Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-11T12:49:18.989Z Has data issue: false hasContentIssue false

2 - An Overview of Nanomaterials

from Part One - Fundamentals, Processing, and Characterization

Published online by Cambridge University Press:  27 January 2017

Joseph H. Koo
Affiliation:
University of Texas, Austin
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Pinnavaia, T. J. and Beall, G. W. (Eds.) (2000). Polymer-Clay Nanocomposites. New York: John Wiley & Sons.Google Scholar
Krishnamoorti, R. and Vaia, R. A. (Eds.) (2001). Polymer Nanocomposites: Synthesis, Characterization, and Modeling. ACS Symposium Series 804, Washington, DC: American Chemistry Society.CrossRefGoogle Scholar
Koo, J. H. (2006). Polymer Nanocomposites: Properties, Characterization, and Applications. New York: McGraw-Hill.Google Scholar
Morgan, A. B. and Wilkie, C. A. (Eds.) (2007). Flame Retardant Polymer Nanocomposites. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Gupta, R. A., Kennel, E., and Kim, K. J. (Eds.) (2010). Polymer Nanocomposites Handbook. Boca Raton, FL: CRC Press.Google Scholar
Mittal, V. (Ed.) (2010). Polymer Nanotube Nanocomposites: Synthesis, Properties, and Applications. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2010). Optimization of Polymer Nanocomposites Properties. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2011). Thermally Stable and Flame Retardant Polymer Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Beall, G. W. and Powell, C. E. (2011). Fundamentals of Polymer-Clay Nanocomposites. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Mittal, V. (Ed.) (2012). Characterization Techniques for Polymer Nanocomposites. Weinheim, Germany: Wiley-VCH.CrossRefGoogle Scholar
Briell, B. (2000). Nanoclay – Counting on Consistency, presented at Nanocomposite 2000, Southern Clay Products, Gonzales, TX.Google Scholar
Southern Clay Products, Gonzales, TX (www.nanoclay.com).Google Scholar
Nanocor, Chicago, IL (www.nanocor.com).Google Scholar
Geim, A. K. and Novoselov, K. S. (2007). The rise of graphene. Nature Materials (6), 183–191.CrossRefGoogle Scholar
Jang, B. Z. and Zhamu, A. (2000). Processing of nanographene platelets (NGPs) and NGP nanocomposites: A review. Journal of Materials Science 43, 50925101.CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2004). Electric field effect in atomically thin carbon films. Science 306, 666669.CrossRefGoogle Scholar
Novoselov, K. S., Jiang, D., Schedin, F., et al. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences USA 102(30), 1045110452.CrossRefGoogle Scholar
Jang, B. Z. and Huang, W. C. (2006). US Patent 7,071,258 (July 4).Google Scholar
Jang, B. Z. (2006). US Patent 11/442,903 (June 20); a divisional of 10/274,473 (October 22, 2002).Google Scholar
Schwalm, W., Schwalm, M., and Jang, B. Z. (2004). Local Density of States for Nanoscale Graphene Fragments. American Physical Society, Paper No. C1.157, Montreal, Canada, March 2004.Google Scholar
McAllister, M. J., Li, J. L., Adamson, D. H., et al. (2007). Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials 19(18), 43964404.CrossRefGoogle Scholar
Li, J. L., Kudin, K. N., McAllister, M. J., et al. (2006). Oxygen-driven unzipping of graphitic materials. Physical Review Letters 96(17), 176101176104.CrossRefGoogle Scholar
Schniepp, H. C., Li, J. L., McAllister, M. J., et al. (2006). Functionalized single graphene sheets derived from splitting graphite oxide.Journal of Physical Chemistry B 110(17), 85358539.CrossRefGoogle Scholar
Li, X., Wang, X., Zhang, L., Lee, S., et al. (2008). Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319(5867), 12291232.CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., et al. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197200.CrossRefGoogle Scholar
Zhang, Y., and Ando, T. (2002). Hall conductivity of a two-dimensional graphite system. Physical Review Letters B 65(24), 245420245431.Google Scholar
Zhang, Y., Tan, Y. W., Stormer, H. L., et al. (2005). Experimental observation of the quantum Hall Effect and Berry’s phase in graphene. Nature 438, 201204.CrossRefGoogle Scholar
Zhang, Y., Small, J. P., Amori, M. E., et al. (2005). Electric field modulation of Galvanomagnetic properties of mesoscopic graphite. Physical Review Letters 94(17), 176803(4pp). doi:10.1103/PhysRevLett.94.176803.CrossRefGoogle Scholar
