Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:35:36.890Z Has data issue: false hasContentIssue false

22 - Marine Systems, Food Security, and Future Earth

from Part VI - Future Earth and Food Security

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Seafood, whether from fisheries or aquaculture, has been an important food source for millennia and appearslikely to continue to be so for many decades to come. Traditional sources of seafood are under increasing pressure as the Anthropocene generates growing pressure on the world’s oceans. Marine ecosystems are feeling the direct pressure of fisheries and aquaculture, as well as the effects of pollution, eutrophication, coastal development, ocean acidification, climate change, extreme events, pathogens and the growing number and magnitude of marine industries – shipping, tourism, mining and energy generation. Nevertheless, there is hope. Both model based and empirical studies are showing sustainable options can be found. It is clear that integrated system-level understanding will be an important part of sustainable use of future ocean resources. As we navigate a changing ocean it is clear that human ingenuity will also be key to future sustainability and food security.
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 296 - 310
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alder, J., Guénette, S., Beblow, J., Cheung, W., and Christensen, V. (2007) Ecosystem-based Global Fishing Policy Scenarios. Fisheries Centre Research Reports 15(7).Google Scholar
Allison, E.H., Perry, A.L., Badjeck, M.-C., Adger, W.N., Brown, K., Conway, D., Halls, A.S., Pilling, G.M., Reynolds, J.D., Andrew, N.L., and Dulvy, N.K. (2009) Vulnerability of national economies to the impacts of climate change on fisheries. Fish and Fisheries, 10, 173196.Google Scholar
Apaza, M., and Figari, A. (1999) Mortandad de aves marinas durante El Niño 1997–98 en el litoral sur de San Juan de Marcona, Ica, Perú. Revista Peruana de Biología, Vol. Extraordinario, pp. 110–117.Google Scholar
Asif, M., and Muneer, T. (2007) Energy supply, its demand and security issues for developed and emerging economies. Renewable and Sustainable Energy Reviews, 11, 13881413.Google Scholar
Barange, M., Merino, G., Blanchard, J.L., Scholtens, J., Harle, J., Allison, E.H., Allen, J.I., Holt, J., and Jennings, S. (2014) Impacts of climate change on marine ecosystem production in societies dependent on fisheries. Nature Climate Change, 4, 211216.Google Scholar
Barber, R.T., and Chavez, F.P. (1983) Biological consequences of El Niño. Science 222, 12031210.Google Scholar
Battisti, D.S., and Naylor, R.L. (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240244.CrossRefGoogle ScholarPubMed
Baines, J., Baines, T., and Quigley, R. (2015) The Social and Community Effects of Aquaculture: A Case Study of Southland Aquaculture. New Zealand Ministry for Primary Industries report.Google Scholar
Beldade, R., Holbrook, S.J., Schmitt, R.J., Planes, S., Malone, D., and Bernardi, G. (2012) Larger female fish contribute disproportionately more to self-replenishment. Proceedings of the Royal Society B, 279, 21162121.CrossRefGoogle ScholarPubMed
Bell, J.D., Ganachaud, A., Gehrke, P.C., Griffiths, S.P., Hobday, A.J., Hoegh-Guldberg, O., Johnson, J.E., Le Borgne, R., Lehodey, P., Lough, J.M., Matear, R.J., Pickering, T.D., Pratchett, M.S., Gupta, A.S., Senina, I., and Waycott, M. (2013) Mixed responses of tropical Pacific fisheries and aquaculture to climate change. Nature Climate Change, 3, 591599.Google Scholar
Béné, C., Barange, M., Subasinghe, R., Pinstrup-Andersen, P., Merino, G., Hemre, G.-I., and Williams, M. (2015). Feeding 9 billion by 2050—putting fish back on the menu. Food Security, 7, 261274.Google Scholar
