Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-03T18:30:39.342Z Has data issue: false hasContentIssue false

12 - High-energy cosmic rays and neutrinos

Published online by Cambridge University Press:  05 December 2012

Eli Waxman
Affiliation:
Physics Faculty, Weizman Institute, Rehovot 76100, Israel
Chryssa Kouveliotou
Affiliation:
NASA-Marshall Space Flight Center, Huntsville
Ralph A. M. J. Wijers
Affiliation:
Universiteit van Amsterdam
Stan Woosley
Affiliation:
University of California, Santa Cruz
Get access

Summary

Introduction

Cosmic rays (CRs) with energies exceeding ~5 × 1018 eV are termed Ultra High Energy cosmic rays (UHECRs). The (probably extragalactic) sources of these particles and their acceleration mechanisms are unknown and for many years have been the issue of much debate (e.g., Waxman 2004a, Berezinsky 2008, and references therein). The first part of this chapter, Section 12.2, describes the main constraints that are imposed by UHECR observations on the properties of candidate UHECR sources. In Section 12.2.7 it is shown that GRBs are the only known type of source that satisfy all constraints. The main open questions associated with the production of UHECRs are summarized in Section 12.2.8.

The GRB model for UHECR production makes testable predictions regarding the spec- trum and arrival direction distribution of UHECRs at the highest energies (Section 12.2.7). These predictions will, however, be difficult to test using even the largest available/planned UHECR detectors (see http://www.auger.org/). The challenges of identifying the UHECR sources, and of probing the physical mechanisms driving them, may be met by high-energy neutrino detectors (Halzen & Hooper 2002, Waxman 2005). The effort for addressing these challenges using high-energy neutrino “telescopes” is discussed in Section 12.3. It is shown that detectors, which are currently under construction, are expected to reach the effective mass required for the detection of high energy extragalactic neutrino sources, and may therefore play a key role in the near future in resolving the main open questions.

