Scholar, 25–52
Feigenbaum, M.J. (1980). The metric universal properties of period doubling bifurcations and the spectrum for a route to turbulence. Ann. N.Y. Acad. Sci. 357 CrossRef | Google Scholar, 330–6
Ferziger, J.H. and Peric, M. (2012). Computational Methods for Fluid Dynamics. Springer Google Scholar.
Fink, P.T. and Soh, W.K. (1978). A new approach to roll-up calculations of vortex sheets. Proc. Royal Soc. London A 362 CrossRef | Google Scholar, 195–209
Finlayson, B.A. and Scriven, L.E. (1966). The method of weighted residuals: a review. Appl. Mech. Rev. 19 Google Scholar(9), 735–48
Finn, R. (1986). Equilibrium Capillary Surfaces. Springer CrossRef | Google Scholar.
Fischer, P.F., Leaf, G.K. and Restrepo, J.M. (2002). Forces on particles in oscil- latory boundary layers. J. Fluid Mech. 468 Google Scholar, 327–47
Fjørtoft, R. (1950). Application of Integral Theorems in Deriving Criteria of Stability for Laminar Flows and for the Baroclinic Circular Vortex Google Scholar. Geofysiske Publikasjoner, Norske Videnskaps-Akademii Oslo.
Fletcher, C.A.J. (1991). Computational Techniques for Fluid Dynamics, Vol I and II. Springer Google Scholar.
Fornberg, B. (1988). Steady viscous flow past a sphere at high Reynolds numbers. J. Fluid Mech. 190 CrossRef | Google Scholar, 471.
Fornberg, B. (1998). A Practical Guide to Pseudospectral Methods Google Scholar. Cambridge University Press.
Fox, R.O. (2012). Large-eddy-simulation tools for multiphase flows. Ann. Rev. Fluid Mech. 44 CrossRef | Google Scholar, 47–76
Franceschini, V. and Tebaldi, C. (1979). Sequences of infinite bifurcations and turbulence in a five-mode truncation of the Navier–Stokes equations. J. Stat. Phys. 21 CrossRef | Google Scholar(6), 707–26
Funaro, D. (1992). Polynomial Approximation of Differential Equations. Springer Google Scholar.
Gatignol, R. (1983). The Faxén formulas for a rigid particle in an unsteady non-uniform Stokes-flow. J. Mécanique Théorique Appliquée 2 Google Scholar(2), 143–60
Gear, C.W. (1971). Numerical Initial Value Problems in Ordinary Differential Equations. Prentice–Hall Google Scholar.
Ghia, U.K.N.G., Ghia, K.N. and Shin, C.T. (1982). High-Re solutions for incom- pressible flow using the Navier–Stokes equations and a multigrid method. J. Comp. Phys. 48 Google Scholar(3), 387–411
Glendinning, P. (1994). Stability, Instability and Chaos: an Introduction to the Theory of Nonlinear Differential Equations CrossRef | Google Scholar. Cambridge University Press.
Glowinski, R. and Pironneau, O., (1992). Finite element methods for Navier– Stokes equations. Ann. Rev. Fluid Mech. 24 CrossRef | Google Scholar, 167–204
Godunov, S.K. (1959). A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Math. Sbornik 47 Google Scholar, 271–306 Translated as US Joint Publ. Res. Service, JPRS 7226 (1969).
Goldstein, D., Handler, R. and Sirovich, L. (1993). Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105 CrossRef | Google Scholar, 354–66
Goldstine, H.H. (1972). The Computer from Pascal to Von Neumann Google Scholar. Princeton University Press.
Gollub, J.P. and Benson, S.V. (1980). Many routes to turbulent convection. J. Fluid Mech. 100 CrossRef | Google Scholar, 449–70
Golub, G.H. (ed.) (1984). Studies in Numerical Analysis Google Scholar. The Mathematical Association of America.
Golub, G.H. and Kautsky, J. (1983). Calculation of Gauss quadratures with multiple free and fixed knots. Numerische Mathematik 41 CrossRef | Google Scholar(2), 147–63
Golub, G.H. and van Loan, C.F. (2012). Matrix Computations Google Scholar. Johns Hopkins University Press.
Gore, R.A. and Crowe, C.T. (1990). Discussion of particle drag in a dilute tur- bulent two-phase suspension flow. Int. J. Multiphase Flow 16 Google Scholar, 359–61
Gottlieb, D. and Orszag, S.A. (1983 Google Scholar). Numerical Analysis of Spectral Methods: Theory and Applications. SIAM.
