Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-19T22:57:11.086Z Has data issue: false hasContentIssue false

11 - Sea Level Rise and Future Earth

from Part III - Future Earth and the Earth’s Fluid Environment

Published online by Cambridge University Press:  22 October 2018

Tom Beer
Affiliation:
IUGG Commission on Climatic and Environmental Change (CCEC)
Jianping Li
Affiliation:
Beijing Normal University
Keith Alverson
Affiliation:
UNEP International Environmental Technology Centre
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Global Change and Future Earth
The Geoscience Perspective
, pp. 144 - 158
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S. (2009). A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008. Ocean Science 5(2), 193201.Google Scholar
Ablain, M. et al. (2015). Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative Project, Ocean Sciences, 11, 20292071.Google Scholar
Ablain, M., Legeais, J. F., Prandi, P., Fenoglio-Marc, L., Marcos, M., Benveniste, J. and Cazenave, A. (2017). Altimetry-based sea level, global and regional, Surveys in Geophysics, 38, 731, doi:10.1007/s10712–016–9389–8.Google Scholar
Abraham, J. P., Baringer, M., Bindoff, N. L., Boyer, T., Cheng, L. J., Church, J. A., Conroy, J. L., Domingues, C. M., Fasullo, J. T., Gilson, J., Goni, G., Good, S. A., Gorman, J. M., Gouretski, V., Ishii, M., Johnson, G. C., Kizu, S., Lyman, J. M., Macdonald, A. M., Minkowycz, W. J., Moffitt, S. E., Palmer, M. D., Piola, A. R., Reseghetti, F., Schuckmann, K., Trenberth, K. E., Velicogna, I., and Willis, J. K. (2013). A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change, Rev. Geophys., 51, 450483, doi:10.1002/rog.20022.Google Scholar
Alley, K. E. et al. (2016). Impacts of warm water on Antarctic ice shelf stability through basal channel formation, Nature Geosciences, 9, 290294.Google Scholar
Bamber, J. and Riva, R. (2010). The sea level fingerprint of recent ice mass fluxes, Cryosphere, 4, 621627.Google Scholar
Becker, M., Karpytchev, M., and Lennartz-Sassinek, S. (2014). Long-term sea level trends: Natural or anthropogenic? Geophys. Res. Lett., 5571–5580, doi: 10.1002/2014GL061027.Google Scholar
Biancamaria, S., Cazenave, A., Mognard, N., LLovel, W., and Frappart, F. (2011). Satellite-based high latitudes snow volume trend, variability and contribution to sea level over 1989/2006, Global and Planet. Change, 75, 99107, doi:10.1016/j.gloplacha2010.10.011.Google Scholar
Bilbao, R. A. F., Gregory, J. M., and Bouttes, N. (2015). Analysis of the regional patter of sea level change due to ocean dynamics and density change for 1993–2099 in observations and CMIP5 AOGCMs, Clim Dyn., 45, 26472666.Google Scholar
Bindoff, N., Willebrand, J., Artale, V., Cazenave, A., Gregory, J., Gulev, S., Hanawa, K., Le Quéré, C., Levitus, S., Nojiri, Y., Shum, C. K., Talley, L., Unnikrishnan, A. (2007). Observations: Oceanic Climate and Sea Level. In: Climate change 2007: The physical Science Basis. Contribution of Working Group I to the Fourth Assessment report of the Intergouvernmental Panel on Climate Change [Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M. and Miller, H. L. (eds.)]. Cambridge University Press, Cambridge, UK, and New York, USA.Google Scholar
Boening, C., Willis, J. K., Landerer, F. W., and Nerem, R. S. (2012). The 2011 La Nina: So strong, the oceans fell, Geophys. Res. Lett., 39, L19602, doi:10.1029/2012GL053055.CrossRefGoogle Scholar
Carson, M., Kohl, A., Stammer, D., Slangen, A. B., Katsman, C. S., van de Wahl, R. S., Church, J. and White, N. J. (2016). Coastal sea level changes, observed and projected during the 20th and 21st century, Climatic Change, 134, 269281.Google Scholar