Bradshaw, C.J.A., and Brook, B.W. (2014) Human population reduction is not a quick fix for environmental problems. Proceedings of the National Academy of Sciences, 111, 1661016615.CrossRefGoogle Scholar
Branch, T.A., DeJoseph, B.M., Ray, L.J., and Wagner, C.A. (2013) Impacts of ocean acidification on marine seafood. Trends in Ecology & Evolution, 28, 178186.Google Scholar
Brodie, J.E., Kroon, F.J., Schaffelke, B., Wolanski, E.C., Lewis, S.E., Devlin, M.J., Bohnet, I.C., Bainbridge, Z.T., Waterhouse, J., and Davis, A.M. (2012) Terrestrial pollutant runoff to the Great Barrier Reef: An update of issues, priorities and management responses. Marine Pollution Bulletin, 65, 81100.Google Scholar
Brūchert, V., Currie, B., Peard, K.R., Lass, U., Endler, R., Dübecke, A., Julies, E., Leipe, T., and Zitzmann, S. 2006. Biogeochemical and physical control on shelf anoxia and water column hydrogen sulphide in the Benguel: A coastal upwelling off Namibia. In: Past and Present Water Column Anoxia, Neretin, L.N. (Ed.). Springer. pg. 161193.Google Scholar
Burge, C.A., Eakin, C.M., Friedman, C.S., Froelich, B., Hershberger, P.K., Hofmann, E.E., Petes, L.E., Prager, K.C., Weil, E., Willis, B.L., Ford, S.E., and Harvell, C.D. (2014) Climate change influences on marine infectious diseases: Implications for management and society. Annual Reviews in Marine Science, 6, 249–77.Google Scholar
Buschmann, A.H., Varela, D.A., Hernández-González, M.C., Huovinen, P., (2008)Opportunities and challenges for the development of an integrated seaweed based aquaculture activity in Chile: Determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology, 20, 571577.Google Scholar
Butterworth, A. (2016) A Review of the welfare impact on pinnipeds of plastic marine debris. Frontiers in Marine Science, 3,149. doi: 10.3389/fmars.2016.00149.CrossRefGoogle Scholar
Capone, D.G., and Hutchins, D.A. (2013) Microbial biogeochemistry of coastal upwelling regimes in a changing ocean. Nature Geoscience, 6, 711717.Google Scholar
CBI (2015) CBI Trade Statistics: Fish and Seafood. CBI.Google Scholar
Chassot, E., Bonhommeau, S., Dulvy, N.K., Mélin, F., Watson, R., Gascuel, D. and Le Pape, O. (2010) Global marine primary production constrains fisheries catches. Ecology Letters, 13, 495505.Google Scholar
Chern, W.S., Ishibashi, K., Taniguchi, K., and Tokoyama, Y. (2002) Analysis of food consumption behavior by Japanese households. ESA Working Paper No. 02–06.Google Scholar
Cheung, W.W.L., Lam, V.W.Y., Sarmiento, J.L., Kearney, K., Watson, R., Zeller, D., and Pauly, D. (2010). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, 16, 2435.Google Scholar
Cheung, W.W.L., Dunne, J., Sarmiento, J.L., and Pauly, D. (2011) Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 68, 10081018.CrossRefGoogle Scholar
Cheung, W.W.L., Sarmiento, J.L., Dunne, J., Frölicher, T.L., Lam, V.W.Y., Palomares, M.L.D., Watson, R., and Pauly, D. (2013) Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nature Climate Change, 3, 254258.Google Scholar
Cheung, W.W.L., Jones, M.C., Reygondeau, G., Stock, C.A., Lam, V.W.Y., and Frölicher, T.L. (2016) Structural uncertainty in projecting global fisheries catches under climate change. Ecological Modelling, 325, 5766.Google Scholar
Cheung, W.W.L., Reygondeau, G., and Frölicher, T.L. (2016) Large benefits to marine fisheries of meeting the 1.5 °C global warming target. Science, 354, 15911594.Google Scholar
Chimits, P. (1957) Tilapia in ancient Egypt. FAO Fisheries Bulletin, 10, 211215.Google Scholar
Christensen, V. Walters, C.J., Ahrens, R., Alder, J., Buszowski, J., Christensen, L.B., Cheung, W.W.L., Dunne, J., Froese, R., Karpouzi, V., Kastner, K., Kearney, K., Lai, S., Lam, V., Palomares, M.L.D., Peters-Mason, A., Piroddi, C., Sarmiento, J.L., Steenbeek, J., Sumaila, R., Watson, R., Zeller, D. and Pauly, D. (2008) Models of the world’s large marine ecosystems. GEF/LME global project Promoting Ecosystem-based Approaches to Fisheries Conservation and Large Marine Ecosystems. IOC Technical Series No. 80. Paris, UNESCO.CrossRefGoogle Scholar