Guermond, J.L., Minev, P. and Shen, J. (2006). An overview of projection meth- ods for incompressible flows. Comp. Meth. Appl. Mech. Eng. 195 Google Scholar(44), 6011–45
Gustafsson, B., Kreis, H.-O. and Sundstrøm, A. (1972). Stability theory of dif- ference approximations for mixed initial boundary value problems, II. Math. Comput. 26 Google Scholar, 649–86
Hamming, R.W. (1973). Numerical Methods for Scientists: No-slip Engineers, 2nd edn. McGraw–Hill Google Scholar. (Republished by Dover Publications, 1986.)
Harrison, W.J. (1908). The influence of viscosity on the oscillations of superposed fluids. Proc. London Math. Soc. 6 CrossRef | Google Scholar, 396–405
Hartland, S. and Hartley, R.W. (1976). Axisymmetric Fluid–Liquid Interfaces Google Scholar. Elsevier Scientific.
Hartree, D.R. (1937). On an equation occurring in Falkner and Skan's approxi- mate treatment of the equations of the boundary layer. Proc. Camb. Phil. Soc. 33 Google Scholar, 223–39
Hénon, M. (1969). Numerical study of quadratic area-preserving mappings. Q. Appl. Math. 27 CrossRef | Google Scholar, 291–312
Hénon, M. (1982). On the numerical computation of Poincaré maps. Physica D 5 CrossRef | Google Scholar, 412–4
Higdon, J.J.L. (1985). Stokes flow in arbitrary two-dimensional domains: shear flow over ridges and cavities. J. Fluid Mech. 159 CrossRef | Google Scholar, 195–226
Hildebrand, F.B. (1974). Introduction to Numerical Analysis, 2nd edn. McGraw– Hill Google Scholar. (Republished by Dover Publications).
Hirsch, C. (2007). Numerical Computation of Internal and External Flows: the Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth– Heinemann Google Scholar.
Hirsch, M.W., Smale, S. and Devaney, R.L. (2004). Differential Equations, Dy- namical Systems, and an Introduction to Chaos Google Scholar. Academic Press.
Holt, M. (1977). Numerical Methods in Fluid Dynamics. Springer CrossRef | Google Scholar.
Howard, L.N. (1958). Hydrodynamic stability of a jet. J. Math. Phys. 37 CrossRef | Google Scholar(1), 283–98
Huntley, H.E. (1967). Dimensional Analysis Google Scholar. Dover Publications.
Johnson, T.A. and Patel, V.C. (1999). Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378 CrossRef | Google Scholar, 19–70
Julia, G. (1918). Memoire sur l'iteration des fonctions rationelles. J. Math. Pures Appl. 4 Google Scholar, 47–245
Kac, M. (1938). Sur les fonctions 2nt−[2nt]− 1. J. London Math. Soc. 13 Google Scholar, 131–4
Kamath, V. and Prosperetti, A. (1989). Numerical integration methods in gas– bubble dynamics. J. Acoust. Soc. Amer. 85 CrossRef | Google Scholar, 1538–48
Karniadakis, G.E. and Sherwin, S. (2013). Spectral/hp Element Methods for Computational Fluid Dynamics Google Scholar. Oxford University Press.
Karniadakis, G.E. and Triantafyllou, G.E. (1992). Three-dimensional dynamics and transition to turbulence in the wake of bluff objects. J. Fluid Mech. 238 CrossRef | Google Scholar, 1–30
Karniadakis, G.E., Israeli, M. and Orszag, S.A. (1991). High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 CrossRef | Google Scholar, 414–43
Keller, H.B. (1968). Numerical Methods for Two-point Boundary-value Problems Google Scholar. Dover Publications.
Kida, S. and Takaoka, M. (1987). Bridging in vortex reconnection. Phys. Fluids 30 CrossRef | Google Scholar(10), 2911–4
Kim, D. and Choi, H. (2002). Laminar flow past a sphere rotating in the stream- wise direction. J. Fluid Mech. 461 Google Scholar, 365–86
Kim, J. and Moin, P. (1985). Application of a fractional-step method to incom- pressible Navier–Stokes equations. J. Comp. Phys. 59 Google Scholar, 308–23
Kim, I., Elghobashi, S. and Sirignano, W.A. (1998). Three-dimensional flow over 3-spheres placed side by side. J. Fluid Mech. 246 Google Scholar, 465–88
Kim, J., Kim, D. and Choi, H. (2001). An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171 CrossRef | Google Scholar, 132–50
Kirchhoff, G.R. (1876). Vorlesungen Uber Mathematische Physik, Vol. 1. Teubner Google Scholar.