Berger, C., Song, Z., Li, T., et al. (2004). Ultrathin epitaxial graphite: 2D Electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B 108(52), 1991219916. doi: 10.1021/jp040650f.CrossRefGoogle Scholar
Enoki, T. and Kobayashi, Y. (2005). Magnetic nanographite: an approach to molecular magnetism. Journal of Materials Chemistry 15, 39994002. doi: 10.1039/b500274p.CrossRefGoogle Scholar
Heersche, H. B., Jarillo-Herrero, P., Oostinga, J. B., et al. (2007). Bipolar supercurrent in graphene. Nature Letter 446, 5659. doi: 10.1038/nature05555.CrossRefGoogle Scholar
Soon, Y. W., Cohen, M. L., and Louie, S. G. (2006). Half-metallic graphene nanoribbons. Nature Letter 444, 347349. doi: 10.1038/nature05180.CrossRefGoogle Scholar
Meyer, J. C., Geim, A. K., Katsnelson, M. I., et al. (2007). The structure of suspended graphene sheets. Nature Letter 446, 6063. doi: 10.1038/nature 05545.CrossRefGoogle Scholar
Bunnell, L. R., Sr. (1991). US Patent 987(4):175.Google Scholar
Bunnell, L. R., Sr. (1991). US Patent 019(5):446.Google Scholar
Bunnell, L. R., Sr. (1993). US Patent 186(5):919.Google Scholar
Zaleski, P. L., Derwin, D. J., Girkant, R. J., et al. (2001). US Patent 287(6):694.Google Scholar
Horiuchi, S., Gotou, T., Fujiwara, M., et al. (2004). Single graphene sheet detected in a carbon nanofilm. Applied Physics Letter 84, 24032405.CrossRefGoogle Scholar
Horiuchi, S., Gotou, T., Fujiwara, M., et al. (2003). Carbon nanofilm with a new structure and property. Japan Journal of Applied Physics 42(Part 2), L1073L1076. doi:10.1143/JJAP.42.L1073.CrossRefGoogle Scholar
Hirata, M. and Horiuchi, S. (2003). US Patent 596(6):396.CrossRefGoogle Scholar
Hirata, M., Gotou, T., and Ohba, M. (2005). Thin-film particles of graphite oxide. 2: Preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43, 503510. doi: 10.1016/j.carbon.2004.10.009.CrossRefGoogle Scholar
Hirata, M., Gotou, T., Horiuchi, S., et al. (2004). Thin-film particles of graphite oxide 1: High-yield synthesis and flexibility of the particles.Carbon 42, 29292937. doi: 10.1016/j.carbon.2004.07.003.Google Scholar
Udy, J. D. (2006). US Patent Application No. 11/243,285 (October 4); Pub. No. 2006/0269740 (November 30).Google Scholar
Chen, G. H., Weng, W., Wu, C., et al. (2004). Preparation and characterization of graphite nanosheets from ultrasonic powder technique. Carbon 42, 753759. doi:10.1016/j.carbon.2003. 12.074.CrossRefGoogle ScholarPubMed
Jang, B. Z., Wong, S. C., and Bai, Y. (2005). US Patent Appl. No. 10/858,814 (June 3, 2004); Pub. No. US 2005/0271574 (December 8).Google Scholar
Petrik, V. I. (2006). US Patent Appl. No. 11/007,614 (December 7, 2004); Pub. No. US 2006/0121279 (June 8).Google Scholar
Drzal, L. T. and Fukushima, H. (2006). US Patent Appl. No. 11/363,336 (February 27); 11/361,255 (February 24); 10/659,577 (September 10, 2003).Google Scholar
Mack, J. J., Viculis, L. M., Kaner, R. B., et al. (2005). US Patent 872(6):330.Google Scholar
Viculis, L. M., Mack, J. J., O. M. Mayer, et al. (2005). Intercalation and exfoliation routes to graphite nanoplatelets. Journal of Material Chemistry 15, 974978. doi: 10.1039/B413029D.CrossRefGoogle Scholar
Lu, W., Soukiassian, P., and Boecki, J. (2012). Graphene: Fundamentals and functionalialities. MRS Bulletin (December), 37.CrossRefGoogle Scholar
Muhopadhyay, P. and Gupta, R. K. (Eds.) (2013). Graphite, Graphene and Their Polymer Nanocomposites. Boca Raton, FL: CRC Press.Google Scholar
Jang, B. Z., Zhamu, A., and Song, L. (2006). US Patent Application No. 11/324,370 (January 4).Google Scholar
Song, L., Guo, J., Zhamu, A., et al. (2006). US Patent Application No. 11/328,880 (January 11).Google Scholar
Sullivan, M. J. and Ladd, D. A. (2006). US Patent 7,156,756 (January 2, 2007) and No. 7,025,696 (April 11).Google Scholar
Jang, B. Z. (2007). US Patent 186(7):474.CrossRefGoogle Scholar
Szabo, T., Szeri, A., and Dekany, I. (2005). Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43, 8794. doi: 10.1016/j.carbon.2004.08.025.CrossRefGoogle Scholar
Wang, X., Zhi, L., and Mullen, K. (2008). Transparent, conductive graphene electrodes for dyesensitized solar cells. Nano Letters 8(1), 323327. doi: 10.1021/nl072838r.CrossRefGoogle Scholar