Cinner, J.E., Huchery, C., MacNeil1, M.A., Graham, N.A.J., McClanahan, T.R., Maina, J.,Maire, E., Kittinger, J.N., Hicks, C.C., Mora, C., Allison, E.H., D’Agata, S., Hoey, A., Feary, D.A., Crowder, L., Williams, I.D., Kulbicki, M., Vigliola, L., Wantiez, L., Edgar, G., Stuart-Smith, R.D., Sandin, S.A., Green, A.L., Hardt, M.J., Beger, M., Friedlander, A., Campbell, S.J., Holmes, K.E., Wilson, S.K., Brokovich, E., Brooks, A.J., Cruz-Motta, J.J., Booth, D.J., Chabanet, P., Gough, C., Tupper, M., Ferse, S.C.A., Sumaila, U.R., and Mouillot, D. (2016) Bright spots among the world’s coral reefs. Nature, 535, 416419.Google Scholar
Costa-Pierce, B.A. (2002). Ecological Aquaculture: The evolution of the blue revolution. Oxford: Wiley-Blackwell. pp 129.CrossRefGoogle Scholar
Costello, C., Ovando, D., Hilborn, R., Gaines, S.D., Deschenes, O., Lester, S.E. (2012) Status and solutions for the world’s unassessed fisheries. Science, 338, 517520.Google Scholar
Costello, C., Ovando, D., Clavelle, T., Strauss, C.K., Hilborn, R., Melnychuk, M.C., Branch, T.A., Gaines, S.D., Szuwalski, C.S., Cabral, R.B., Rader, D.N., and Leland, A. (2016) Global fishery prospects under contrasting management regimes. Proceedings of the National Academy of Sciences, 113, 51255129.Google Scholar
Cotner, J.B., and Biddanda, B.A. (2002) Small players, large role: Microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems, 5, 105121.CrossRefGoogle Scholar
Crossland, C.J., Kremer, H.H., Lindeboom, H.J., Marshall Crossland, J.I., and Le Tissier, M.D.A. (2005) Coastal Fluxes in the Anthropocene: The Land-Ocean Interactions in the Coastal Zone Project of the International Geosphere-Biosphere Programme. Springer.Google Scholar
Dafforn, K.A., Glasby, T.M., Airoldi, L., Rivero, N.K., Mayer-Pinto, M., and Johnston, E.L. (2015). Marine urbanization: An ecological framework for designing multifunctional artificial structures. Frontiers in Ecology and the Environment, 13, 8290.CrossRefGoogle Scholar
Derraik, J.G.B. (2002) The pollution of the marine environment by plastic debris: A review. Marine Pollution Bulletin, 44, 842852.CrossRefGoogle ScholarPubMed
Dhar, A.K., Manna, S.K., and Allnutt, F.C.T. (2014) Viral vaccines for farmed finfish. Virus Disease, 25, 117.Google Scholar
Dodds, S. (1997) Towards a ‘science of sustainability’: Improving the way ecological economics understands human well-being. Ecological Economics, 23, 95111.Google Scholar
Doney, S.C., Fabry, V.J., Feely, R.A., and Kleypas, J.A. (2009) Ocean acidification: The other CO2 problem. Annual Reviews in Marine Science, 1, 169–92.Google Scholar
Doyen, L., Pereau, J.-C., and Cissé, A. (2016) The tragedy of open ecosystems. Dynamic Games and Applications. doi: 10.1007/s13235-016-0205-3.Google Scholar
Dugdale, R., Goering, J., Barber, R., Smith, R., and Packard, T. (1977) Denitrification and hydrogen sulfide in the Peru upwelling region during 1976. Deep Sea Research, 24, 601608.Google Scholar
EIA (U.S. Energy Information Administration) (2016) Monthly Energy Review October 2016. Washington, DC: EIA.Google Scholar
Elliott, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Feket, B.M., Folberth, C., Foster, I., Gosling, S.N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A.C., Satoh, Y., Schmid, E., Stack, T., Tang, W., and Wisser, D. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111, 32393244.CrossRefGoogle ScholarPubMed
EJF (2016) The EU IUU Regulation: Building on success, EU progress in the global fight against illegal fishing. Report by The Environmental Justice Foundation (EJF), Oceana, The Pew Charitable Trusts and WWF.Google Scholar