Knapp, R.T., Daily, J.W. and Hammitt, F.G. (1979). Cavitation Google Scholar. Institute for Hydraulic Research.
Knuth, D.E. (1981). The Art of Computer Programming, 2nd edn., Vol. 2. Addison–Wesley Google Scholar.
Kopal, Z. (1961). Numerical Analysis Google Scholar. Chapman and Hall.
Kozlov, V.V. and Onischenko, D.A. (1982). Nonintegrability of Kirchhoff's equa- tions. Sov. Math. Dokl. 26 Google Scholar, 495–8
Krasny, R. (1986a). A study of singularity formation in a vortex sheet by the point-vortex approximation. J. Fluid Mech. 167 Google Scholar, 65–93
Krasny, R. (1986b). Desingularization of periodic vortex sheet roll-up. J. Com- put. Phys. 65 Google Scholar, 292–313
Kreiss, H.-O. and Oliger, J. (1972). Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24 Google Scholar(3), 199–215
Krishnan, G.P. and Leighton Jr, D.T. (1995). Inertial lift on a moving sphere in contact with a plane wall in a shear flow. Phys. Fluids 7 CrossRef | Google Scholar(11), 2538–45
Kurose, R. and Komori, S. (1999). Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384 CrossRef | Google Scholar, 183–206
Lamb, Sir H. (1932). Hydrodynamics Google Scholar, 6th edn. Cambridge University Press.
Lanczos, C. (1938). Trigonometric interpolation of empirical and analytical func- tions. J. Math. Phys. 17 Google Scholar, 123–99
Landau, L.D. and Lifshitz, E.M. (1987). Fluid Mechanics Google Scholar, 2nd edn. Pergamon Press.
Ledbetter, C.S. (1990). A historical perspective of scientific computing in Japan and the United States. Supercomputing Rev. 3 Google Scholar(11), 31–7
Lee, H. and Balachandar, S. (2010). Drag and lift forces on a spherical particle moving on a wall in a shear flow at finite Re. J. Fluid Mech. 657 CrossRef | Google Scholar, 89–125
Lee, H. and Balachandar, S. (2017). Effects of wall roughness on drag and lift forces of a particle at finite Reynolds number. Int. J. Multiphase Flow. 88 CrossRef | Google Scholar, 116–132
Lee, H., Ha, M.Y. and Balachandar, S. (2011). Rolling/sliding of a particle on a flat wall in a linear shear flow at finite Re. Int. J. Multiphase Flow 37 CrossRef | Google Scholar(2), 108–124
Legendre, D. and Magnaudet, J. (1998). The lift force on a spherical bubble in a viscous linear shear flow. J. Fluid Mech. 368 CrossRef | Google Scholar, 81–126
Leighton, D. and Acrivos, A. (1985). The lift on a small sphere touching a plane in the presence of a simple shear flow. ZAMP 36 CrossRef | Google Scholar(1), 174–8
Lele, S.K. (1992). Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103 CrossRef | Google Scholar(1), 16–42
Leonard, B.P. (1979). A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comp. Meth. Appl. Mech. Eng. 19 CrossRef | Google Scholar(1), 59–98
LeVeque, R.J. (2007 Google Scholar). Finite Difference Methods for Ordinary and Partial Dif- ferential Equations: Steady-state and Time-dependent Problems. SIAM.
LeVeque, R.J. and Li, Z. (1994). The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Nu- mer. Anal. 31 CrossRef | Google Scholar, 1019.
Li, T.Y. and Yorke, J.A. (1975). Period three implies chaos. Amer. Math. Monthly 82 CrossRef | Google Scholar, 985–92
Lighthill, M.J. (1978). Waves in Fluids Google Scholar. Cambridge University Press.
Lin, C.C. (1943). On the Motion of Vortices in Two Dimensions Google Scholar. University of Toronto Press.
Liseikin, V.D. (2009). Grid Generation Methods. Springer Google Scholar.
Lorenz, E.N. (1963). Deterministic nonperiodic flow. J. Atmos. Sci. 20 CrossRef | Google Scholar(2), 130– 41.
Luke, Y.L. (1969). The Special Functions and their Approximations Google Scholar. Academic Press.
Lundgren, T.S. and Pointin, Y.B. (1977). Statistical mechanics of two- dimensional vortices. J. Stat. Phys. 17 CrossRef | Google Scholar, 323–55
MacCormack, R.W. (1969 Google Scholar). The effect of viscosity in hypervelocity impact cra- tering. AIAA Paper 69–354
MacCormack, R.W. and Lomax, H. (1979). Numerical solution of compressible viscous flows. Ann. Rev. Fluid Mech. 11 CrossRef | Google Scholar, 289–316
Mack, L.M. (1976). A numerical study of the temporal eigenvalue spectrum of the Blasius boundary layer. J. Fluid Mech. 73 CrossRef | Google Scholar(3), 497–520
MacKay, R.S. and Meiss, J.D. (1987). Hamiltonian Dynamical Systems: A Reprint Selection Google Scholar. Adam Hilger.