Cazenave, A., Dieng, H., Meyssignac, B., von Schuckmann, K., Decharme, B., and Berthier, E. (2014). The rate of sea level rise, Nature Climate Change, 4, doi:10.1038/NCLIMATE2159.CrossRefGoogle Scholar
Cazenave, A., and Le Cozannet, G. (2014). Sea level rise and coastal impacts, Earth’s Future, 2(2), 1534, doi:10.1002/2013EF000188.Google Scholar
Chambers, D. P., Wahr, J. M., Tamisiea, M., and Nerem, R. S. (2010). Ocean mass from GRACE and glacial isostatic adjustment. Journal of Geophysical Research, 115, B11415.Google Scholar
Chambers, D. P., Cazenave, A., Champollion, N., Dieng, H. B., Llovel, W., Forsberg, R., von Schuckmann, K., and Wada, Y. (2017). Evaluation of the Global Mean Sea Level Budget between 1993 and 2014. Surv. Geophys, 38, 309327, doi:10.1007/s10712-016-9381-3.Google Scholar
Chao, BF, Wu, Y. H., and Li, Y. S. (2008.) Impact of artificial reservoir water impoundment on global sea level. Science 320:212–14, doi:10.1126/science.115458.Google Scholar
Chen, J. L., Wilson, C. R., and Tapley, B. D. (2013). Contribution of ice sheet and mountain glacier melt to recent sea level rise, Nature Geoscience, 6, 549552.CrossRefGoogle Scholar
Church, J. A., and White, N. J. (2011). Sea-Level Rise from the Late 19th to the Early 21st Century, Surveys in Geophysics, 32, 585602, doi:10.1007/s10712-011-9119-1.CrossRefGoogle Scholar
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S. (2013). Sea Level Change. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M.. Cambridge University Press, Cambridge and New York.Google Scholar
Cipollini, P., Calafat, F. M., Jevrejeva, S., Melet, A., and Prandi, P. (2017). Monitoring sea level in the coastal zone with satellite altimetry and tide gauges, Surveys in Geophysics, 38, 3357.Google Scholar
Clark, P. U. et al. (2015). Recent progress in understanding and projecting regional and global mean sea level, Curr. Clim. Change, doi/10.1007/s40641–015-0024–4.Google Scholar
Clark, P. U. et al. (2016). Consequences of twenty-first-century policy for multi millenial climate and sea level change, Nature Climate Change, 6, 360369.CrossRefGoogle Scholar
Cogley, J. C. (2009). Geodetic and direct mass balance measurements: Comparison and joint analysis, Annals of Glaciology, 2009(50), 96100.Google Scholar
Collins, M., Knutti, R., Arblaster, J., Dufresne, J.-L., Fichefet, T. Friedlingstein, P., Gao, X. Gutowski, W. J., Johns, T., Krinner, G., Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M. (2013): Long-Term Climate Change: Projections, Commitments and Irreversibility. In: Climate Change 2013. The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.. Cambridge University Press, Cambridge and New York.Google Scholar
De Conto, R. M., and Pollard, D. (2016). Contribution of Antarctica to past and future sea-level rise, Nature, 531, 591.CrossRefGoogle ScholarPubMed
Dieng, H. B., Palanisamy, H., Cazenave, A., Meyssignac, B. and von Schuckmann, K. (2015a). The sea level budget since 2003: Inference on the deep ocean heat content. Surv. Geophys., 36, 209229, doi:10.1007/s10712-015-9314-6.Google Scholar
Dieng, H. B., Cazenave, A., von Shuckmann, K., Ablain, M., and Meyssignac, B. (2015b). Sea level budget over 2005–2013: Missing contributions and data errors. Ocean Science, 11, 789802, doi:10.5194/os-11-789-2015.Google Scholar
Dieng, H., Champollion, N., Cazenave, A., Wada, Y., Schrama, E. and Meyssignac, B. (2015c), Total land water storage change over 2003–2013 estimated from a global mass budget approach, Environmental Research Letters, 10, 124010, doi:10.1088/1748-9326/10/12/124010.Google Scholar
