Book contents
- Frontmatter
- Contents
- List of Contributors
- Foreword
- Preface
- Acknowledgements
- 1 An introduction to global volcanic hazard and risk
- 2 Global volcanic hazard and risk
- 3 Volcanic ash fall hazard and risk
- 4 Populations around Holocene volcanoes and development of a Population Exposure Index
- 5 An integrated approach to Determining Volcanic Risk in Auckland, New Zealand: the multi-disciplinary DEVORA project
- 6 Tephra fall hazard for the Neapolitan area
- 7 Eruptions and lahars of Mount Pinatubo, 1991-2000
- 8 Improving crisis decision-making at times of uncertain volcanic unrest (Guadeloupe, 1976)
- 9 Forecasting the November 2010 eruption of Merapi, Indonesia
- 10 The importance of communication in hazard zone areas: case study during and after 2010 Merapi eruption, Indonesia
- 11 Nyiragongo (Democratic Republic of Congo), January 2002: a major eruption in the midst of a complex humanitarian emergency
- 12 Volcanic ash fall impacts
- 13 Health impacts of volcanic eruptions
- 14 Volcanoes and the aviation industry
- 15 The role of volcano observatories in risk reduction
- 16 Developing effective communication tools for volcanic hazards in New Zealand, using social science
- 17 Volcano monitoring from space
- 18 Volcanic unrest and short-term forecasting capacity
- 19 Global monitoring capacity: development of the Global Volcano Research and Monitoring Institutions Database and analysis of monitoring in Latin America
- 20 Volcanic hazard maps
- 21 Risk assessment case history: the Soufrière Hills Volcano, Montserrat
- 22 Development of a new global Volcanic Hazard Index (VHI)
- 23 Global distribution of volcanic threat
- 24 Scientific communication of uncertainty during volcanic emergencies
- 25 Volcano Disaster Assistance Program: Preventing volcanic crises from becoming disasters and advancing science diplomacy
- 26 Communities coping with uncertainty and reducing their risk: the collaborative monitoring and management of volcanic activity with the vigías of Tungurahua
- Index
- Online Appendix A
- Online Appendix B - part 1 (low res)
- Online Appendix B - part 2 (low res)
5 - An integrated approach to Determining Volcanic Risk in Auckland, New Zealand: the multi-disciplinary DEVORA project
Published online by Cambridge University Press: 05 August 2015
- Frontmatter
- Contents
- List of Contributors
- Foreword
- Preface
- Acknowledgements
- 1 An introduction to global volcanic hazard and risk
- 2 Global volcanic hazard and risk
- 3 Volcanic ash fall hazard and risk
- 4 Populations around Holocene volcanoes and development of a Population Exposure Index
- 5 An integrated approach to Determining Volcanic Risk in Auckland, New Zealand: the multi-disciplinary DEVORA project
- 6 Tephra fall hazard for the Neapolitan area
- 7 Eruptions and lahars of Mount Pinatubo, 1991-2000
- 8 Improving crisis decision-making at times of uncertain volcanic unrest (Guadeloupe, 1976)
- 9 Forecasting the November 2010 eruption of Merapi, Indonesia
- 10 The importance of communication in hazard zone areas: case study during and after 2010 Merapi eruption, Indonesia
- 11 Nyiragongo (Democratic Republic of Congo), January 2002: a major eruption in the midst of a complex humanitarian emergency
- 12 Volcanic ash fall impacts
- 13 Health impacts of volcanic eruptions
- 14 Volcanoes and the aviation industry
- 15 The role of volcano observatories in risk reduction
- 16 Developing effective communication tools for volcanic hazards in New Zealand, using social science
- 17 Volcano monitoring from space
- 18 Volcanic unrest and short-term forecasting capacity
- 19 Global monitoring capacity: development of the Global Volcano Research and Monitoring Institutions Database and analysis of monitoring in Latin America
- 20 Volcanic hazard maps
- 21 Risk assessment case history: the Soufrière Hills Volcano, Montserrat
- 22 Development of a new global Volcanic Hazard Index (VHI)
- 23 Global distribution of volcanic threat
- 24 Scientific communication of uncertainty during volcanic emergencies
- 25 Volcano Disaster Assistance Program: Preventing volcanic crises from becoming disasters and advancing science diplomacy
- 26 Communities coping with uncertainty and reducing their risk: the collaborative monitoring and management of volcanic activity with the vigías of Tungurahua
- Index
- Online Appendix A
- Online Appendix B - part 1 (low res)
- Online Appendix B - part 2 (low res)
Summary
Background
Auckland, New Zealand, is home to 1.4 million people, over a third of New Zealand's population, and accounts for ∼35% of New Zealand's GDP (Statistics New Zealand, 2014). The city is built on top of the Auckland Volcanic Field (AVF), which covers 360 km2, has over 50 eruptive centres (vents), and has erupted over 55 times in the past 250,000 years, producing a cumulative volume of ∼2 km3 of tephra, lava and other volcanic deposits1 (see Figure 5.1). The field is likely to erupt again: the most recent eruption, Rangitoto, was only 550 years ago. Most AVF vents are monogenetic, i.e. they only erupt once. This means that it is very likely that the next vent will erupt in a new location within the field. Despite considerable scientific efforts, no spatial (where) or temporal (when) patterns have been identified; indeed, the oldest (Pupuke volcano) and the youngest (Rangitoto) vents are located next to each other. As such, it is wholly unknown where or when the next eruption will be. The size of the next eruption is also difficult to address, as the last eruption, Rangitoto, accounts for nearly half of the erupted volume of the field, and it is unclear whether this eruption is an anomaly or signals a change in the eruptive behaviour of the field. These difficulties of assessing location, time and size of next eruption pose a considerable problem for emergency and risk managers. The main challenges facing Auckland and other populated areas coinciding with volcanic fields include:
• uncertainty of where and when the next eruption will take place;
• communicating to the public how an eruption of unknown location will impact them and how they can best prepare;
• planning for an event which hasn't occurred in historical time;
• foreseeing and appropriately planning for the range of possible impacts to the built environment, local, regional and national economy and psyche.
- Type
- Chapter
- Information
- Global Volcanic Hazards and Risk , pp. 233 - 238Publisher: Cambridge University PressPrint publication year: 2015
- Creative Commons
- This content is Open Access and distributed under the terms of the Creative Commons Attribution licence CC-BY-NC-ND 3.0 https://creativecommons.org/cclicenses/
- 1
- Cited by