Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-07T18:08:14.316Z Has data issue: false hasContentIssue false

Chapter 17 - Seismic and Electrical Resistivity Tomography 3D Monitoring at the Ketzin Pilot Storage Site in Germany

from Part III - Case Studies

Published online by Cambridge University Press:  19 April 2019

Thomas L. Davis
Affiliation:
Colorado School of Mines
Martin Landrø
Affiliation:
Norwegian University of Science and Technology, Trondheim
Malcolm Wilson
Affiliation:
New World Orange BioFuels
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alemu, B. L., Aker, E., Soldal, M., Johnsen, Ø., and Aagaard, P. (2013). Effect of sub‐core scale heterogeneities on acoustic and electrical properties of a reservoir rock: A CO2 flooding experiment of brine saturated sandstone in a computed tomography scanner. Geophysical Prospecting, 61(1): 235250.CrossRefGoogle Scholar
Asveth, P. (2009). Exploration rock physics. In Bjørlykke, K. (ed.), Petroleum geoscience: From sedimentary environments to rock physics, Berlin/Heidelberg: Springer-Verlag.Google Scholar
Baumann, G., Henninges, J., and Lucia, M. D. (2014). Monitoring of saturation changes and salt precipitation during CO2 injection using pulsed neutron-gamma logging at the Ketzin pilot site. International Journal of Greenhouse Gas Control, 28: 134146.CrossRefGoogle Scholar
Bergmann, P., and Chadwick, A. (2015). Volumetric bounds on subsurface fluid substitution using 4D seismic time shifts with an application at Sleipner, North Sea. Geophysics, 80: B153B165.CrossRefGoogle Scholar
Bergmann, P., Schmidt-Hattenberger, C., Kiessling, D., et al. (2012). Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage at Ketzin, Germany. Geophysics, 77: B253B267.CrossRefGoogle Scholar
Bergmann, P., Ivandic, M., Norden, B., et al. (2014a). Combination of seismic reflection and constrained resistivity inversion with an application to 4D imaging of the CO2 storage site, Ketzin, Germany. Geophysics, 79(2): B37B50.CrossRefGoogle Scholar
Bergmann, P., Kashubin, A., Ivandic, M., Lüth, S., and Juhlin, C. (2014b). Time-lapse difference static correction using prestack crosscorrelations: 4D seismic image enhancement case from Ketzin. Geophysics, 79: B243B252.CrossRefGoogle Scholar
Bergmann, P., Diersch, M., Götz, J., et al. (2016). Review on geophysical monitoring of CO2 injection at Ketzin, Germany. Journal of Petroleum Science and Engineering, 139: 112136.CrossRefGoogle Scholar
Bergmann, P., Schmidt-Hattenberger, C., Labitzke, T., et al. (2017). Fluid injection monitoring using electrical resistivity tomography: Five years of CO2 injection at Ketzin, Germany. Geophysical Prospecting, 65(3): 859875.CrossRefGoogle Scholar
Berryman, J., and Milton, G. (1991). Exact results for generalized Gassmann’s equations in composite porous media with two constituents. Geophysics, 56: 1950–1960.CrossRefGoogle Scholar
Chadwick, R. A., and Noy, D. J. (2015). Underground CO2 storage: demonstrating regulatory conformance by convergence of history‐matched modeled and observed CO2 plume behavior using Sleipner time‐lapse seismics. Greenhouse Gas Science and Technology, 5: 305322. DOI:10.1002/ghg.1488.CrossRefGoogle Scholar
Chadwick, R. A., Arts, R., and Eiken, O. (2005). 4D seismic quantification of a growing CO2 plume at Sleipner, North Sea. Geological Society, London, Petroleum Geology Conference series, 6, 1385-1399. https://doi.org/10.1144/0061385CrossRefGoogle Scholar
Dvorkin, J., and Nur, A. (1998). Acoustic signatures of patchy saturation. International Journal of Solids and Structures, 35(34): 48034810.CrossRefGoogle Scholar