Ekstrom, J.A., Suatoni, L., Cooley, S.R., Pendleton, L.H., Waldbusser, G.G., Cinner, J.E., Ritter, J., Langdon, C., van Hooidonk, R., Gledhill, D., Wellman, K., Beck, M.W., Brander, L.M., Rittschof, D., Doherty, C., Edwards, P.E.T., and Portela, R. (2015) Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change, 5, 207214.Google Scholar
Essington, T.E., Beaudreau, A.H., and Wiedenmann, J. (2006) Fishing through marine food webs. Proceedings of the National Academy of Sciences, 103, 31713175.Google Scholar
Elliot, J., Deryng, D., Müller, C., Frieler, K., Konzmann, M., Gerten, D., Glotter, M., Flörke, M., Wada, Y., Best, N., Eisner, S., Fekete, B.M., Folberth, C., Foster, I., Gosling, S.N., Haddeland, I., Khabarov, N., Ludwig, F., Masaki, Y., Olin, S., Rosenzweig, C., Ruane, A.C., Satoh, Y., Schmid, E., Stacke, T., Tang, Q., and Wisser, D. (2014) Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences, 111, 32393244.Google Scholar
Evans, K., Bax, N., and Smith, D.C. (2017) Australia State of the Environment 2016: Marine Environment, Independent Report to the Australian Government Minister for the Environment and Energy. Canberra: Australian Government Department of the Environment and Energy.Google Scholar
FAO (2016) The State of World Fisheries and Aquaculture 2016. Contributing to Food Security and Nutrition for All. Rome: FAO.Google Scholar
FAO, IFAD and WFP (2014) The State of Food Insecurity in the World 2014. Strengthening the Enabling Environment for Food Security and Nutrition. Rome: FAO.Google Scholar
Fogarty, M.J., Rosenberg, A.A, Cooper, A.B., Dickey-Collas, M., Fulton, E.A., Gutiérrez, N.L., Hyde, K.J.W., Kleisner, K.M., Kristiansen, T., Longo, C., Minte-Vera, C.V., Minto, C., Mosqueira, I., Osio, G.C., Ovando, D., Selig, E.R., Thorson, J.T., and Yimin, Y (2016) Fishery production potential of large marine ecosystems: A prototype analysis. Environmental Development, 17, 211219.Google Scholar
Francis, C.D., and Barber, J.R. (2013) A framework for understanding noise impacts on wildlife: An urgent conservation priority. Frontiers in Ecology and the Environment, 11, 305313.Google Scholar
Fujita, M., Yamasaki, S., Katagiri, C., Oshiro, I., Sano, K., Kurozumi, T., Sugawara, H., Kunikita, D., Matsuzaki, H., Kano, A., Okumura, T., Sone, T., Fujita, H., Kobayashi, S., Naruse, T., Kondo, M., Matsu’ura, S., Suwa, G., and Kaifu, Y. (2016) Advanced maritime adaptation in the western Pacific coastal region extends back to 35,000–30,000 years before present. Proceedings of the National Academy of Sciences, 113, 1118411189.Google Scholar
Fulton, E.A., and Gorton, R. (2014) Adaptive Futures for SE Australian Fisheries & Aquaculture: Climate Adaptation Simulations. Hobart: CSIRO.Google Scholar
Garcia, S.M., Kolding, J., Rice, J., Rochet, M.J., Zhou, S., Arimoto, T., Beyer, J.E., Borges, L., Bundy, A., Dunn, D., Fulton, E.A., Hall, M., Heino, M., Law, R., Makino, M., Rijnsdorp, A.D., Simard, F., and Smith, A.D.M. (2012) Reconsidering the consequences of selective fisheries. Science, 335, 10451047.CrossRefGoogle ScholarPubMed
Gerland, P., Raftery, A.E., Ševčíková, H., Li, N., Gu, D., Spoorenberg, T., Alkema, L., Fosdick, B.K., Chunn, J., Lalic, N., Bay, G., Buettner, T., Heilig, G.K., and Wilmoth, J. (2014) World population stabilization unlikely this century. Science, 346, 234237.Google Scholar
Goldburg, R.J., Elliott, M.S., and Naylor, R.L. (2001) Marine Aquaculture in the United States: Environmental Impacts and Policy Options. Wasington, DC: Pew.Google Scholar
Golden, C.D., Allison, E.H., Cheung, W.W.L., Dey, M.M., Halpern, B.S., McCauley, D.J., Smith, M., Vaitla, B., Zeller, D., and Myers, S.S. (2016) Fall in fish catch threatens human health. Nature, 534, 317320.Google Scholar
Gornall, J., Betts, R., Burke, E., Clark, R., Camp, J., Willett, K., and Wiltshire, A. (2010) Implications of climate change for agricultural productivity in the early twenty-first century. Philosophical Transactions of the Royal Society B, 365, 29732989.Google Scholar