Maeder, R.E. (1995). Function iteration and chaos. Math. J. 5 Google Scholar, 28–40
Magnaudet, J., Rivero, M. and Fabre, J. (1995). Accelerated flows past a rigid sphere or a spherical bubble. Part 1: Steady straining flow. J. Fluid Mech. 284 Google Scholar, 97–135
Mandelbrot, B.B. (1980). Fractal aspects of z → Λz(1 − z) for complex Λ and z. Ann. N.Y. Acad. Sci. 357 CrossRef | Google Scholar, 249–59
Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. Freeman CrossRef | Google Scholar.
Marella, S., Krishnan, S.L.H.H., Liu, H. and Udaykumar, H.S. (2005). Sharp interface Cartesian grid method I: an easily implemented technique for 3D moving boundary computations. J. Comp. Phys. 210 CrossRef | Google Scholar(1), 1–31
Matsuda, K., Onishi, R., Hirahara, M., Kurose, R., Takahashi, K. and Komori, S. (2014). Influence of microscale turbulent droplet clustering on radar cloud observations. J. Atmos. Sci. 71 CrossRef | Google Scholar(10), 3569–82
Maxey, M.R. and Riley, J.J. (1983). Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26 Google Scholar(4), 883–9
May, R.M. (1976). Simple mathematical models with very complicated dynamics. Nature 261 CrossRef | Google Scholar, 459–67
McLaughlin, J.B. (1991). Inertial migration of a small sphere in linear shear flows. J. Fluid Mech. 224 CrossRef | Google Scholar, 261–74
McQueen, D.M. and Peskin, C.S. (1989). A three-dimensional computational method for blood flow in the heart. II. Contractile fibers. J. Comput. Phys. 82 CrossRef | Google Scholar, 289.
Mei, R. and Adrian, R.J. (1992). Flow past a sphere with an oscillation in the free-stream and unsteady drag at finite Reynolds number. J. Fluid Mech. 237 CrossRef | Google Scholar, 133–74
Meiron, D.I., Baker, G.R. and Orszag, S.A. (1982). Analytic structure of vortex sheet dynamics 1. Kelvin–Helmholtz instability. J. Fluid Mech. 114 Google Scholar, 283–98
Mercier, B. (1989). An Introduction to the Numerical Analysis of Spectral Meth- ods. Springer Google Scholar.
Merilees, P.E. (1973). The pseudospectral approximation applied to the shallow water equations on a sphere. Atmosphere 11 Google Scholar(1), 13–20
Mitchell, A.R. and Griffiths, D.F. (1980). The Finite Difference Method in Partial Differential Equations Google Scholar. John Wiley.
Mittal, R. (1999). A Fourier–Chebyshev spectral collocation method for simulat- ing flow past spheres and spheroids. Int. J. Numer. Meth. Fluids 30 Google Scholar, 921–37
Mittal, R. and Balachandar, S. (1996). Direct numerical simulations of flow past elliptic cylinders. J. Comput. Phys. 124 CrossRef | Google Scholar, 351–67
Mittal, R. and Iaccarino, G. (2005). Immersed boundary methods. Ann. Rev. Fluid Mech. 37 CrossRef | Google Scholar, 239–61
Mohd-Yusof, J. (1997). Combined immersed boundaries B-spline methods for simulations of flows in complex geometries. CTR Annual Research Briefs Google Scholar. NASA Ames, Stanford University.
Moin, P. (2010a). Fundamentals of Engineering Numerical Analysis Google Scholar. Cambridge University Press.
Moin, P. (2010b). Engineering Numerical Analysis Google Scholar. Cambridge University Press.
Moin, P. and Krishnan, M. (1998). Direct numerical simulation: a tool in turbu- lence research. Ann. Rev. Fluid Mech. 30 Google Scholar(1), 539–78
Moore, D.W. (1979). The spontaneous appearance of a singularity in the shape of an evolving vortex sheet. Proc. Royal Soc. London A 365 CrossRef | Google Scholar, 105–19
Morton, K.W. (1980). Stability of finite difference approximations to a diffusion– convection equation. Int. J. Numer. Method. Eng. 15 CrossRef | Google Scholar(5), 677–83
Moser, J. (1973). Stable and Random Motions in Dynamical Systems Google Scholar. Ann. Math. Studies No.77. Princeton University Press.