Koo, J. H., Pinero, D., Hao, A., Lao, S. C., Johnson, B., et al. (2013). Methodology for assessment of the morphological and thermal characteristics of nanographene platelets, AIAA-2013-1584. Presented at the 54th AIAA/ASME/ASCE/AHS/ASC, SDM, Boston, MA, April 8–11.Google Scholar
Ávila, A. F. of Universidade Federal de Minas Gerais, Department of Mechanical Engineering, Belo Horizonte, Brazil ().Google Scholar
Ávila, A. F. (2009). Composite Laminates Performance Enhancement by Nanoparticles Dispersion: An Investigation on Hybrid Nanocomposite. In Composites Performance and Trends, Columbus, F. (Ed.). Hauppauge, NY: Nova Science Publishers.Google Scholar
Miller, S. G. (2008). Effects of Nanoparticle and Matrix Interface on Nanocomposite Properties. Ph.D. dissertation, University of Akron, Akron, OH.Google Scholar
Schmidt, H. K. of Rice University, Chemical and Biomolecular Engineering Dept., Houston, TX ().Google Scholar
XG Sciences, Inc. at East Lansing, MI (www.xgsciences.com).Google Scholar
Angstron Materials, LLC at Dayton, OH (www.angstronmaterials.com).Google Scholar
Skyspring Nanomaterials, Inc., Houston, TX (www.ssnano.com).Google Scholar
Cheap Tubes, Inc., Brattleboron, VT (www.cheaptubesinc.com).Google Scholar
R. Ruoff of Dept. of Mechanical Engineering, The University of Texas at Austin (). Abundant technical information can be found in Professor Ruoff’s website: www.bucky-central.me.utexas.edu. Professor Ruoff has moved to Ulsan National Institute of Science and Technology (UNIST), Ulsan, S. Korea.Google Scholar
Nacional de Grafite, Sao Paulo, Brazil (www.grafite.com).Google Scholar
Qiu, L. and Qu, B. (2011). Polymer/Layered Double Hydroxide Flame Retardant Nanocomposites. In Thermally Stable and Flame Retardant Polymer Nanocomposites, Mittal, V. (Ed.). Cambridge: Cambridge University Press, pp. 332359.CrossRefGoogle Scholar
Matusinovic, Z., and Wilkie, C. A. (2012). Fire retardancy and morphology of layered double hydroxide nanocomposites: A review. Journal of Material Chemistry 22, 1870118704.CrossRefGoogle Scholar
Choudary, B. M., Bharathi, B., Reddy, C. V., Kantam, M. L., and Raghavan, K. V. (2001). The first example of catalytic n-oxidation of tertiary amines by tungstate-exchanged mg-al layered double hydroxide in water: a green protocol. Chemical Communications 18, 17361737.CrossRefGoogle Scholar
Choy, J. H., Kwak, S. Y., Jeong, Y. J., and Park, J. S. (2000). Inorganic layered double hydroxides as nonviral vectors. Angewandte Chemie International Edition 39, 40424045.Google ScholarPubMed
Desigaux, L., Ben Belkacem, M., Richard, P., Cellier, J., Leone, P., et al. (2006). Self-assembly and characterization of layered double hydroxide/DNA hybrids. Nano Letters 6, 199204.CrossRefGoogle ScholarPubMed
Lakraimi, M., Legrouri, A., Barroug, A., de Roy, A., and Besse, J. P. (1999). Removal of pesticides from water by anionic clays. Journal de Chimie Physique et de Physico-Chimie 96, 470478.CrossRefGoogle Scholar
Yan, D., Lu, J., Wei, M., Ma, J., Evans, D. G., and Duan, X. (2009). A combined study based on experiment and molecular dynamics: Perylene tetracarboxylate intercalated in a layered double hydroxide matrix. Physical Chemistry Chemical Physics 11, 920929.CrossRefGoogle Scholar
Tian, Y., Wang, G., Li, F., and Evans, D. G. (2007). Synthesis and thermo-optical stability of methyl red-intercalated Ni-Fe layered double hydroxide material. Materials Letters 61, 16621666.CrossRefGoogle Scholar
Lukashin, A. V., Vertegel, A. A., Eliseev, A. A., Nikiforov, M. P., Gornert, P., and Tretyakov, Y. D. (2003). Chemical design of magnetic nanocomposites based on layered double hydroxides. Journal of Nanoparticle Research 5, 455464.CrossRefGoogle Scholar
Mohan, D. and Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents: A critical review. Journal of Hazardous Materials 142, 153.CrossRefGoogle ScholarPubMed
Tibbetts, G. G. (1984). Why are carbon filaments tubular? Journal of Crystal Growth 66, 632638.CrossRefGoogle Scholar
Lake, M. L. and Ting, J.-M., (1999). Vapor Grown Carbon Fiber Composites. In Carbon Materials for Advanced Technologies, Burchell, T. D. (Ed.). Oxford: Pergamon, pp. 139-167.Google Scholar
Tibbetts, G. G., Finegan, J. C., McHugh, J. J., Ting, J.-M., Glasgow, D. G., and Lake, M. L. (2000). Applications Research on Vapor-Grown Carbon Fibers. In Science and Application of Nanotubes, Tomanek, E. and Enbody, R. J. (Eds.). New York: Kluwer Academic/Plenum Publishers, pp. 35-51.Google Scholar