Graham, H.W., and Edwards, R.L. (1962) The world biomass of marine fishes. In: Fish in Nutrition, Heen, E. and Kreuzer, R., (eds). London: Fishing News (books), pp. 38.Google Scholar
Griffith, G.P., Richardson, A.J., Fulton, E.A., and Gorton, R. (2012) Evaluating the interaction effects of ocean warming, ocean acidification and fisheries. Conservation Biology, 6, 11451152.Google Scholar
Griffith, G.P., and Fulton, E.A. (2014) New approaches to simulating the complex interaction effects of multiple human impacts on the marine environment. ICES Journal of Marine Science, 71, 764774.Google Scholar
Gulland, J.A. (1970) Summary In: The Fish Resources of the Ocean, Gulland, J.A. (ed). FAO Fisheries Technical Paper 97.Google Scholar
Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C.V., Micheli, F., D’Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., and Watson, R., (2008) A global map of human impact on marine ecosystems. Science, 319, 948952.Google Scholar
Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., Longo, C., Stewart Lowndes, J., Rockwood, R.C., Selig, E.R., Selkoe, K.A., and Walbridge, S. (2015) Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nature, 6, 17.Google Scholar
Harvell, C.D., Mitchell, C.E., Ward, J.R., Altizer, S., Dobson, A.P., Ostfeld, R.S., and Samuel, M.D. (2002) Climate warming and disease risks for terrestrial and marine biota. Science, 296, 21582162.Google Scholar
Hildebrand, J.A. (2009) Anthropogenic and natural sources of ambient noise in the ocean. Marine Ecology Progress Series, 395, 520.Google Scholar
Hobday, A.J., and Pecl, G.T. (2014) Identification of global marine hotspots: Sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries, 24, 415425.Google Scholar
Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.E., Straub, S.C., Oliver, E.C.J., Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M., Holbrook, N.J., Moore, P.J., Scannell, H.A., Gupta, A.S., and Wernberg, T. 2016. A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141, 227238.Google Scholar
Hoegh-Guldberg, O., and Bruno, J.F. (2010) The impact of climate change on the world’s marine ecosystems. Science, 328, 15231528.Google Scholar
Hönisch, B., Ridgwell, A., Schmidt, D.N., Thomas, E., Gibbs, S.J., Sluijs, A., Zeebe, R., Kump, L., Martindale, R.C., Greene, S.E., Kiessling, W., Ries, J., Zachos, J.C., Royer, D.L., Barker, S., Marchitto, T.M. Jr., Moyer, R., Pelejero, C., Ziveri, P., Foster, G.L., Williams, B., 2012. The geological record of ocean acidification. Science, 335, 10581063.Google Scholar
Hu, Y., Shang, H., Tong, H., Nehlich, O., Liu, W., Zhao, C., Yu, J., Wang, C., Trinkaus, E., and Richards, M.P. (2009) Stable isotope dietary analysis of the Tianyuan 1 early modern human. Proceedings of the National Academy of Sciences, 107, 1097110974.Google Scholar
IPCC. (2013) Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P.M. (eds). Cambridge: Cambridge University Press.Google Scholar
Irigoien, X., Klevjer, T.A., Røstad, A., Martinez, U., Boyra, G., Acuña, J.L., Bode, A., Echevarria, F., Gonzalez-Gordillo, J.I., Hernandez-Leon, S., Agusti, S., Aksnes, D.L., Duarte, C.M., and Kaartvedt, S. (2014) Large mesopelagic fishes biomass and trophic efficiency in the open ocean. Nature Communications, 5, 110.Google Scholar
Jambeck, J.R., Geyer, R., Wilcox, C., Siegler, T.R., Perryman, M., Andrady, A., Narayan, R., and Law, K.L. (2015) Plastic waste inputs from land into the ocean. Science, 347, 768771.Google Scholar
Jennings, S., Mélin, F., Blanchard, J.L., Forster, R.M., Dulvy, N.K., and Wilson, R.W. (2008) Global-scale predictions of community and ecosystem properties from simple ecological theory. Proceedings of the Royal Society B Biological Sciences, 275, 13751383.Google Scholar
