Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T17:15:02.072Z Has data issue: false hasContentIssue false

Introduction

Published online by Cambridge University Press:  07 September 2011

Michael Aschbacher
Affiliation:
California Institute of Technology
Radha Kessar
Affiliation:
University of Aberdeen
Bob Oliver
Affiliation:
Université de Paris XIII
Get access

Summary

Let G be a finite group, p a prime, and S a Sylow p-subgroup of G. Subsets of S are said to be fused in G if they are conjugate under some element of G. The term “fusion” seems to have been introduced by Brauer in the fifties, but the general notion has been of interest for over a century. For example, in his text The Theory of Groups of Finite Order [Bu] (first published in 1897), Burnside proved that if S is abelian then the normalizer in G of S controls fusion in S. (A subgroup H of G is said to control fusion in S if any pair of tuples of elements of S which are conjugate in G are also conjugate under H.)

Initially, information about fusion was usually used in conjunction with transfer, as in the proof of the normal p-complement theorems of Burnside and Frobenius, which showed that, under suitable hypotheses on fusion, G possesses a normal p-complement: a normal subgroup of index |S| in G. But in the sixties and seventies more sophisticated results on fusion began to appear, such as Alperin's Fusion Theorem [Al1], which showed that the family of normalizers of suitable subgroups of S control fusion in S, and Goldschmidt's Fusion Theorem [Gd3], which determined the groups G possessing a nontrivial abelian subgroup A of S such that no element of A is fused into S\A.

In the early nineties, Lluis Puig abstracted the properties of G-fusion in a Sylow subgroup S, in his notion of a Frobenius category on a finite p-group S, by discarding the group G and focusing instead on isomorphisms between subgroups of S.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Michael Aschbacher, California Institute of Technology, Radha Kessar, University of Aberdeen, Bob Oliver, Université de Paris XIII
  • Book: Fusion Systems in Algebra and Topology
  • Online publication: 07 September 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139003841.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Michael Aschbacher, California Institute of Technology, Radha Kessar, University of Aberdeen, Bob Oliver, Université de Paris XIII
  • Book: Fusion Systems in Algebra and Topology
  • Online publication: 07 September 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139003841.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Michael Aschbacher, California Institute of Technology, Radha Kessar, University of Aberdeen, Bob Oliver, Université de Paris XIII
  • Book: Fusion Systems in Algebra and Topology
  • Online publication: 07 September 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9781139003841.001
Available formats
×