Eid, R., Ziolkowski, A., Naylor, M., and Pickup, G. (2015). Seismic monitoring of CO2 plume growth, evolution and migration in a heterogeneous reservoir: Role, impact and importance of patchy saturation. International Journal of Greenhouse Gas Control, 43: 7081.CrossRefGoogle Scholar
Ellis, R., and Oldenburg, D. (1994). Applied geophysical inversion. Geophysical Journal International, 116: 511.CrossRefGoogle Scholar
Förster, A., Norden, B., Zinck-Jørgensen, K., et al. (2006). Baseline characterization of the CO2 SINK geological storage site at Ketzin, Germany. Environmental Geosciences, 13: 145161.CrossRefGoogle Scholar
Förster, A., Schöner, R., Förster, H., et al. (2010). Reservoir characterization of a CO2 storage aquifer: The upper triassic Stuttgart Formation in the Northeast German Basin. Marine and Petroleum Geology, 27(10): 21562172.CrossRefGoogle Scholar
Gassmann, F. (1951). Über die Elastizitgät poröser Medien. Vierteljahresschrift der Naturforschenden Gesellschaft Zürich, 96: 124.Google Scholar
Günther, T., Rücker, C., and Spitzer, K. (2006). Three-dimensional modelling and inversion of DC resistivity data incorporating topography II: Inversion. Geophysical Journal International, 166: 506517.CrossRefGoogle Scholar
Hill, R. (1963). Elastic properties of reinforced solids: Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11: 357372.CrossRefGoogle Scholar
Huang, F., Juhlin, C., Kempka, T., Norden, B., and Zhang, F. (2015). Modeling 3D time-lapse seismic response induced by CO2 by integrating borehole and 3D seismic data: A case study at the Ketzin pilot site, Germany. International Journal of Greenhouse Gas Control, 36: 6677.CrossRefGoogle Scholar
Huang, F., Bergmann, P., Juhlin, C., et al. (2017). The first post-injection seismic monitor Survey at the Ketzin pilot CO2 storage site: Results from time-lapse analysis. Geophysical Prospecting, 66(1): 6284.CrossRefGoogle Scholar
Ivandic, M., Yang, C., Lüth, S., Cosma, C., and Juhlin, C. (2012). Time-lapse analysis of sparse 3D seismic data from the CO2 storage pilot site at Ketzin, Germany. Journal of Applied Geophysics, 84: 1428.CrossRefGoogle Scholar
Ivandic, M., Juhlin, C., Lüth, S., et al. (2015). Geophysical monitoring at the Ketzin pilot site for CO2 storage: New insights into the plume evolution. International Journal of Greenhouse Gas Control, 32: 90105.CrossRefGoogle Scholar
Ivanova, A., Kashubin, A., Juhojuntti, N., et al. (2012). Monitoring and volumetric estimation of injected CO2 using 4D seismic, petrophysical data, core measurements and well logging: a case study at Ketzin, Germany. Geophysical Prospecting, 60(5): 957973, http://dx.doi.org/10.1111/j.1365–2478.2012.01045.xCrossRefGoogle Scholar
Juhlin, C., Giese, R., Zinck-Jørgensen, K., et al. (2007). 3D baseline seismics at Ketzin, Germany: The CO2 SINK project. Geophysics, 72: B121B132.CrossRefGoogle Scholar
Kashubin, A., Juhlin, C., Malehmir, A., Lüth, S., Ivanova, A., and Juhojuntti, N. (2011). A footprint of rainfall on land seismic data repeatability at the CO2 storage pilot site, Ketzin, Germany. In 81st Annual International Meeting, Expanded Abstracts, Society of Exploration Geophysicists.Google Scholar
Kazemeini, S. H., Juhlin, C., and Fomel, S. (2010). Monitoring CO2 response on surface seismic data: A rock physics and seismic modeling feasibility study at the CO2 sequestration site, Ketzin, Germany. Journal of Applied Geophysics, 71(4): 109124.CrossRefGoogle Scholar
Kiessling, D., Schmidt-Hattenberger, C., Schütt, H., et al. and the CO2SINK Group. (2010). Geoelectrical methods for monitoring geological CO2 storage: First results from cross-hole and surface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse Gas Control, 4: 816826. DOI:10.1016/j.ijggc.2012.05.001.CrossRefGoogle Scholar