Type
Chapter
Information
Gamma-ray Bursts , pp. 251 - 268
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbasi, R.U. et al. (2005). ApJ 622, 910.
Abbasi, R.U. et al. (2008). Phys. Rev. Lett. 100, 101101.
Abraham, J. et al. (2009). Phys. Rev.D 79, 102001.
Achterberg, A. et al. (2007). Phys. Rev.D 76, 042008.
Achterberg, A. et al. (2008). Phys. Rev.D 77, 089904.
Allison, P. et al. (2009). Nucl. Instrum. Meth. Phys. Res.A 604, 64.
Alvarez-Muñiz, J., Halzen, F. & Hooper, D.W. (2000). Phys. Rev.D 62, 093015.
Amelino-Camelia, G. et al. (1998). Nature 393, 763.
Anchordoqui, L.A. & Montaruli, T. (2009). arXiv:0912.1035.
Arons, J. (2003). ApJ 589, 871.
Asano, K. & Nagataki, S. (2006). ApJ 40, L9.
Athar, H., Jezabek, M., & Yasuda, O. (2000). Phys. Rev.D 62, 103007.
the Pierre AUGER Collaboration et al. (2008). Astropart. Phys. 29, 188.
Avrorin, A.V. et al. (2009). Astron. Lett. 35, 651.
Axford, W.I. (1994). ApJS 90, 937.
Bahcall, J.N. (1989). Neutrino Astrophysics. NewYork: Cambridge University Press p. 438.
Bahcall, J.N. & Waxman, E. (2001). Phys. Rev.D 64, 023002.
Barwick, S.W. (2007). J. Phys. Conf. Ser. 60, 276.
Beatty, J.J. & Westerhoff, S. (2009). Annu. Rev. Nucl. Part. Sci. 59, 319.
Berezinsky, V. (2008). Adv. Sp. Res. 41, 2071.
Berezinsky, V.S. & Zatsepin, G.T. (1969). Phys. Lett.B 28, 423.
Bernlohr, K. et al. (1998). Astropart. Phys. 8, 253.
Bird, D.J. et al. (1994). ApJ 424, 491.
Blandford, R. & Eichler, D. (1987). Phys. Rep. 154, 1.
Bloom, J.S., Frail, D.A., & Kulkarni, S.R. (2003). ApJ 594, 674.
Bluemer, J., for the Pierre Auger Collaboration (2008). arXiv:0807.4871.
Burnett, T.H. et al. (1990). ApJ 349, L25.
Coleman, S. & Glashow, S.L. (1999). Phys. Rev.D 59, 116008.
Dai, Z.G. & Lu, T. (2001). ApJ 551, 249.
Dawson, B.R., Meyhandan, R., & Simpson, K.M. (1998). Astropart. Phys. 9, 331.
Dermer, C.D. & Atoyan, A. (2003). Phys. Rev. Lett. 91, 071102.
Engel, R., Seckel, D., & Stanev, T. (2001). Phys. Rev.D 64, 093010.
Farrar, G.R. & Gruzinov, A. (2008). arXiv:0802.1074.
Frail, D.A. et al. (2001). ApJ 562, L55.
Gaisser, T.K. et al. (1993). Phys. Rev.D 47, 1919.
Gorham, P.W. et al. (2009). Phys. Rev. Lett. 103, 051103.
Greisen, K. (1966). Phys. Rev. Lett. 16, 748.
Guetta, D., Spada, M., & Waxman, E. (2001). ApJ 559, 101.
Guetta, D. & Granot, J. (2003). Phys. Rev. Lett. 90, 201103.
Guetta, D., Hooper, D.W., Alvarez-Muñiz, J., Halzen, F., & Reuveni, E. (2004). Astropart. Phys. 20, 429.
Guetta, D., Piran, T., & Waxman, E. (2005). ApJ 619, 412.
Halzen, F. & Hooper, D. (2002). Rep. Prog. Phys. 65, 1025.
Halzen, F. & Hooper, D. (2004). JCAP 1, 2.
Hillas, A.M. (1984). ARA&A 22, 425.
Jacob, U. & Piran, T. (2007). Nat. Phys. 3, 87.
Kashti, T. & Waxman, E. (2008). JCAP 5, 6.
Katz, B., Budnik, R., & Waxman, E. (2009). JCAP 3, 20.
Kravchenko, I. et al. (2006). Phys. Rev.D 73, 082002.
Krolik, J.H. (1998). Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment. Princeton, NJ: Princeton University Press.
Landsman, H., Ruckman, L., & Varner, G.S. (2008). arXiv:0811.2520.
Learned, J.G. & Pakvasa, S. (1995). Astropart. Phys. 3, 267.
Lemoine, M. & Waxman, E. (2009). JCAP 11, 9.
Mészáros, P. & Waxman, E. (2001). Phys. Rev. Lett. 87, 1002.
Mészáros, P. (2002). ARA&A 40, 137.
Milgrom, M. & Usov, V. (1995). ApJ 49, L37.
Mirabel, I.F. & Rodríguez, L.F. (1999). ARA&A 37, 409.
Miralda-Escude, J. & Waxman, E. (1996). ApJ 462, L59.
Nagano, M. & Watson, A.A. (2000). Rev. Mod. Phys. 72, 689.
Piran, T. (2004). Rev. Mod. Phys. 76, 1143.
Rachen, J.P. & Biermann, P.L. (1993). A&A 272, 161.
Rachen, J.P. & Mészáros, P. (1998). Phys. Rev.D 58, 123005.
Razzaque, S., Mészáros, P., & Waxman, E. (2003). Phys. Rev. Lett. 90, 241103.
Razzaque, S., Mészáros, P., & Waxman, E. (2004). Phys. Rev.D 69, 023001.
Ulrich, R. et al. (2009). arXiv:0906.0418.
Vietri, M. (1995). ApJ 453, 883.
Vietri, M. & Stella, L. (1998). ApJ 507, 883.
Waxman, E. (1995). Phys. Rev. Lett. 75, 386.
Waxman, E. & Bahcall, J.N. (1997). Phys. Rev. Lett. 78, 2292.
Waxman, E., Fisher, K.B., & Piran, T. (1997). ApJ 483, 1.
Waxman, E. & Bahcall, J.N. (1999). Phys. Rev.D 59, 023002.
Waxman, E. (2003). In Supernovae and gamma-ray bursters, ed: K., Weiler, LNP 598, 393.
Waxman, E. (2004a). In Proc. PASCOS 2003, Pramana 62, 483, astro-ph/0310079.
Waxman, E. (2004b). ApJ 606, 988.
Waxman, E. (2005). Physica Scripta Volume T 121, 147.
Waxman, E. (2006). Plasma Phys. Contr. Fusion 48, 137.
Waxman, E. & Loeb, A. (2009). JCAP 8, 26.
Winter, W. (2006). Phys. Rev.D 74, 033015.
Zatsepin, G.T. & Kuzmin, V.A. (1966). JETP 4, 78.
Zhang, B. & Mészáros, P. (2004). Intl. J. Mod. Phys.A 19, 2385.

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×