Jennings, S., and Brander, K. (2010) Predicting the effects of climate change on marine communities and the consequences for fisheries. Journal of Marine Systems, 79, 418426.Google Scholar
Jennings, S., and Collingridge, K. (2015) Predicting consumer biomass, size-structure, production, catch potential, responses to fishing and associated uncertainties in the world’s marine ecosystems. PLoS One, 10, e0133794.Google Scholar
Jones, M.C., and Cheung, W.W.L. (2015) Multi-model ensemble projections of climate change effects on global marine biodiversity. ICES Journal of Marine Science, 72, 741752.Google Scholar
Koslow, J.A., and Davison, P.C. (2016) Productivity and biomass of fishes in the California Current Large Marine Ecosystem: Comparison of fishery-dependent and –independent time series. Environmental Development, 17, 2332.Google Scholar
Kunc, H.P., McLaughlin, K.E., and Schmidt, R. (2016) Aquatic noise pollution: Implications for individuals, populations, and ecosystems. Proceedings of the Royal Society B, 283, 20160839.Google Scholar
Leadbitter, D., Benguerel, R. (2014). Sustainable tuna–can the marketplace improve fishery management? Business Strategy and the Environment, 23, 417432.Google Scholar
Ling, S.D., Johnson, C.R., Ridgway, K., Hobday, A.J., and Haddon, M. (2009). Climate‐driven range extension of a sea urchin: Inferring future trends by analysis of recent population dynamics. Global Change Biology, 15, 719731.Google Scholar
Lönnstedt, O.M., and Eklöv, P. (2016) Environmentally relevant concentrations of microplastic particles influence larval fish ecology. Science, 352, 12131216.Google Scholar
Maeda, H. (2015) The Past, Present and Future of the Ocean Engineering Activities: Maritime Technology and Engineering – Soares, Guedes & Santos, (eds). Taylor & Francis Group, London. pgs 39.Google Scholar
McCauley, D.J., Pinsky, M.L., Palumbi, S.R., Estes, J.A., Joyce, F.H., and Warner, R.R. (2015) Marine defaunation: Animal loss in the global ocean. Science, 347, 1255641.Google Scholar
Merino, G., Barange, M., Blanchard, J.L., Harle, J., Holmes, R., Allen, I., Allison, E.H., Badjeck, M.C., Dulvy, N.K., Holt, J., Jennings, S., Mullon, C., Rodwell, L.D. (2012) Can marine fisheries and aquaculture meet fish demand from a growing human population in a changing climate? Global Environmental Change, 22, 795806.Google Scholar
Molinos, J.G., Halpern, B.S., Schoeman, D.S., Brown, C.J., Kiessling, W., Moore, P.J., Pandolfi, J.M., Poloczanska, E.S., Richardson, A.J., and Burrows, M.T. (2015) Climate velocity and the future global redistribution of marine biodiversity. Nature Climate Change. doi: 10.1038/nclimate2769.Google Scholar
Murphy, E.J., Cavanagh, R.D., Drinkwater, K.F., Grant, S.M., Heymans, J.J., Hofmann, E.E., Hunt, G.L. Jr., and Johnston, N.M. (2016) Understanding the structure and functioning of polar pelagic ecosystems to predict the impacts of change. Proceedings of the Royal Society B, 283, 20161646.Google Scholar
Neori, A., Chopin, T., Troell, M., Buschmann, A., Kraemer, G.P., Halling, C., Shpigel, M., and Yarish, C. (2004). Integrated aquaculture: Rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture, 231, 361391.Google Scholar
Nicklisch, S.C.T., Rees, S.D., McGrath, A.P., Gökirmak, T., Bonito, L.T., Vermeer, L.M., Cregger, C., Loewen, G., Sandin, S., Chang, G., and Hamdoun, A. (2016) Global marine pollutants inhibit P-glycoprotein: Environmental levels, inhibitory effects, and cocrystal structure. Science Advances, 2, e1600001.Google Scholar
NRC (National Research Council)(2014) Responding to Oil Spills in the U.S. Arctic Marine Environment. Washington, DC: The National Academies Press.Google Scholar
O’Connor, S., Ono, R., and Clarkson, C. (2011) Pelagic fishing at 42,000 years before the present and the maritime skills of modern humans. Science, 334, 11171121.Google Scholar