Kossow, D., Krawczyk, C., McCann, T., Strecker, M., and Negendank, J. F. W. (2000). Style and evolution of salt pillows and related structures in the northern part of the Northeast German Basin. International Journal of Earth Science, 89: 652664.CrossRefGoogle Scholar
Kummerow, J., and Spangenberg, E. (2011). Experimental evaluation of the impact of the interactions of CO2–SO2, brine, and reservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany. Geochemistry Geophysics Geosystems, 12: Q05Q010.CrossRefGoogle Scholar
Labitzke, T., Bergmann, P., Kiessling, D., and Schmidt-Hattenberger, C. (2012). 3D Surface-downhole electrical resistivity tomography data sets of the Ketzin CO2 storage pilot from the CO2 SINK project phase. GFZ Scientific Technical Report, 10(5) (available online).Google Scholar
Lange, W. (1966). Geologisch-lagerstättenphysikalische und förder-technische Fragen bei der Erkundung des Untergrundspeichers Ketzin. Zeitschrift für Angewandte Geologie, 12(1): 2734.Google Scholar
Martens, S., Liebscher, A., Möller, F., Würdemann, H., Schilling, F., and Kühn, M. (2011). Progress report on the first European on-shore CO2 storage site at Ketzin (Germany): Second year of injection. Energy Procedia, 4: 32463253.CrossRefGoogle Scholar
Martens, S., Möller, F., Streibel, M., Liebscher, A., and the Ketzin Group. (2014). Completion of five years of safe CO2 injection and transition to the post-closure phase at the Ketzin pilot site. Energy Procedia, 59: 190197. DOI:10.1016/j.egypro.2014.10.366.CrossRefGoogle Scholar
Martens, S., Kempka, T., Liebscher, A., et al. (2015). Field experiment on CO2 back-production at the Ketzin pilot site. Energy Procedia, 76: 519527. DOI:10.1016/j.egypro.2015.07.902.CrossRefGoogle Scholar
Mavko, G., Mukerji, T., and Dvorkin, J. (2003). The rock physics handbook: Tools for seismic analysis of porous media. Cambridge: Cambridge University Press.Google Scholar
Möller, F., Liebscher, A., Martens, S., Schmidt-Hattenberger, C., and Streibel, M. (2014). Injection of CO2 at ambient temperature conditions: Pressure and temperature results of the “cold injection” experiment at the Ketzin pilot site. Energy Procedia, 63: 62896297.CrossRefGoogle Scholar
Möller, F., Liebscher, A., and Schmidt-Hattenberger, C. (2016). Report on the dataset of the Brine Injection at the CO2 Storage Pilot Site Ketzin, Germany: Scientific Technical Report STR; 16/05, Potsdam: GFZ German Research Centre for Geosciences. DOI:10.2312/GFZ.b103-16059.Google Scholar
Nakagawa, S., Kneafsey, T. J., Daley, T. M., Freifeld, B. M., and Rees, E. V. (2013). Laboratory seismic monitoring of supercritical CO2 flooding in sandstone cores using the Split Hopkinson Resonant Bar technique with concurrent x‐ray computed tomography imaging. Geophysical Prospecting, 61(2): 254269.CrossRefGoogle Scholar
Natatsuka, Y., Xue, Z., Garcia, H., and Matsuoka, T. (2010). Experimental study on CO2 monitoring and quantification of stored CO2 in saline formations using resistivity measurements. International Journal of Greenhouse Gas Control, 4(2): 209216.CrossRefGoogle Scholar
Norden, B., and Frykman, P. (2013). Geological modelling of the Triassic Stuttgart Formation at the Ketzin CO2 storage site, Germany. International Journal of Greenhouse Gas Control, 19. DOI:10.1016/j.ijggc.2013.04.019.CrossRefGoogle Scholar
Prevedel, B., Wohlgemuth, L., Henninges, J., Krüger, K., Norden, B., and Förster, A. (2008). The CO2SINK boreholes for geological storage testing. Scientific Drilling, 6: 3237.CrossRefGoogle Scholar
