Skip to main content Accessibility help
×
Hostname: page-component-cc8bf7c57-5wl6q Total loading time: 0 Render date: 2024-12-11T23:55:52.913Z Has data issue: false hasContentIssue false

9 - Signaling over bandlimited channels

Published online by Cambridge University Press:  05 June 2012

Ha H. Nguyen
Affiliation:
University of Saskatchewan, Canada
Ed Shwedyk
Affiliation:
University of Manitoba, Canada
Get access

Summary

Introduction

Up to now we have considered only the detection (or demodulation) of signals transmitted over channels of infinite bandwidth, or at least a large enough bandwidth that any signal distortion is negligible and can be ignored. Though in some situations this assumption is reasonable, satellite communications is a common example, bandlimitation is also common. The classical example is the telephone channel where the twisted-pair wires used as the transmission medium have a bandwidth on the order of kilohertz. But even a medium such as optical fiber exhibits a phenomenon called dispersion which results in an effect very analogous to bandlimitation.

It is important to realize that bandlimitation depends not only on the channel medium but also on the source, specifically the source rate, Rs (symbols/second). One common measure of the bandwidth needed or occupied by a source is W = 1/Ts = Rs (hertz). As source rates keep increasing to accommodate more data eventually any channel starts to look bandlimited. Bandlimitation can also be imposed on a communication system by regulatory requirements. A user is usually allotted only so much bandwidth in which to transmit her/his information.

The general effect of bandlimitation on a transmitted signal of finite time duration, Ts seconds, is to disperse it or to spread it out. Therefore the signal transmitted in a particular time slot (or symbol interval) will interfere with signals in other time slots resulting in what is called intersymbol interference (each signal represents a data symbol) or ISI.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×