Parkinson, C. (2014) Global sea ice coverage from satellite data: Annual cycle and 35-yr trends. Journal of Climate, 27, 93779382.Google Scholar
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., and Torres, F. Jr. (1998) Fishing down marine food webs. Science, 279, 860863.Google Scholar
Pecl, G.T., Araújo, M.B., Bell, J.D., Blanchard, J., Bonebrake, T.C., Chen, I-C., Clark, T.D., Colwell, R.K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R.A., Griffis, R.B., Hobday, A.J., Janion-Scheepers, C., Jarzyna, M.A., Jennings, S., Lenoir, J., Linnetved, H.I., Martin, V.Y., McCormack, P.C., McDonald, J., Mitchell, N.J., Mustonen, T., Pandolfi, J.M., Pettorelli, N., Popova, E., Robinson, S.A., Scheffers, B.R., Shaw, J.D., Sorte, C.J.B., Strugnell, J.M., Sunday, J.M., Tuanmu, M.-N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E., and Williams, S.E. (2017) Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355, eaai9214.Google Scholar
Perkins, S.E., Alexander, L.V., and Nairn, J., (2012) Increasing frequency, intensity and duration of observed global heat waves and warm spells. Geophysical Research Letters, 39, 20. http://dx.doi.org/10.1029/2012GL053361.Google Scholar
Plagányi, É.E., van Putten, I., Thébaud, O., Hobday, A.J., Innes, J., Lim-Camacho, J., Norman-Ló pez, A., Bustamante, R.H., Farmery, A., Fleming, A., Frusher, S., Green, B., Hoshino, E., Jennings, S., Pecl, G., Pascoe, S., Schrobback, P., and Thomas, L. (2014) A quantitative metric to identify critical elements within seafood supply networks. PLoS ONE, 9: e91833. doi: 10.1371/journal.pone.0091833.CrossRefGoogle ScholarPubMed
Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P.J., Brander, K., Bruno, J.F., Buckley, L.B., Burrows, M.T., Duarte, C.M., Halpern, B.S., Holding, J., Kappel, C.V., O’Connor, M.I., Pandolfi, J.M., Parmesan, C., Schwing, F., Thompson, S.A., and Richardson, A.J. (2013) Global imprint of climate change on marine life. Nature Climate Change, 3, 919925.Google Scholar
Popper, A.N., and Hastings, M.C. (2009) The effects of human-generated sound on fish. Integrative Zoology, 4, 4352.Google Scholar
Radcliffe, W. (1921) Fishing from the Earliest Times. London: Murray.Google Scholar
Rakocy, J.E. (2012) Aquaponics – Integrating fish and plant culture. In: Aquaculture Production Systems, Tidwell, J. (Ed.). John Wiley & Sons.Google Scholar
Rammelt, C.F., and van Schie, M.. (2016) Ecology and equity in global fisheries: Modelling policy options using theoretical distributions. Ecological Modelling, 337, 107122.Google Scholar
Revollo-Fernández, D., Aguilar-Ibarra, A., Micheli, F., and Sáenz-Arroyo, A. (2016) Exploring the role of gender in common-pool resource extraction: Evidence from laboratory and field experiments in fisheries. Applied Economics Letters, 23, 912920.Google Scholar
REN21 (Renewable Energy Policy Network for the 21st Century) (2015) Renewables 2015 Global Status Report. Paris: REN21 Secretariat.Google Scholar
Ricker, W.E. (1969) Food from the sea. In: Resources and Man, the report of the Committee on Resources and Man to the U.S. National Academy of Sciences. San Francisco: W.H. Freeman,Google Scholar
Roberts, S.M., Grattan, L.M., Toben, A.C., Ausherman, C., Trainer, V.L., Tracy, K., Morris, J.G. Jr. (2016) Perception of risk for domoic acid related health problems: A cross-cultural study. Harmful Algae, 57, 3944.Google Scholar
Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., Folberth, C., Glotter, M., Khabarov, N., Neumann, K., Piontek, F., Pugh, T.A.M., Schmid, E., Stehfest, E., Yang, H., and Jones, J.W. (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences, 111, 32683273.Google Scholar
Ryther, J. (1969) Photosynthesis and fish production in the sea. Science, 166, 7276.CrossRefGoogle ScholarPubMed
Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A.F. (2004) The oceanic sink for anthropogenic CO2. Science, 305, 367–71.Google Scholar