Maruyama, B. and Alam, K. (2002). Carbon nanotubes and nanofibers in composite materials. SAMPE Journal 38(3), 5970.Google Scholar
Glasgow, D. G., Tibbetts, G. G., Matuszewski, M. J., Walters, K. R., and Lake, M. L. (2004). Surface Treatment of Carbon Nanofibers for Improved Composite Mechanical Properties. Proc. SAMPE 2004 Int’l Symposium, SAMPE, Covina, CA.Google Scholar
Tibbetts, G. G., Lake, M. L., Strong, K. L., and Rice, B. P. (2007). A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Computer Science and Technology 67(7–8), 17091718.CrossRefGoogle Scholar
Terrones, M. (2003). Science and technology of the twenty-first century: Synthesis, properties, and applications of carbon nanotubes. Annual Review of Materials Research 33, 419501. doi: 10.1146/annurev.matsci.33.012802.100255.CrossRefGoogle Scholar
Harris, P. J. F. (1999). Carbon Nanotubes and Related Structures, New Materials for the Twenty-First Century. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Tanaka, K., Yamabe, T., and Fukui, K. (1999). The Science and Technology of Carbon Nanotubes. Amsterdam: Elsevier.Google Scholar
Saito, R., Dresselhaus, G., and Dresselhaus, M. S. (1998). Physical Properties of Carbon Nanotubes. London: Imperial College Press.CrossRefGoogle Scholar
Dai, L. (Ed.) (2006). Carbon Nanotechnology. Amsterdam: Elsevier.Google Scholar
Dresselhaus, M. S., Dresselhaus, G., and Eklund, P. C. (1996). Science of Fullerenes and Carbon Nanotubes. San Diego, CA: Academic Press.Google Scholar
Ebbesen, T. W. (1994). Carbon Nanotubes. Annual Review of Materials Science 24, 235264. doi: 10.1146/annurev.ms.24.080194.001315.CrossRefGoogle Scholar
Guo, T., Nikolaev, P., Thess, A., Colbert, D. T., and Smalley, R. E. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Journal Physics Letters 243, 4954. doi: 10.1016/0009-2614(95)00825-O.Google Scholar
Endo, M., Takeuchi, K., Igarashi, S., Kobori, K., Shiraishi, M., and Kroto, H. W. (1993). The production and structure of pyrolytic carbon nanotubes. Journal Physics and Chemistry of Solids 54, 18411848.CrossRefGoogle Scholar
Groning, O., Kuttel, O. M., Emmenegger, C., Groning, P., and Schlapbach, L. (1999). Field Emission Properties of Carbon Nanotubes. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures B18, 665678. doi: 10.1116/1.591258.Google Scholar
Hsu, W. K., Hare, J. P., Terrones, M., Kroto, H. W., Walton, D. R. M., and Harris, P. J. F. (1995). Condensed-phase nanotubes. Nature 377, 687.CrossRefGoogle Scholar
Hsu, W. K., Terrones, M., Hare, J. P., Terrones, H., Kroto, H. W., and Walton, D. R. W. (1996). Electrolytic formation of carbon nanostructures. Chemical Physics Letters 262, 161166.CrossRefGoogle Scholar
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 5658. doi: 10.1038/354056a0.CrossRefGoogle Scholar
Iijima, S. and Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603605. doi: 10.1038/363603a0.CrossRefGoogle Scholar
Bethune, D. S., Kiang, C. H., de Vries, M. S., Gorman, G., Savoy, R., et al. (1993). The discovery of single-wall carbon nanotubes at IBM. Nature 363, 605607.CrossRefGoogle Scholar
Thess, A., Lee, R., Nikolaev, P., Dai, H., Petit, P., et al. (1996). Crystalline ropes of metallic carbon nanotubes. Science 273, 483487. doi: 10.1126/science.273.5274.483.CrossRefGoogle Scholar
Ajayan, P. M., Stephan, O., Colliex, C., and Trauth, D. (1994). Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite. Science 265, 12121214. doi: 10.1126/science.265.5176.1212.CrossRefGoogle Scholar
Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. (2001). Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters 87(21), 215502(4pp).CrossRefGoogle Scholar
Cao, G. (2004). Nanostructures & Nanomaterials: Synthesis, Properties & Applications. London: Imperial College Press.CrossRefGoogle Scholar
Smith, K. (2005). Carbon Nanotechnologies, Inc., Houston, TX, personal communication, June.Google Scholar
Nanocyl, Sambreville, Belgium, Nanocyl™ SWNT, DWNT, MWNT (www.nanocly.com).Google Scholar
Bayer MaterialScience, Leverkusen, Germany, Baytubes® MWNT (www.baytubes.com).Google Scholar
Arkema, Lacq, France, Graphistrength® MWNT (www.graphistength.com).Google Scholar