Dieng, H., Cazenave, A., Meyssignac, B. and Ablain, M. (2017). New estimate of the current rate of sea level rise from a sea level budget approach, Geophys. Res. Lett., 44, doi:10.1002/2017GL073308.Google Scholar
Domingues, C. et al. (2008). Improved estimates of upper ocean warming and multidecadal sea level rise. Nature 453:10901093, doi:10.1038/nature07080.Google Scholar
Ericson, J. P. (2006). Effective sea-level rise and deltas: Causes of change and human dimension implications, Global and Planetary Change, 50(1–2), 6382.Google Scholar
Fasullo, J. T., Boening, C., Landerer, F. W., and Nerem, R. S. (2013). Australia’s unique influence on global mean sea level in 2010–2011, Geophys. Res. Lett., 40(16), 43684373, doi:10.1002/grl.50834.Google Scholar
Fitzgerald, D. M. et al. (2008). Coastal impacts of sea level rise, Annual Rev. Earth Planet. Sci., 36, 601647.Google Scholar
Forsberg, R., Sorensen, L., and Simonsen, S. (2017), Greenland and Antarctica ice sheet mass changes and effects on global sea level, Surveys in Geophysics, 38, 89103.Google Scholar
Gardner, A. S. et al. (2013). A reconciled estimate of glacier contributions to sea level rise, 2003–2009, Science, 340, 852857.CrossRefGoogle Scholar
GCOS, 2011. Systematic Observation Requirements for Satellite-Based Data Products for Climate (2011 Update) – Supplemental details to the satellite-based component of the “Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC (2010 Update)”. GCOS-154 (WMO, December 2011).Google Scholar
Gleckler, P. J., Santer, B. D., Domingues, C., Pierce, D., W., Barnett, T. P., Church, J. A., Taylor, K. E., AchutaRao, K. M., Boyer, T. P., and Caldwell, P. M. (2012). Human-induced global ocean warming on multidecadal time scales, Nature Climate Change, doi:10.1038/NCLIMATE1553.Google Scholar
Hamlington, B. D., Strassburg, M. W., Leben, R. R., Han, W., Nerem, R. S. and Kim, K. Y. (2014). Uncovering an anthropogenic sea-level rise signal in the Pacific Ocean, Nature Climate Change, doi:10.1038/NCLIMATE2307.Google Scholar
Hamlington, B. D., and Thompson, P. R. (2015), Considerations for estimating the 20th century trend in global mean sea level. Geophys. Res. Lett., 42, 41024109, doi: 10.1002/2015GL064177.Google Scholar
Hanna, E. et al. (2013), Ice-sheet mass balance and climate change, Nature, 498, 5159, doi:10.1038/nature12238.CrossRefGoogle ScholarPubMed
Hay, C. C. et al. (2015). Probabilistic reanalysis of twentieth-century sea level rise, Nature, 517(7535), 481.Google Scholar
Horton, B. et al. (2014). Expert assessment of sea level rise by AD 2100 and AD 2300, Quat Sci Rev., 84, 16.Google Scholar
Ishii, M. and Kimoto, M. (2009). Reevaluation of historical ocean heat content variations with time-varying XBT and MBT depth bias corrections. J. Oceanogr. 65(3), 287299, doi:10.1007/s10872-009-0027-7.Google Scholar
Jackson, L. P., and Jevrejeva, S. (2016). A probabilistic approach to 21st century regional sea level projections using RCP and high-end scenarios, Global Planet. Change, 146, 179189.Google Scholar
Jacob, T., Wahr, J., Pfeffer, W. T., and Svenson, S. (2012). Recent contribution of glaciers and ice caps to sea level rise, Nature, 482, 514518.Google Scholar
Jevrejeva, S., Grinsted, A., Moore, J. C., and Holgate, S. (2006). Non linear trends and multiyear cycles in sea level records, J. Geophys. Res., C09012, doi:1.1029/2005JC003229, 2006.Google Scholar