Onsager, L. (1949). Statistical hydrodynamics. Nuovo Cim. 6 CrossRef | Google Scholar (Suppl.), 279–87
Orszag, S.A. (1969). Numerical methods for the simulation of turbulence. Phys. Fluids 12 CrossRef | Google Scholar(12), Supp. II, 250–7
Orszag, S.A. (1970). Transform method for the calculation of vector-coupled sums: application to the spectral form of the vorticity equation. J. Atmos. Sci. 27 CrossRef | Google Scholar(6), 890–5
Orszag, S.A. (1974). Fourier series on spheres. Monthly Weather Rev. 102 CrossRef | Google Scholar(1), 56–75
Orszag, S.A. and Israeli, M. (1974). Numerical simulation of viscous incompress- ible flows. Ann. Rev. Fluid Mech. 6 Google Scholar, 281–318
Orszag, S.A. and McLaughlin, N.N. (1980). Evidence that random behavior is generic for nonlinear differential equations. Physica D 1 CrossRef | Google Scholar, 68–79
Orszag, S.A. and Patterson Jr, G.S. (1972). Numerical simulation of three- dimensional homogeneous isotropic turbulence. Phys. Rev. Lett. 28 CrossRef | Google Scholar(2), 76.
Orszag, S.A., Israeli, M. and Deville, M. (1986). Boundary conditions for incom- pressible flows. J. Sci. Comput. 1 Google Scholar, 75–111
Oseen, C.W. (1927). Hydrodynamik Google Scholar. Akademische Verlagsgesellschaft.
Ottino, J.M. (1989). The Kinematics of Mixing: Stretching, Chaos and Trans- port Google Scholar. Cambridge University Press.
Patterson, G. (1978). Prospects for computational fluid mechanics. Ann. Rev. Fluid Mech. 10 CrossRef | Google Scholar, 289–300
Peaceman, D.W. and Rachford Jr, H.H. (1955). The numerical solution of parabolic and elliptic differential equations. J. Soc. Indus. Appl. Math. 3 CrossRef | Google Scholar(1), 28–41
Peitgen, H.-O. and Richter, P.H. (1986). The Beauty of Fractals CrossRef | Google Scholar. Springer.
Peitgen, H.-O. and Saupe, D. (eds.) (1988). The Science of Fractal Images. Springer Google Scholar.
Peitgen, H.-O., Saupe, D. and Haessler, F.V. (1984). Cayley's problem and Julia sets. Math. Intelligencer 6 CrossRef | Google Scholar, 11–20
Pember, R.B., Bell, J.B., Colella, P., Crutchfield, W.Y. and Welcome, M.L. (1995). An adaptive Cartesian grid method for unsteady compressible flow in irregular regions. J. Comput. Phys. 120 CrossRef | Google Scholar, 278–304
Perot, J.B. (1993). An analysis of the fraction step method. J. Comput. Phys. 108 Google Scholar, 51–8
Peskin, C.S. (1977). Numerical analysis of blood flow in the heart. J. Comput. Phys. 25 CrossRef | Google Scholar, 220–52
Peyret, R. and Taylor, T.D. (1983). Computational Methods for Fluid Flow CrossRef | Google Scholar. Springer.
Pinelli, A., Naqavi, I.Z., Piomelli, U. and Favier, J. (2010). Immersed-boundary methods for general finite-difference and finite-volume Navier–Stokes solvers. J. Comp. Phys. 229 CrossRef | Google Scholar(24), 9073–91
Pirozzoli, S. (2011). Numerical methods for high-speed flows. Ann. Rev. Fluid Mech. 43 CrossRef | Google Scholar, 163–94
Plesset, M.S. and Prosperetti, A. (1977). Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9 CrossRef | Google Scholar, 145–85
Pletcher, R.H., Tannehill, J.C. and Anderson, D. (2012). Computational Fluid Mechanics and Heat Transfer Google Scholar. CRC Press.
Pozrikidis, C. (2011). Introduction to Theoretical and Computational Fluid Dy- namics Google Scholar. Oxford University Press.
Pozrikidis, C. and Higdon, J.J.L. (1985). Nonlinear Kelvin–Helmholtz instability of a finite vortex layer. J. Fluid Mech. 157 CrossRef | Google Scholar, 225–63
Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. (1986). Nu- merical Recipes: The Art of Scientific Programming Google Scholar. Cambridge University Press.
Prosperetti, A. and Tryggvason, G. (eds.) (2009). Computational Methods for Multiphase Flow Google Scholar. Cambridge University Press.