Du, M., Guo, B., and Jia, D. (2010). Newly emerging applications of halloysite nanotubes: a review. Polymer International 59, 574582. doi:10.1002/pi.275.CrossRefGoogle Scholar
Liu, M, Jia, Z., Jia, D, and Zhou, C. (2014). Recent advance in research on halloysite nanotubes-polymer nanocomposite. Progress in Polymer Science 39(8), 1498-1525. doi: 10.1016/j.progpolymsci.2014.04.004.Google Scholar
Yuan, P., Tan, D., and Annabi-Bergaya, F. (2015). Properties and applications of halloysite nanotubes: recent research advances and future prospects. Applied Clay Science 112113, 7593. doi: 10.1016/j.clay.2015.05.001.CrossRefGoogle Scholar
Zhang, Y., Tang, A., Yang, H., and Quyang, J. (2016). Applications and interfaces of halloysite nanocomposites. Applied Clay Science 119, 817. doi: 10.1016/j.clay.2015.06.034.CrossRefGoogle Scholar
Berthier, P. (1826). Analyse de l’halloysite. Annales de Chimie et de Physique 32, 332325.Google Scholar
Prudencio, M. I., Braga, M. A. S., Paquet, H., Waerenborgh, J. C., Pereira, L. C. J., and Gouveia, M. A. (2002). Clay mineral as severages in weathered basalt profiles from central and southern Portugal: Climate. Catena 49(1), 7789. doi: 10.1016/S0341-8162(02)00018-8.Google Scholar
Joussein, E., Petit, S., Churchman, J., Theng, B., Righi, D., and Delvaux, B. (2005). Halloysite clay minerals-a review. Clay Minerals 40, 383-426.CrossRefGoogle Scholar
Nakagaki, S. and Wypych, F. (2007). Nanofibrous and nanotubular supports for the immobilization of metalloporphyrins as oxidation catalysts. Journal of Colloid and Interface Science 315(1), 142157.CrossRefGoogle Scholar
Wilson, I. R. (2004). Kaolin and halloysite deposits of China. Clay Minerals 39(1), 115.CrossRefGoogle Scholar
Perruchot, A., Dupuis, C., Brouard, E., Nicaise, D., and Ertus, R. (1997). L’halloysite Kartstique: Comparaison des Gisements Types de Wallonie (Belgique) et du Perigord (France). Clay Minerals 32(2), 271287. doi: 10.1180/claymin.1997.032.2.08.CrossRefGoogle Scholar
Kloprogge, J. T. and Frost, R. L. (1999). Raman microprobe spectroscopy of hydrated halloysite from Neogene Cryptokarst from Southern Belgium. Journal of Raman Spectroscopy 30, 10791085.3.0.CO;2-G>CrossRefGoogle Scholar
Churchman, G. J. and Theng, B. K. G. (2002). Clay research in Australia and New Zealand. Applied Clay Science 20(4-5), 153156.CrossRefGoogle Scholar
Kautz, C. Q. and Ryan, P. C. (2003). The 10 Å and 7 Å halloysite transition in a tropical soil sequence, Costa Rica. Clays and Clay Minerals 51(3), 252263. doi: 10.1346/CCMN.2003.0510302.CrossRefGoogle Scholar
Hillier, S. and Ryan, P. C. (2002). Identification of halloysite (7 Å) by ethylene glycol solvation: the ‘MacEwan effect.’ Clay Minerals 37, 487496. doi: 10.1180/0009855023730047.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., Cai, X. J., Jia, Z. X., Liu, M. X., and Jia, D. M. (2008). Morphology and properties of halloysite nanotubes reinforced polypropylene nanocomposites. e-Polymers 130, 114.Google Scholar
Ye, Y. P., Chen, H. B., Wu, J. S., and Ye, L. (2007). High strength epoxy nanocomposites with natural nanotubes. Polymer 48, 64266433.CrossRefGoogle Scholar
Liu, M. X., Guo, B. C., Du, M. L., Cai, X. J., and Jia, D. M. (2007). Properties of halloysite nanotube-epoxy resin hybrids and the interfacial reactions in the systems. Nanotechnology 18, 455703 (9pp).CrossRefGoogle Scholar
Imai, T., Naitoh, Y., Yamamoto, T., and Ohyanagi, M. (2006). Translucent nano mullite based ceramic fabricated by spark plasma. Journal of the Ceramic Society of Japan 114, 138140.CrossRefGoogle Scholar
Am Ceram Soc Bull (2007): 86, pp. A19.Google Scholar
Du, M. L., Guo, B. C., Liu, M. X., and Jia, D. M. (2006). Preparation and characterization of polypropylene grafted halloysite and their compatibility effect of polypropylene/halloysite. Polymer Journal. 38, 11981204. doi: 10.1295/polyj.PJ2006038.CrossRefGoogle Scholar
Ma, J., Xiang, P., Mai, Y. W., and Zhang, L. Q. (2004). A novel approach to high performance elastomer by using clay. Macromolecular Rapid Communication 25, 16921696.CrossRefGoogle Scholar
Guo, B. C., Lei, Y. D., Chen, F., Liu, X. L., Du, M. L., and Jia, D. M. (2008). Styrene-butadiene rubber/halloysite nanotubes nanocomposites modified by methacrylic acid. Applied Surface Science: 255, 2715-2722. doi: 10.1016/j.apsusc.2008.07.188.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., Lei, Y. D., Liu, M. X., and Jia, D. M. (2008). Carboxylated butadiene-styrene rubber/halloysite nanotube nanocomposites: interfacial interaction and performance. Polymer 49(22), 48714876.CrossRefGoogle Scholar