Jevrejeva, S. et al. (2014a). Trends and acceleration in global and regional sea levels since 1807, Global Planet. Change, 113, 1122.Google Scholar
Jevrejeva, S. et al. (2014b). Upper limit for sea level projections by 2100, Environ. Res. Lett., 9(10), 19.Google Scholar
Johnson, G. C., Palmer, M. D., Smith, D. M., and Willis, J. K. (2010). Robust warming of the global upper ocean, Nature, 465, 334337, doi:10.1038/nature09043.Google Scholar
Kaser, G, Cogley, J. G., Dyurgerov, M. B., Meier, M. F., and Ohmura, A. (2006). Mass balance of glaciers and ice caps: Consensus estimates for 1961–2004, Geophys. Res. Lett, 33, L19501, doi:10.1029/2006GL027511.CrossRefGoogle Scholar
Kemp, A. C., Horton, B., Donnelly, J. P., Mann, M. E., Vermeer, M., and Rahmstorf, S. (2011). Climate related sea level variations over the past two millennia, PNAS, doi/10.1073/pnas.1015619108.Google Scholar
Konikow, L. F. (2011). Contribution of global groundwater depletion since 1900 to sea level rise, Geophys. Res. Lett., 38, L17401, doi:10.1029/2011GL048604.Google Scholar
Kopp, R. E., et al. (2014). Probabilistic 21st and 22nd century sea level projections at a global network of tide gauge sites, Earth’s Future, 2, 383406.Google Scholar
Lambeck, K. et al. (2010). Paleoenvironmental Records, Geophysical Modelling and Reconstruction of Sea Level Trends and Variability on Centennial and Longer Time Scales, In: Understanding Sea Level Rise and Variability, edited by Church, J. A. et al. Wiley-Blackwell, Oxford, UK.Google Scholar
Leclercq, P. W., Oerlemans, J., Cogley, J. G. (2011). Estimating the glacier contribution to sea-level rise for the period 1800–2005. Surv Geophys 32:519535.Google Scholar
Leuliette, E. W., and Willis, J. K. (2011). Balancing the sea level budget. Oceanography, 24, 122129.Google Scholar
Levermann, A., Clark, P. U., Marzeion, B., Milne, G. A., Pollard, D., Radic, V., and Robinson, A. (2013). The multimillenial sea level commitment of global warming, PNAS, 110(3), 1374513750.Google Scholar
Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M. (2012). World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys Res Lett, 39, L10603, doi:10.1019/2012GL051106.Google Scholar
Llovel, W., Becker, M., Cazenave, A., Jevrejeva, S., Alkama, R., Decharme, B., Douville, H., Ablain, M., and Beckley, B. (2011). Terrestrial waters and sea level variations on interannual time scale, Global Planet. Change, 75, 7682, doi:10.1016/j.gloplacha.2010.10.008.Google Scholar
Llovel, W., Willis, J. K., Landerer, F. and Fukumori, I. (2014). Deep ocean contribution to sea level and energy budget not detectable over the past decade Nat. Clim. Change, 4 1031–5.Google Scholar
Lyman, J. M., Godd, S. A., Gouretski, V. V., Ishii, M., Johnson, G. C., Palmer, M. D., Smith, D. M., and Willis, J. K. (2010), Robust warming of the global upper ocean, Nature, 465:334337, doi:10.1038/nature09043.Google Scholar
Lyman, J. M. and Johnson, G. C. (2014). Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice, Journal of Climate, 1945–1957, doi:10.1175/JCLIM-D-12-00752.1.Google Scholar
Marcos, M. and Amores, A. (2014). Quantifying anthropogenic and natural contributions to thermosteric sea level rise, Geophys. Res. Lett., doi: 10.1002/2014GL059766.CrossRefGoogle Scholar
Marcos, M., Marzeion, B., Dangendorf, S., Slangen, A. B., Palanisamy, H., and Fenoglio-Marc, L., (2017). Internal variability versus anthropogenic forcing on sea level and its components, Surveys in Geophysics, 38, 329347.Google Scholar
Marzeion, B., Leclercq, P. W., Cogley, J. G., and Jarosch, A. H. (2015), Brief communication: Global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere, 9, 23992404, doi:10.5194/tc-9-2399-2015.Google Scholar
