Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T03:12:11.605Z Has data issue: false hasContentIssue false

4 - Spatial Discretization

Published online by Cambridge University Press:  03 October 2017

H. Aref
Affiliation:
Virginia Polytechnic Institute and State University
S. Balachandar
Affiliation:
University of Florida
Get access

Summary

In the previous chapter we considered initial value ODEs, where the interest was in the computation of time evolution of one or more variables given their starting value at some initial time. There is no inherent upper time limit in integrating these initial value ODEs. Therefore numerical methods for their solution must be capable of accurate and stable long time integration. By contrast, in the case of two-point boundary value and eigenvalue problems for ODEs arising in fluid mechanics, the independent space variable has two well-defined end points with boundary conditions specified at both ends. The spatial domain between the two boundary points can be infinite, as in the case of Blasius boundary layer: see (1.6.5), where the spatial domain extends from the wall (η = 0) out to infinity (η → ∞). For such a problem it is possible to treat the space variable much like time in an initial value problem, and proceed with integration from one boundary to the other and then subsequently verify the boundary conditions at the other end. We shall consider numerical methods of this sort in the next chapter.

An alternative approach is to discretize the entire domain between the two boundaries into a finite number of grid points and to approximate the dependent variables by their grid point values. This leads to a system of equations that can be solved simultaneously. Much like the time integration error considered in the previous chapter, here one encounters a discretization error. The discretization error arises from several sources: interpolation errors arise from approximating the function between grid points; differentiation errors arise in the approximation of first-, second- and higher-order derivatives; and integration errors arise from the numerical integration of a function based on its discretized values at the grid points. These errors are indeed interrelated and depend on the discretization scheme. This chapter will consider various discretization schemes. In particular, discrete approximations to the first- and second-derivative operators will be obtained. Errors arising from the different discretization schemes will be considered. The concept of discrete approximation to the first and second derivatives as matrix operators will be introduced. Finally, we will consider spatial discretization as a means to numerically integrate functions. The actual solution methodologies for two-point boundary value and eigenvalue problems for ODEs, using the tools developed in this chapter, are treated in Chapter 5.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Spatial Discretization
  • H. Aref, Virginia Polytechnic Institute and State University, S. Balachandar, University of Florida
  • Book: A First Course in Computational Fluid Dynamics
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316823736.005
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Spatial Discretization
  • H. Aref, Virginia Polytechnic Institute and State University, S. Balachandar, University of Florida
  • Book: A First Course in Computational Fluid Dynamics
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316823736.005
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Spatial Discretization
  • H. Aref, Virginia Polytechnic Institute and State University, S. Balachandar, University of Florida
  • Book: A First Course in Computational Fluid Dynamics
  • Online publication: 03 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316823736.005
Available formats
×