Proudman, I. and Pearson, J.R.A. (1957). Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2 CrossRef | Google Scholar(3), 237–62
Rayleigh, Lord (1880). On the stability, or instability, of certain fluid motions. Proc. London Math. Soc. 11 Google Scholar, 57–72
Rice, J.R. (1983). Numerical Methods, Software, and Analysis Google Scholar, IMSL Reference Edition. McGraw–Hill.
Richtmyer, R.D., and Morton, K.W. (1994). Difference Methods for Initial-Value Problems Google Scholar, 2nd edn. Krieger Publishing Co.
Roache, P.J. (1976 Google Scholar). Computational Fluid Dynamics. Hermosa.
Roberts, K.V. and Christiansen, J.P. (1972). Topics in computational fluid mechanics. Comput. Phys. Comm CrossRef | Google Scholar. 3(Suppl.), 14–32
Roe, P.L. (1986). Characteristic-based schemes for the Euler equations. Ann. Rev. Fluid Mech. 18 CrossRef | Google Scholar, 337–65
Roma, A.M., Peskin, C.S. and Berger, M.J. (1999). An adaptive version of the immersed boundary method. J. Comp. Phys. 153 CrossRef | Google Scholar(2), 509–34
Rosenblum, L.J. (1995). Scientific visualization: advances and challenges. IEEE Comp. Sci. Eng. 2 Google Scholar(4), 85.
Rosenhead, L. (1931). The formation of vortices from a surface of discontinuity. Proc. Roy. Soc. London Ser. A 134 CrossRef | Google Scholar, 170–92
Rosenhead, L. (ed.) (1963). Laminar Boundary Layers Google Scholar. Oxford University Press.
Rudoff, R.C. and Bachalo, W.D. (1988 CrossRef | Google Scholar) Measurement of droplet drag coefficients in polydispersed turbulent flow fields. AIAA Paper, 88–0235
Saad, Y. (2003 CrossRef | Google Scholar). Iterative Methods for Sparse Linear Systems. SIAM.
Saff, E.B. and Kuijlaars, A.B. (1997). Distributing many points on a sphere. Math. Intelligencer 19 CrossRef | Google Scholar(1), 5–11
Saffman, P.G. (1965). The lift on a small sphere in a slow shear flow. J. Fluid Mech.. 22 CrossRef | Google Scholar, 385–400
Saiki, E.M. and Biringen, S. (1996). Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method. J. Comput. Phys. 123 CrossRef | Google Scholar, 450–65
Sankagiri, S. and Ruff, G.A. (1997). Measurement of sphere drag in high turbu- lent intensity flows. Proc. ASME FED. 244 Google Scholar, 277–82
Sansone, G. (1959). Orthogonal Functions Google Scholar. Courier Dover Publications.
Sato, H. and Kuriki, K. (1961). The mechanism of transition in the wake of a thin flat plate placed parallel to a uniform flow. J. Fluid Mech. 11 CrossRef | Google Scholar(3), 321–52
Schlichting, H. (1968). Boundary-Layer Theory Google Scholar. McGraw–Hill.
Shampine, L.F. and Gordon, M.K. (1975). Computer Solution of Ordinary Dif- ferential Equations Google Scholar. W.H. Freeman and Co.
Shirayama, S. (1992). Flow past a sphere: topological transitions of the vorticity field. AIAA J. 30 CrossRef | Google Scholar, 349–58
Shu, S.S. (1952 Google Scholar). Note on the collapse of a spherical cavity in a viscous, incom- pressible fluid. In Proc. First US Nat. Congr. Appl. Mech. ASME, pp. 823–5
Siemieniuch, J.L. and I., Gladwell. (1978). Analysis of explicit difference methods for a diffusion–convection equation. Int. J. Numer. Method. Eng. 12 CrossRef | Google Scholar(6), 899– 916.
Silcock, G. (1975). On the Stability of Parallel Stratified Shear Flows Google Scholar. PhD Dis- sertation, University of Bristol.
Smereka, P., Birnir, B. and Banerjee, S. (1987). Regular and chaotic bubble oscillations in periodically driven pressure fields. Phys. Fluids 30 CrossRef | Google Scholar, 3342–50
Smith, G.D. (1985). Numerical Solution of Partial Differential Equations: Finite Difference Methods Google Scholar. Oxford University Press.
Sommerfeld, A. (1964). Mechanics of Deformable Bodies Google Scholar. Academic Press
Spalart, P.R. (2009). Detached-eddy simulation. Ann. Rev. Fluid Mech. 41 CrossRef | Google Scholar, 181– 202.