Guo, B. C., Chen, F., Lei, Y. D., Zhou, W. Y., and Jia, D. M. (2010). Tubular clay composites with high strength and transparency. Journal of Macromolecular Science B: Physics 49, 111121.CrossRefGoogle Scholar
Liu, M. X., Guo, B. C., Du, M. L., Lei, Y. D., and Jia, D. M. (2008). Natural inorganic nanotubes reinforced epoxy resin nanocomposites. Journal of Polymer Research 15, 205212.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., and Jia, D. M. (2006). Thermal stability and flame retardant effects of halloysite nanotubes on poly(propylene). European Polymer Journal 42, 13621369. doi: 10.1016/j.eurpolymj.2005.12.006.CrossRefGoogle Scholar
Labour, T., Gauthier, C., Seguela, R., Vigier, G., Bomal, Y., and Orange, G. (2001). Influence of the β crystalline phase of the mechanical properties of unfilled and CaCO3-filled polypropylene. I. Structural and mechanical characterization. Polymer 42, 71277135.CrossRefGoogle Scholar
Tordjeman, P., Robert, C., Marin, G., and Gerard, P. (2001). The effect of α, β crystalline structure on the mechanical properties of polypropylene. European Physics Journal E 4, 459465.CrossRefGoogle Scholar
Ning, N. Y., Yin, Q. J., Luo, F., Zhang, Q., Du, R., and Fu, Q. (2007). Crystallization behavior and mechanical properties of polypropylene/halloysite composites. Polymer 48, 73747384. doi: 10.1016/j.polymer.2007.10.005.CrossRefGoogle Scholar
Du, M. L., Guo, B. C., Wan, J. J., Zou, Q. L., and Jia, D. M. (2010). Effects of halloysite nanotubes on kinetics and activation energy of non-isotherm crystallization of polypropylene. Journal of Polymer Research 17, 109118.CrossRefGoogle Scholar
Nanostrand User Guide, Conductive Composites, Heber City, Utah (www.conductivecomposites.com).Google Scholar
Conductive Composites, Huber City, Utah, (www.conductivecomposites.com).Google Scholar
ANF Technology Ltd, Warlingham, Surrey, United Kingdom (www.nafen.eu).Google Scholar
Hybrid Plastics, Inc., Hattiesburg, Mississippi (www.hybridplastics.com).Google Scholar
Voronkov, M. G. and Vavrent’yev, V. I. (1982). Polyhedral oligosilsesquioxanes and their homo derivatives. Topics in Current Chemistry 102, 199236.CrossRefGoogle Scholar
Agaskar, P. A., Klemperer, W. G. (1995). The higher hydridospherosiloxanes: synthesis and structures of HnSinO1.5n (n=12, 14, 16, 18). Inorganica Chimica Acta 229, 355364.CrossRefGoogle Scholar
Baney, R. H., Itoh, M., Sakakibara, A., and Suzuki, T. (1995). Silsesquiosanes. Chemical Reviews 95(5), 14091430.CrossRefGoogle Scholar
Lichtenhan, J. D. (1995). Polyhedral oligomeric silsesquioxanes: Building blocks for silsesquioxane-based polymers and hybrid materials. Comments on Inorganic Chemistry 17(2), 115130. doi: 10.1080/02603599508035785.CrossRefGoogle Scholar
Lichtenhan, J. D., (1996). In Polymeric Materials Encyclopaedia, Salamore, J. C. (Ed.). Boca Raton, FL: CRC Press, pp. 77697778.Google Scholar
Li, G. Z., Wang, L. C., Ni, H. L., and Pittman, C. U. Jr.(2001). Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymers 11(3), 123154. doi: 10.1023/A: 1015287910502CrossRefGoogle Scholar
Phillips, S. H., Haddad, T. S., and Tomczak, S. J. (2004). Developments in nanoscience: polyhedral oligomeric silsesquioxane (POSS)-polymers. Current Opinion in Solid State & Materials Science 8, 2129. doi: 10.1016/j.cossms.2004.03.002.CrossRefGoogle Scholar
Sorathia, U., and Perez, I. (2004). Improving fire performance characteristics of composite materials for naval applications. Polymeric Materials: Science & Engineering 91, 292296.Google Scholar
Hartman-Thompson, C. (Ed.) (2011). Applications of Polyhedral Oligomeric Silsesquioxanes. New York: Springer.CrossRefGoogle Scholar
Technical Bulletin AEROSIL® No. 27, Degussa AG, D-63403 Hanau-Wolfgang, Germany, October 2001.Google Scholar
Technical Bulletin AEROSIL® No. 56, Degussa AG, D-63403 Hanau-Wolfgang, Germany, October 1990.Google Scholar
Technical Bulletin AEROSIL® Fumed Silica, Degussa AG, D-63403 Hanau-Wolfgang, Germany, September 2002.Google Scholar