Rücker, C., Günther, T., and Spitzer, K. (2006). Three-dimensional modelling and inversion of DC resistivity data incorporating topography I: Modelling. Geophysical Journal International, 166(2): 495505.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Kießling, D., Krüger, K., Rücker, C., and Schütt, H. (2011). Application of a vertical electrical resistivity array (VERA) for monitoring CO2 migration at the Ketzin site: First performance evaluation. Energy Procedia, 4: 33633370.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., et al. (2012). A modular geoelectrical monitoring system as part of the surveillance concept in CO2 storage projects. Energy Procedia, 23: 400407.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., and Wagner, F. (2014). CO2 migration monitoring by means of electrical resistivity tomography (ERT): Review on five years of operation of a permanent ERT system at the Ketzin pilot site. Energy Procedia, 63: 43664373.CrossRefGoogle Scholar
Schmidt-Hattenberger, C., Bergmann, P., Labitzke, T., Wagner, F., and Rippe, D. (2016). Permanent crosshole electrical resistivity tomography (ERT) as an established method for the long-term CO2 monitoring at the Ketzin pilot site. International Journal of Greenhouse Gas Control, 52: 432448.CrossRefGoogle Scholar
Shi, J., Xue, Z., and Durucan, S. (2011). Supercritical CO2 core flooding and imbibition in Tako sandstone: Influence of sub-core scale heterogeneity. International Journal of Greenhouse Gas Control, 5(1): 7587.CrossRefGoogle Scholar
Sopher, D., Juhlin, C., Huang, F., Ivandic, M., and Lüth, S. (2014). Quantitative assessment of seismic source performance: Feasibility of small and affordable seismic sources for long term monitoring at the Ketzin CO2 storage site, Germany. Journal of Applied Geophysics, 107: 171–186.CrossRefGoogle Scholar
Stackebrandt, W., and Lippstreu, L. (2002). Zur geologischen Entwicklung Brandenburgs. In Stackebrandt, W. and Manhenke, V. (eds.), Atlas zur Geologie von Brandenburg im Maßstab 1:1,000 000. Kleinmachnow, Germany: Landesamt für Geowissenschaften und Rohstoffe Brandenburg, 1318.Google Scholar
Torp, T., and Gale, J. (2004). Demonstrating storage of CO2 in geological reservoirs: The Sleipner and SACS projects. Energy, 29(9–10): 13611369.CrossRefGoogle Scholar
Whitman, W., and Towle, G. (1992). The influence of elastic and density properties on the behavior of the Gassmann relation. Log Analyst, 33(6): 500506.Google Scholar
Wipki, M., Ivanova, A., Liebscher, A., et al. (2016). Monitoring Concept for CO2 storage at the Ketzin pilot site, Germany: Post-injection continuation towards transfer of liability. Energy Procedia, 97: 348355.CrossRefGoogle Scholar
Yang, C., Juhlin, C., Enescu, N., Cosma, C., and Lüth, S. (2010). Moving source pro-file data processing, modelling and comparison with 3D surface seismic data at the CO2SINK project site, Ketzin, Germany. Near Surface Geophysics, 8: 601610.CrossRefGoogle Scholar
Zhang, F., Juhlin, C., Cosma, C., Tryggvason, A., and Pratt, R. G. (2012). Cross-well seismic waveform tomography for monitoring CO2 injection: A case study from the Ketzin Site, Germany. Geophysical Journal International, 189: 629646, http://dx.doi.org/10.1111/j.1365-246X.2012.05375.xCrossRefGoogle Scholar
Zimmer, M., Erzinger, J., and, Kujawa, C. (2011). The gas membrane sensor (GMS): A new method for gas measurements in deep boreholes applied at the CO2 SINK site. International Journal of Greenhouse Gas Control, 5(4): 9951001.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×