Squire, H.B. (1933). On the stability for three-dimensional disturbances of vis- cous fluid flow between parallel walls. Proc. Roy. Soc. London A 142 Google Scholar, 621–8
Stewartson, K. (1954). Further solutions of the Falkner–Skan equation. Math. Proc. Cambridge Phil. Soc. 50 CrossRef | Google Scholar(3), 454–65
Strang, G. (2016). Introduction to Linear Algebra Google Scholar, 5th edn. Wellesley-Cambridge Publishers.
Streett, C.L. and Macaraeg, M. (1989). Spectral multi-domain for large-scale fluid dynamics simulations. Appl. Numer. Math. 6 CrossRef | Google Scholar, 123–39
Struik, D.J. (1961). Lectures on Classical Differential Geometry Google Scholar, 2nd edn. Addison–Wesley. (Reprinted by Dover Publications, 1988.)
Swanson, P.D. and Ottino, J.M. (1990). A comparative computational and exper- imental study of chaotic mixing of viscous fluids. J. Fluid Mech. 213 Google Scholar, 227–49
Taneda, S. (1963). The stability of two-dimensional laminar wakes at low Reynolds numbers. J. Phys. Soc. Japan 18 CrossRef | Google Scholar(2), 288–96
Temam, R. (1969). Sur l'approximation de la solution des équations de Navier– Stokes par la méthode des pas fractionnaires (II). Arch. Ration. Mech. Anal. 33 Google Scholar, 377–85
Tennetti, S., Garg, R. and Subramaniam, S. (2011). Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. Int. J. Multiphase Flow 37 CrossRef | Google Scholar(9), 1072–92
Theofilis, V. (2011). Global linear instability. Ann. Rev. Fluid Mech. 43 CrossRef | Google Scholar, 319–52
Thomas, J.W. (2013). Numerical Partial Differential Equations: Finite Differ- ence Methods Google Scholar. Springer.
Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. (1982). Boundary-fitted co- ordinate systems for numerical solution of partial differential equations – a review. J. Comp. Phys. 47 Google Scholar, 1–108
Thompson, J.F., Warsi, Z.U.A. and Mastin, C.W. (1985). Numerical Grid Generation Google Scholar. North–Holland.
Tomboulides, A.G. and Orszag, S.A. (2000). Numerical investigation of transi- tional and weak turbulent flow past a sphere. J. Fluid Mech. 416 Google Scholar, 45–73
Toro, E.F. (1999). Riemann Solvers and Numerical Methods for Fluid Dynamics CrossRef | Google Scholar. Springer.
Trefethen, L.N. (1982). Group velocity in finite difference schemes. SIAM Rev. 24 CrossRef | Google Scholar(2), 113–36
Trefethen, L.N. and Embree, M. (2005). Spectra and Pseudospectra: The Behav- ior of Non-normal Matrices and Operators Google Scholar. Princeton University Press.
Tseng, Y.-H. and Ferziger, J.H. (2003). A ghost-cell immersed boundary method for flow in complex geometry. J. Comp. Phys. 192 CrossRef | Google Scholar(2), 593–623
Udaykumar, H.S., Kan, H.-C., Shyy, W. and Tran-son-Tay, R. (1997). Multiphase dynamics in arbitrary geometries on fixed Cartesian grids. J. Comput. Phys. 137 CrossRef | Google Scholar, 366–405
Udaykumar, H.S., Mittal, R. and Shyy, W. (1999). Solid–fluid phase front com- putations in the sharp interface limit on fixed grids. J. Comput. Phys. 153 Google Scholar, 535–74
Udaykumar, H.S., Mittal, R., Rampunggoon, P. and Khanna, A. (2001). A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174 CrossRef | Google Scholar, 345–80
Uhlherr, P.H.T. and Sinclair, C.G. (1970). The effect of freestream turbulence on the drag coefficients of spheres. Proc. Chemca. 1 Google Scholar, 1–12
Uhlmann, M. (2005). An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comp. Phys. 209 CrossRef | Google Scholar(2), 448–76
Uhlmann, M. and Doychev, T. (2014). Sedimentation of a dilute suspension of rigid spheres at intermediate Galileo numbers: the effect of clustering upon the particle motion. J. Fluid Mech. 752 CrossRef | Google Scholar, 310–48
Ulam, S.M. and von Neumann, J. (1947). On combinations of stochastic and deterministic processes. Bull. Amer. Math. Soc. 53 Google Scholar, 1120.