Sprenger, S. and Pyrlik, M. (2004). Nanoparticles in Composites and Adhesives: Synergy with Elastomers. Proceedings of the 11th International Conference on Composites/Nano Engineering, Hilton Head Island, SC, August.Google Scholar
Yang, F., Yngard, R., and Nelson, G. L. (2005). Flammability of polymer-clay and polymer-silica nanocomposites. Journal of Fire Sciences 23, 209226.CrossRefGoogle Scholar
U.S. Patent Application, 20040147029 (July 29, 2004).Google Scholar
Cinquin, J., Bechtel, S., Schmidtke, K., and Meer, T. (2004). Polymer Nano-Composites of Aeronautic Applications: From Dream to Reality? Proceedings of the 11th International Conference on Composites/Nano Engineering, Hilton Head Island, SC, August.Google Scholar
Pool, A. D. and Hahn, H. T. (2003). A Nanocomposite for Improved Stereolithography. Proceedings of the 2003 SAMPE ISSE, SAMPE, Covina, CA.Google Scholar
Inorganic Specialty Chemicals-Alumina Nano-particles, Sasol NA, Houston, TX.Google Scholar
Disperal®/Dispal®-High purity dispersible alumina. Technical datasheet, Sasol NA, Germany.Google Scholar
Huang, H., Tian, M., Liu, L., Liang, W., and Zhang, L. (2006). Effect of particle size of flame retardancy of Mg (OH)2-filled ethylene vinyl acetate copolymer composites. Journal of Applied Polymer Science 100, 44614469.CrossRefGoogle Scholar
Chen, T. and Isarov, A. (2007). New Magnesium Hydroxides Enabling Low-Smoke Cable Compounds. 56th IWCS Conference, Pittsburg, PA, November.Google Scholar
Yong, V. and Hahn, H. T. (2004). Kevlar/Vinyl Ester Composites with SiC Nanoparticles. Proceedings of the 2004 SAMPE ISSE, SAMPE, Covina, CA.Google Scholar
Sakka, Y., Bidinger, D. D., and Aksay, I. A. (1995). Processing of silicon carbide-mullite-alumina nanocomposites. Journal of the American Ceramics Society 78(21), 479486.CrossRefGoogle Scholar
Padhi, P. and Sachikanta, K. (2011). A Novel Route for Development of Bulk Al/SiC Metal Matrix Nano Composites. Department of Mechanical Engineering, Konark Institute of Science & Technology, Bhubaneswar, India & Central Tool Room of Training Center, Bhubaneswar, India.Google Scholar
Kassiba, A. et al. (2007). Some fundamental and applicative properties of [polymer/nano-SiC] hybrid nanocomposites. Journal of Physics: Conference Series Volume 79, doi:10.1088/1742–6596/79/1/012002.Google Scholar
Oldenburg, S. J. (2005). Silver Nanoparticles: Properties and Applications. San Diego, CA: nanoComposix.Google Scholar
Wang, Z. L. (2004). Zinc oxide nanostructures: Growth, properties and applications. Journal of Physics: Condensed Matter 16, R829R858.Google Scholar
Fan, Z. and Lu, J. G. (2005). Zinc oxide nanostructures: Synthesis and properties. Journal of Nanoscience and Nanotechnology 5(10), 113.CrossRefGoogle ScholarPubMed
Ricker, A., Liu-Snyder, P., and Webster, T. J. (2008). The influence of nano MgO and BaSO4 particle size additives on properties of PMMA bone cement. International Journal of Nanomedicine 3(1), 125132.Google ScholarPubMed
Aninwene, G., Stout, D., Yang, Z., and Webster, T. J. (2013). Nano-BaSO4: a novel antimicrobial additive to pellethane. International Journal of Nanomedicine 8, 11971205.Google ScholarPubMed
Aninwene, G., Stout, D. A., Yang, Z., and Webster, T. J. (2013). Nano BaSO4: A Novel Means to Create Antimicrobial Radiopaque Thermoplastics. Proceedings of the 2013 AlChE Annual Meeting, November 3–8, San Francisco, CA.Google Scholar
Chanmal, C. V. and Jog, J. P. (2008). Dielectric relaxations in PVDF/BaTiO3 nanocomposites. Express Polymer Letters 2(3), 294301.CrossRefGoogle Scholar
Beltran, H., Maso, N., Cordoncillo, E., and West, A. R. (2007). Nanocomposite ceramics based on La-doped BaTi2O3 and BaTiO3 with high temperature-independent permittivity and low dielectric loss. Journal of Electroceramics 18(3–4), 277282.CrossRefGoogle Scholar
Singh, K. C. and Jiten, C. (2013). Production of BaTiO2, nanocrystalline powders by high energy milling and piezoelectric properties of corresponding ceramics. Key Engineering Materials 547, 133138.CrossRefGoogle Scholar
Chatterjee, A. and Mishra, S. (2013). Rheological, thermal, and mechanical properties of nano-calcium carbonate (CaCO3)/Poly(methyl methacrylate) (PMMC) core-shell nanoparticles reinforced polypropylene (PP) composites. Macromolecular Research 21(5), 474483.CrossRefGoogle Scholar