Marzeion, B., Champollion, N., Haeberli, W., Langley, K., Leclercq, P., and Paul, F. (2017). Observation-based estimates of global glacier mass change and its contribution to sea level change, Surveys in Geophysics, 38, 105129.Google Scholar
Merrifield, M. A., and Maltrud, M. E. (2011). Regional sea level trends due to Pacific trade wind intensification, Geophys. Res. Lett., 38, L21605, doi:10.1029/2011GL049576.Google Scholar
Meyssignac, B., Salas-Melia, D., Becker, M., Llovel, W. and Cazenave, A. (2012). Spatial trend patterns in observed sea level: Internal variability and/or anthropogenic signature? Climate of the Past, 8, 787802, doi:10.5194/cp-8-787-2012.CrossRefGoogle Scholar
Meehl, G. A. et al. (2007). Global climate projections, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Solomon, S. et al., Cambridge University Press, Cambridge.Google Scholar
Milne, G. A., Gehrels, W. R., Hughes, C. W., and Tamisiea, M. E. (2009). Identifying the causes of sea-level change, Nature Geoscience, 2(7), doi:10.1038/ngeo544.Google Scholar
Milly, P. C. D., Cazenave, A., Famiglietti, J. S., Gornitz, V., Laval, K., Lettenmaier, D. P., Sahagian, D. L., Wahr, J. M., and Wilson, C. R. (2010). Terrestrial Water-Storage Contributions to Sea-Level Rise and Variability, in Understanding Sea-Level Rise and Variability, edited by Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, W. S., Wiley-Blackwell, Oxford, UK. pp. 226255, doi:10.1002/9781444323276.ch8.Google Scholar
Nerem, R. S., Chambers, D. P., Choe, C., and Mitchum, G. T. (2010). Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geodesy, 33(1), 435446.Google Scholar
Nicholls, R. J. et al. (2007), Coastal systems and low-lying areas, in Climate Change 2007: Impacts, Adaptation and Vulnerability. Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007), edited by Parry, M. L. et al., Cambridge University Press, Cambridge. pp. 315356.Google Scholar
Nicholls, R. J. (2010). Impacts of and Responses to Sea Level Rise, In Understanding Sea Level Rise and Variability, edited by Church, J. A., Woodworth, P. L., Aarup, T., and Wilson, W. S., Wiley-Blackwell, Oxford, UK.Google Scholar
Nicholls, R. J. and Cazenave, A. (2010). Sea level change and the impacts in coastal zones. Science 328, 15171520, doi:10.1126/science.1185782.CrossRefGoogle ScholarPubMed
Palanisamy, H. Cazenave, A., Delcroix, T. and Meyssignac, B. (2015a). Spatial trend patterns in Pacific Ocean sea level during the altimetry era: The contribution of thermocline depth change and internal climate variability, Ocean Dynamics, doi:10.1007/s10236–014–0805–7.Google Scholar
Palanisamy, H., Meyssignac, B., Cazenave, A., and Delcroix, T. (2015b). Is the anthropogenic sea level fingerprint already detectable in the Pacific Ocean? Environmental Research Letters, 10, 124010, doi:10.1088/1748-9326/10/12/124010.Google Scholar
Passeri, D. L. et al. (2015). The dynamic effects of sea level rise on low-gradient coastal landscapes: A review, Earth’s Future, 3(6), 159181.Google Scholar
Pritchard, H. D., Ligtenberg, S. R. M., Fricker, H. A., Vaughan, D. G., van den Broeke, M. R., and Padman, L. (2012). Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature, 484, 502505.Google Scholar
Ray, R. D., and Douglas, B. C. (2011). Experiments in reconstructing twentieth-century sea levels. Prog. Oceanogr., 91, 496515, doi:10.1016/j.pocean.2011.07.021.Google Scholar