van de Vooren, A.I. (1980). A numerical investigation of the rolling-up of vortex sheets. Proc. Roy. Soc. London A. 373 CrossRef | Google Scholar, 67–91
van Dyke, M. (1964). Perturbation Methods in Fluid Mechanics Google Scholar. Academic Press.
van Dyke, M. (1982). An Album of Fluid Motion CrossRef | Google Scholar. Parabolic Press.
van Dyke, M. (1994). Computer-extended series. Ann. Rev. Fluid Mech. 16 Google Scholar(1), 287–309
van Kan, J. (1986). A second-order accurate pressure-correction scheme for viscous incompressible flow. SIAM J. Sci. Stat. Comput. 7 CrossRef | Google Scholar(3), 870–91
van Leer, B. (1974). Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comp. Phys. 14 Google Scholar(4), 361–70
Varga, R.S. (1962). Matrix Iterative Methods. Prentice–Hall Inc Google Scholar.
Versteeg, H.K. and Malalasekera, W. (2007). An Introduction to Computational Fluid Dynamics: The Finite Volume Method Google Scholar. Pearson Education.
Vrscay, E.R. (1986). Julia sets and Mandelbrot-like sets associated with higher- order Schröder rational iteration functions: a computer assisted study. Math. Comp. 46 Google Scholar, 151–69
Wang, M., Freund, J.B. and Lele, S.K. (2006). Computational prediction of flow- generated sound. Ann. Rev. Fluid Mech. 38 CrossRef | Google Scholar, 483–512
Warnica, W.D., Renksizbulut, M. and Strong, A.B. (1994). Drag coefficient of spherical liquid droplets. Exp. Fluids 18 Google Scholar, 265–70
Wazzan, A.R., Okamura, T. and Smith, A.M.O. (1968). The stability of water flow over heated and cooled flat plates. J. Heat Transfer 90 CrossRef | Google Scholar(1), 109–14
Wendroff, B. (1969). First Principles of Numerical Analysis: An Undergraduate Text Google Scholar. Addison–Wesley.
White, F.M. (1974). Viscous Flow Theory Google Scholar. McGraw–Hill.
Whittaker, E.T. (1937). A Treatise on the Analytical Mechanics of Particles and Rigid Bodies Google Scholar, 4th edn. Cambridge University Press.
Wilkinson, J.H. (1965). The Algebraic Eigenvalue Problem Google Scholar. Clarendon Press.
Yakhot, V., Bayly, B. and Orszag, S.A. (1986). Analogy between hyperscale transport and cellular automaton fluid dynamics. Phys. Fluids 29 CrossRef | Google Scholar, 2025–7
Ye, T., Mittal, R., Udaykumar, H.S. and Shyy, W. (1999). An accurate Cartesian grid method for viscous incompressible flows with complex immersed bound- aries. J. Comput. Phys. 156 Google Scholar, 209–40
Yee, S.Y. (1981). Solution of Poisson's equation on a sphere by truncated double Fourier series. Monthly Weather Rev. 109 CrossRef | Google Scholar(3), 501–5
Yeung, P.K. and Pope, S.B. (1988). An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J. Comp. Phys. 79 CrossRef | Google Scholar(2), 373–416
Young, D.M. (2014). Iterative Solution of Large Linear Systems Google Scholar. Elsevier.
Young, D.M. and Gregory, R.T. (1988). A Survey of Numerical Mathematics Google Scholar, Vols. I and II. Dover Publications.
Zabusky, N.J. (1987). A numerical laboratory. Phys. Today 40 Google Scholar, 28–37
Zabusky, N.J. and Kruskal, M.D. (1965). Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 CrossRef | Google Scholar(6), 240.
Zabusky, N.J. and Melander, M.V. (1989). Three-dimensional vortex tube recon- nection: morphology for orthogonally-offset tubes. Physica D 37 Google Scholar, 555–62
Zarin, N.A. and Nicholls, J.A. (1971). Sphere drag in solid rockets – non- continuum and turbulence effects. Comb. Sci. Tech. 3 CrossRef | Google Scholar, 273–80
Zeng, L., Najjar, F., Balachandar, S. and Fischer, P. (2009). Forces on a finite- sized particle located close to a wall in a linear shear flow. Phys. Fluids 21 CrossRef | Google Scholar(3), 033302.
Zhang, L., Gerstenberger, A., Wang, X. and Liu, W.K. (2004). Immersed finite element method. Comp. Meth. Appl. Mech. Eng. 193 CrossRef | Google Scholar(21), 2051–67

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 10370 *
Loading metrics...

Book summary page views

Total views: 16177 *
Loading metrics...

* Views captured on Cambridge Core between 3rd October 2017 - 22nd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.