Shelesh-Nezhad, K., Orang, H., and Motallebi, M. (2012). The Effects of Adding Nano-Calcium Carbonate Particles on the Mechanical and Shrinkage Characteristics and Molding Process Consistency of PP/nano-CaCO3 Nanocomposites. In Polypropylene, F. Dogan (Ed.), pp. 357–368, ISBN: 978-953-51-0636-4, InTech (www.intechopen.com). doi: 10.5772/35272. Available from: http://www.intechopen.com/books/polypropylene/the-effects-of-adding-nano-calcium-carbonate-particles-on-the-mechanical-and-shrinkage-character.Google Scholar
Sato, T. and Beaudoin, J. J. (2011). Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Advances in Cement Research 23(1), 3343.CrossRefGoogle Scholar
Hu, C., Mou, Z., Lu, G., Chen, N., Dong, Z., et al. (2013). 3D graphene-Fe3O4 nanocomposites with high-performance microwave absorption. Physical Chemistry Chemical Physics 15, 1303813043.Google ScholarPubMed
Gu, H., Huang, Y., Zhang, X., Wang, Q., Zhu, J., et al. (2012). Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectric properties. Polymer 53, 801809.CrossRefGoogle Scholar
Kalantari, K., Ahmad, M. B., Shemeli, K., and Khandanlou, R. K. (2013). Synthesis of talc/Fe3O4 magnetic nanocomposites using chemical co-precipitation method. International Journal of Nanomedicine 8, 18171823.Google ScholarPubMed
Mahapatra, A., Mishra, B. G., and Hota, G. (2013). Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient absorbent for removal of heavy metal ions from aqueous solution. Journal of Hazard Materials 258–259, 116123.CrossRefGoogle Scholar
Ortega, D., Garitaonandia, J. S., Barrera-Solano, C., Ramirez-del-Solar, M., Blanco, E., and Dominguez, M. (2006). γ-Fe2O3/SiO2 nanocomposites for magneto-optical applications: Nanostructural and magnetic properties. Journal of Non-Crystalline Solids 352, 28012810.CrossRefGoogle Scholar
Menon, L., Patibandla, S., Bhargava Ram, K., Shkuratov, S. I., Aurongzeb, D., et al. (2004). Ignition studies of Al/Fe2O3 energetic nanocomposites. Applied Physics Letters 84(23), 47354737.CrossRefGoogle Scholar
Kidalov, S. V., Shakhov, F. M., and Vul, A. Y. (2007). Thermal conductivity of nanocomposites based on diamonds and nanodiamonds. Diamond and Related Materials 16(12), 20632066.CrossRefGoogle Scholar
Mochalin, V. N., Shenderova, O., Ho, D., and Gogotsi, Y. (2012). The properties and applications of nanodiamonds. Nature Nanotechnology 7, 1123. doi: 10.1038/nnao.2011.209.CrossRefGoogle Scholar
Neitzel, I. (2012). Nanodiamond-Polymer Composites, Ph.D. dissertation, Drexel University, Dept. of Materials Engineering, Philadelphia, PA.Google Scholar
Pugh-Thomas, D., Walsh, B. M., and Gupta, M. C. (2011). CdSe (ZnS) nanocomposite luminescent high temperature sensor. Nanotechnology 22(18), 185503 (7pp). doi:10.1088/0957-4484/22/18/185503.CrossRefGoogle ScholarPubMed
Pan, S. and Liu, Z. (2012). ZnS-Graphene nanocomposites: Synthesis, characterization and optical properties. Journal of Solid Chemistry 191, 5156.CrossRefGoogle Scholar
Ummartyotin, S., Bunnak, N., Juntaro, J., Sain, M., and Manuspiya, H. (2012). Hybrid organic-inorganic of ZnS embedded PVP nanocomposite film for photoluminescent application. Computes Rendus Physique 13(9–10), 9941000.CrossRefGoogle Scholar
Patil, B. N. and Acharya, S. A. (2013). Preparation of ZnS-graphene nanocomposites and its photocatalytic behavior for dye degradation. Advanced Materials Letters (May 12). doi: 10.5185/amlett.2013.fdm.16.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • An Overview of Nanomaterials
  • Joseph H. Koo, University of Texas, Austin
  • Book: Fundamentals, Properties, and Applications of Polymer Nanocomposites
  • Online publication: 27 January 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342766.003
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • An Overview of Nanomaterials
  • Joseph H. Koo, University of Texas, Austin
  • Book: Fundamentals, Properties, and Applications of Polymer Nanocomposites
  • Online publication: 27 January 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342766.003
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • An Overview of Nanomaterials
  • Joseph H. Koo, University of Texas, Austin
  • Book: Fundamentals, Properties, and Applications of Polymer Nanocomposites
  • Online publication: 27 January 2017
  • Chapter DOI: https://doi.org/10.1017/CBO9781139342766.003
Available formats
×