Reager, J. T., Gardner, A. S., Famiglietti, J. S., Wiese, D. N., Eicker, A., and Lo, M.-H. (2016). A decade of sea level rise slowed by climate-driven hydrology, Science, 351, 699703.Google Scholar
Rhein, M., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., Gulev, S., Johnson, G. C., Josey, S. A., Kostianoy, A., Mauritzen, C., Roemmich, D., Talley, L. D., and Wang, F. (2013). Observations: Oceans. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V. and Midgley, P. M.. Cambridge University Press, Cambridge and New York.Google Scholar
Roemmich, D., Gould, W. J., and Gilson, J. (2012). 135 years of global ocean warming between the Challenger expedition and the Argo Programme, Nature Climate Change, 2(6), 425428, doi:10.1038/nclimate1461.Google Scholar
Peltier, W. R. (2004). Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annual Review of Earth and Planetary Sciences 32: 111149.Google Scholar
Purkey, S. and Johnson, G. C. (2010). Warming of global abyssal and deep southern ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budget. J Clim, 23:63366351.Google Scholar
Rignot, E., Velicogna, I., van den Broeke, M. R., Monaghan, A., and Lenaerts, J. (2011). Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise, Geophysical Research Letters, 38, doi:10.1029/2011gl046583.Google Scholar
Ritz, C. et al. (2015). Potential sea-level rise from Antarctic ice-sheet instability constrained by observations, Nature, 528, 115.Google Scholar
Robinson, A. et al. (2012). Multistability and critical thresholds of the Greenland ice sheet, Nature Climate Change, 1–4, doi:10.1038/NCLIMATE 1449.Google Scholar
Schrama, E J O, Wouters, B and Rietbroek, R. (2014). A mascon approach to assess ice shett and glacier mass balance and their uncertainties from GRACE data J. Geophys. Res. Solid Earth, 119, 60486066.Google Scholar
Shepherd, A. et al. (2012), A Reconciled Estimate of Ice-Sheet Mass Balance, Science, 338(6111), doi:10.1126/science.1228102.Google Scholar
Slangen, A. B., Church, J. A., Zhang, X. and Monselesan, D. (2014a). Detection and attribution of global mean thermosteric sea level change, Geophys. Res. Lett., doi: 10.1002/2014GL061356.Google Scholar
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Kohl, A., Vermeersen, L. L. A., and Stammer, D. (2014b). Projecting twenty-first century regional sea-level changes. Clim. Change, 124, 317332, doi:10.1007/s10584-014-1080-9.Google Scholar
Slangen, A. B. A., Aldoff, F., Jevrejeva, S., Leclercq, P. W., Marzeion, B., Wada, Y. and Winkelmann, R. (2017). A review of recent updates of sea level projections at global and regional scales, Surveys in Geophysics, 38, 385406.Google Scholar
Steffen, K. et al. (2010). Cryospheric Contributions to Sea Level Rise and Variability. In: Understanding Sea Level Rise and Variability, edited by Church, J., Woodworth, P. L., Aarup, T., and Wilson, S.. Blackwell, Oxford, UK.Google Scholar
Stocker, T. F. et al. (2013), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F. et al. Cambridge University Press, Cambridge and New York.Google Scholar
Spada, G. (2017). Glacial isostatic adjustment and contemporary sea level rise: An overview, Surveys in Geophysics, 38, 153185CrossRefGoogle Scholar
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E. (2013). Causes for contemporary regional sea level changes, Annual Review of Marine Science, edited by Carlson, C. A. and Giovannoni, S. J., 5, 2146, doi:10.1146/annurev-marine-121211-172406.CrossRefGoogle ScholarPubMed
Tamisiea, M. E. (2011). Ongoing glacial isostatic contributions to observations of sea level change, Geophysical Journal International, 186(3), 10361044, doi:10.1111/j.1365-246X.2011.05116.x.Google Scholar
