Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T01:13:16.306Z Has data issue: false hasContentIssue false

1 - Signals and systems

Published online by Cambridge University Press:  05 June 2012

R. J. Beerends
Affiliation:
Ministry of Defence, The Hague
H. G. ter Morsche
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
J. C. van den Berg
Affiliation:
Agricultural University, Wageningen, The Netherlands
E. M. van de Vrie
Affiliation:
Open Universiteit
Get access

Summary

INTRODUCTION

Fourier and Laplace transforms provide a technique to solve differential equations which frequently occur when translating a physical problem into a mathematical model. Examples are the vibrating string and the problem of heat conduction. These will be discussed in chapters 5, 10 and 14.

Besides solving differential equations, Fourier and Laplace transforms are important tools in analyzing signals and the transfer of signals by systems. Hence, the Fourier and Laplace transforms play a predominant role in the theory of signals and systems. In the present chapter we will introduce those parts of the theory of signals and systems that are crucial to the application of the Fourier and Laplace transforms. In chapters 5, 10, 14 and 19 we will then show how the Fourier and Laplace transforms are utilized.

Signals and systems are introduced in section 1.1 and then classified in sections 1.2 and 1.3, which means that on the basis of a number of properties they will be divided into certain classes that are relevant to applications. The fundamental signals are the sinusoidal signals (i.e. sine-shaped signals) and the time-harmonic signals. Time-harmonic signals are complex-valued functions (the values of these functions are complex numbers) which contain only one frequency. These constitute the fundamental building blocks of the Fourier and Laplace transforms.

The most important properties of systems, treated in section 1.3, are linearity and time-invariance. It is these two properties that turn Fourier and Laplace transforms into an attractive tool.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×