Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T23:39:31.831Z Has data issue: false hasContentIssue false

5 - Fundamentals of general relativity

from Part II - General relativity

Published online by Cambridge University Press:  05 July 2013

James Lindesay
Affiliation:
Howard University, Washington DC
Get access

Summary

From special to general relativity

In general relativity, the “force of gravity”, which directly couples to a gravitating body through its mass, is replaced by relationships between geometric coordinates. This can be done because the inertial mass that relates the acceleration of a body from rest (a purely geometrical aspect) to the force through Newton's second law F = ma, is the same as the gravitational mass that couples the gravitational acceleration g to that body Fgravitation = mg. Newton tested this equivalence using various pendulums, and Eotvos [75] in 1889 verified the equivalence of inertial and gravitational mass to better than one part in 109. Gravity attracts different masses in a way that results in the differing masses having the same accelerations. This tenet embodies the equivalence principle, which will be discussed next. Since bodies of vastly differing constitutions and masses gravitate equivalently, one can then construct the trajectories of general gravitating masses in terms of geometric geodesies (special curves in the space-time), independent of the mass, charge, or internal structure of the gravitating body.

The principle of equivalence

The principle of equivalence forms the conceptual foundation of early formulations of the theory of general relativity. For present purposes, the principle of equivalence will be stated as follows: At every space-time point in an arbitrary gravitational field, it is possible to choose a locally inertial coordinate system such that (within a sufficiently small region of that point) the laws of nature take the same form as in an unaccelerated Minkowski coordinate system in the absence of gravity. Such an assertion inherently relates the inertial mass to the gravitational mass.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×