Tamisiea, M. E. and Mitrovica, J. X. (2011). The moving boundaries of sea level change: Understanding the origins of geographic variability. Oceanography, 24(2), 2439.Google Scholar
Timmermann, A., McGregor, S., and Jin, F.-F. (2010). Wind effects on past and future regional sea level trends in the southern Indo-Pacific, Journal of Climate, 23(16), doi:10.1175/2010jcli3519.1.Google Scholar
Vaughan, D. G., Comiso, J. C., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote, P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and Zhang, T. (2013): Observations: Cryosphere. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.. Cambridge University Press, Cambridge and New York. pp. 317382, doi:10.1017/CBO9781107415324.012.Google Scholar
Velicogna, I., Sutterley, T. C., and van den Broeke, M. R. (2014). Regional acceleration in ice mass loss from Greenland and Antarctica using grace time variable gravity data Geophys. Res. Lett. 41, 81308137.Google Scholar
Velicogna, I., and Wahr, J. (2013). Time-variable gravity observations of ice sheet mass balance: Precision and limitations of the GRACE satellite data, Geophysical Research Letters, 40(12), 30553063, doi:10.1002/grl.50527.Google Scholar
Von Schuckmann, K., and Le Traon, P. Y. (2011), How well can we derive Global Ocean Indicators from Argo data? Ocean Science, 7(6), 783791, doi:10.5194/os-7-783-2011.Google Scholar
von Schukmann, K. et al. (2016). Earth’s energy imbalance: An imperative for monitoring, Nature Climate Change, 26, 138144.Google Scholar
Wada, Y., van Beek, L. P. H., Weiland, F. C. S., Chao, B. F., Wu, Y. H., and Bierkens, M. F. P. (2012). Past and future contribution of global groundwater depletion to sea-level rise. Geophysical Research Letters, 39, L09402.Google Scholar
Watson, C. S., White, N. J., Church, J. A., King, M. A., Burgette, R. J., and Legresy, B. (2015), Unabated global mean sea level over the satellite altimeter era, Nature Climate Change, doi:10.1038/NCLIMATE2635.Google Scholar
Wada, Y., Lo, M.-H., Yeh, P. J. F., Reager, J. T., Famiglietti, J. S., Wu, R.-J., and Tseng, Y.-H. (2016). Fate of water pumped from underground and contributions to sea level rise, Nature Climate Change, doi:10.1038/NCLIMATE3001.Google Scholar
Wada, Y., Reager, J. T., Chao, B. F., Wang, J., Lo, M. H., Song, C., Li, Y., and Gardner, A. S. (2017). Recent changes in land water storage and its contribution to sea level variations, Surveys in Geophysics, 38, 131151.Google Scholar
Woppelmann, G., Letetrel, C., Santamaria, A., Bouin, M. N., Collilieux, X., Altamimi, Z., Williams, S. D. P., and Miguez, B. M. (2009). Rates of sea-level change over the past century in a geocentric reference frame. Geophys. Res. Lett., 36, doi:10.1029/2009gl038720.Google Scholar
Wöppelmann, G., and Marcos, M. (2016). Vertical land motion as a key to understanding sea level change and variability, Rev. Geophys., 54, doi:10.1002/2015RG000502.Google Scholar
Woodworth, P. L., and Player, R. (2003). The permanent service for mean sea level: An update to the 21st century, Journal of Coastal Research, 19(2), 287295.Google Scholar
Zhang, X., and Church, J. A. (2012). Sea level trends, interannual and decadal variability in the Pacific Ocean, Geophys. Res. Lett., 39, doi:10.1029/2012GL053240.Google Scholar
Zwally, H. J., and Giovinetto, M. B. (2011). Overview and Assessment of Antarctic Ice-Sheet Mass Balance Estimates: 1992–2009, Surveys in Geophysics, 32(4–5), 351376, doi:10.1007/s10712-011-9123-5.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×