Schaefer, M.B. (1965) The potential harvest of the sea. Transactions of the American Fisheries Society, 94, 123128.Google Scholar
Sethi, S.A., Branch, T.A., and Watson, R. (2010) Global fishery development patterns are driven by profit but not trophic level. Proceedings of the National Academy of Sciences, 107, 1216312167.Google Scholar
Shepherd, C.J., and Jackson, A.J. (2013). Global fishmeal and fish-oil supply: Inputs, outputs and marketsa. Journal of Fish Biology, 83, 10461066.Google Scholar
Skretting, . (2015). Annual Sustainability Report 2015. Skretting Australia. Cambridge Tasmania, Skretting. 24 pages.Google Scholar
Smith, A.D.M., Smith, D.C., Haddon, M., Knuckey, I., Sainsbury, K.J., and Sloan, S. (2014) Implementing harvest strategies in Australia: 5 years on. ICES Journal of Marine Science, 71, 195203.Google Scholar
Sofonia, J.J., and Anthony, K.R.N. (2008) High-sediment tolerance in the reef coral Turbinaria mesenterina from the inner Great Barrier Reef lagoon (Australia). Estuarine, Coastal and Shelf Science, 78, 748752.Google Scholar
Sunday, J.M., Pecl, G.T., Frusher, S., Hobday, A.J., Hill, N., Holbrook, N.J., Edgar, G.J., Stuart-Smith, R., Barrett, N., Wernberg, T., Watson, R.A., Smale, D.A., Fulton, E.A., Slawinski, D., Feng, M., Radford, B.T., Thompson, P.A., and Bates, A.E. (2015). Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecology Letters, 18, 944953.Google Scholar
Thums, M., Whiting, S.D., Reisser, J., Pendoley, K.L., Pattiaratchi, C.B., Proietti, M., Hetzel, Y., Fisher, R., and Meekan, M.G. (2016) Artificial light on water attracts turtle hatchlings during their near shore transit. Royal Soceity Open Science, 3, 160142.Google Scholar
Troell, M., Joyce, A., Chopin, T., Neori, A., Buschmann, A.H., and Fang, J.G. (2009). Ecological engineering in aquaculture—potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture, 297, 19.Google Scholar
Van Dover, C.L. (2014) Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Marine Environmental Research, 102, 5972.Google Scholar
Whitmee, S., Haines, A., Beyrer, C., Boltz, F., Capon, A.G., de Souza Dias, B.F., Ezeh, A., Frumkin, H., Gong, P., Head, P., Horton, R., Mace, G.M., Marten, R., Myers, S.S., Nishtar, S., Osofsky, S.A., Pattanayak, S.K., Pongsiri, M.J., Romanelli, C., Soucat, A., Vega, J., and Yach, D. (2015) Safeguarding human health in the Anthropocene epoch: Report of The Rockefeller Foundation–Lancet Commission on planetary health. Lancet, 386, 19732028.Google Scholar
Wilcox, C., Van Sebille, E., and Hardesty, B.D. (2015) Threat of plastic pollution to seabirds is global, pervasive, and increasing. Proceedings of the National Academy of Sciences, 112, 1189911904.Google Scholar
Wilson, R.W., Millero, F.J., Taylor, J.R., Walsh, P.J., Christensen, V., Jennings, S., and Grosell, M. (2009) Contribution of fish to the marine inorganic carbon cycle. Science, 323, 359362.Google Scholar
World Bank (2013) Fish to 2030: Prospects for Fisheries and Aquaculture. Washington, DC: World Bank.Google Scholar
World Bank (2014) Reducing Disease Risk in Aquaculture. Washington, DC: World Bank.Google Scholar
World Bank (2016) Global Monitoring Report 2015/2016: Development Goals in an Era of Demographic Change. Washington, DC: World Bank.Google Scholar
Worm, B., Hilborn, R., Baum, J., Branch, T., Collie, J., Costello, C., Fogarty, M., Fulton, E.A., Hutchings, J., Jennings, S., Jensen, O., Lotze, H., Mace, P., McClanahan, T., Minto, C., Palumbi, S., Parma, A., Ricard, D., Rosenberg, A., Watson, R., and Zeller, D. (2009) Rebuilding global fisheries. Science, 325, 578585.Google Scholar
Yool, A., Popova, E.E., and Coward, A.C. (2015) Future change in ocean productivity: Is the Arctic the new Atlantic? Journal of Geophysical Research, 120, 77717790.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×