Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T00:06:32.422Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2015

Tomás Ortín
Affiliation:
Universidad Autónoma de Madrid
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Gravity and Strings , pp. 969 - 1001
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] L. F., Abbott and S., Deser, Stability of Gravity with a Cosmological Constant, Nucl. Phys. B195 (1982) 76.Google Scholar
[2] L. F., Abbott and S., Deser, Charge Definition in Non-Abelian Gauge Theories, Phys. Lett. 116B (1982) 259.Google Scholar
[3] M., Abou Zeid and C. M., Hull, Geometric Actions for D-Branes and M-Branes, Phys. Lett. B428 (1998) 277.Google Scholar
[4] M., Abraham, LinceiAtti 20 (1911) 678.
[5] M., Abraham, Phys. Z. 13 (1912)1.
[6] M., Abraham, Phys. Z. 13 (1912) 4.
[7] M., Abraham, Phys. Z. 13 (1912)176.
[8] M., Abraham, Phys. Z. 13 (1912) 310.
[9] M., Abraham, Phys. Z. 13 (1912) 311.
[10] M., Abraham, Phys. Z. 13 (1912) 793.
[11] M., Abraham, Nuovo Cim. 4 (1912) 459.
[12] M., Abraham, Jahrbuch der Radioaktivität und Elektronik 11 (1914) 470.
[13] A., Achúcarro, J., Evans, P. K., Townsend, and D., Wiltshire, Super p-Branes, Phys. Lett. B198 (1987) 441.
[14] A., Achúcarro, P., Kapusta, and K. S., Stelle, Strings from Membranes: The Origin of Conformal Invariance, Phys. Lett. B232 (1989) 302.Google Scholar
[15] M., Aganagic, J., Park, C., Popescu, and J. H., Schwarz, World-Volume Action of the M-Theory Five-Brane, Nucl. Phys. B496 (1997) 191.Google Scholar
[16] M., Aganagic, C., Popescu, and J. H., Schwarz, D-Brane Actions with Local Kappa Symmetry, Phys. Lett. B393 (1997) 311.Google Scholar
[17] M., Aganagic, C., Popescu, and J. H., Schwarz, Gauge-Invariant and Gauge-Fixed D-Brane Actions, Nucl. Phys. B495 (1997) 99.Google Scholar
[18] A. G., Agnese and M., La Camera, Gravitation Without Black Holes, Phys. Rev. D31 (1985) 1280.Google Scholar
[19] A. G., Agnese and M., La Camera, General Spherically Symmetric Solutions in Charged Dilaton Gravity, Phys. Rev. D49 (1994) 2126.Google Scholar
[20] Y., Aharonov and D., Bohm, Significance of Electromagnetic Potentials in the Quantum Theory, Phys. Rev. 115 (1959) 485.Google Scholar
[21] Y., Aharonov and D., Bohm, Further Considerations on Electromagnetic Potentials in the Quantum Theory, Phys. Rev. D3 (1961) 1511.Google Scholar
[22] O., Aharony, String Theory Dualities From M Theory, Nucl. Phys. B476 (1996) 470.Google Scholar
[23] O., Aharony, S. S., Gubser, J., Maldacena, H., Ooguri, and Y., Oz, Large N Field Theories, String Theory and Gravity, Phys. Rep. 323 (2000) 183.Google Scholar
[24] P., Aichelburg and R., Sexl, On the Gravitational Field of a Massless Particle, Gen. Relat. Gravit. 2 (1971) 303.Google Scholar
[25] W., Alexandrow, Ann. Phys. 72 (1923) 141.
[26] N., Alonso-Alberca, E., Lozano-Tellechea, and T., Ortín, Geometric Construction of Killing Spinors and Supersymmetry Algebras in Homogeneous Spacetimes, Classical Quant. Grav. 19 (2002) 6009.Google Scholar
[27] N., Alonso-Alberca, E., Lozano-Tellechea, and T., Ortin, The Near Horizon Limit of the Extreme Rotating d = 5 Black Hole as a Homogeneous Space-Time, Classical Quant. Grav. 20 (2003) 423.Google Scholar
[28] N., Alonso-Alberca, P., Meessen, and T., Ortin, Supersymmetry of Topological Kerr-Newman-Taub-NUT-aDS Spacetimes, Classical Quant. Grav. 17 (2000) 2783.Google Scholar
[29] N., Alonso-Alberca, P., Meessen, and T., Ortin, An SL(3,Z) Multiplet of 8-Dimensional Type II Supergravity Theories and the Gauged Supergravity Inside, Nucl. Phys. B602 (2001) 329.Google Scholar
[30] N., Alonso-Alberca and T., Ortin, Gauged /Massive Supergravities in Diverse Dimensions, Nucl. Phys. B651 (2003) 263.Google Scholar
[31] E., Álvarez, Strings at Finite Temperature, Nucl. Phys. B269 (1986) 596.Google Scholar
[32] E., Álvarez, Quantum Gravity: A Pedagogical Introduction to some Recent Results, Rev. Mod. Phys. 61 (1989) 561.Google Scholar
[33] E., Álvarez, Can One Tell Einstein's Unimodular Theory from Einstein's General Relativity?, JHEP 0503 (2005) 002.Google Scholar
[34] E., Álvarez, L., Álvarez-Gaumé, and I., Bakas, T Duality and Space-Time Supersymmetry, Nucl. Phys. B457 (1995) 3.Google Scholar
[35] E., Álvarez, L., Álvarez-Gaumé, and Y., Lozano, An Introduction to T Duality in String Theory, Nucl. Phys. Proc. Suppl. 41 (1995)1.Google Scholar
[36] E., Álvarez, J. L. F., Barbón, and J., Borlaf, T-Duality for Open Strings, Nucl. Phys. B479 (1996) 218.Google Scholar
[37] E., Álvarez and P., Meessen, String Primer, JHEP 9902 (1999) 015.Google Scholar
[38] E., Álvarez and T., Ortin, Asymptotic Density of States of p-Branes, Mod. Phys. Lett. A7 (1992) 2889.Google Scholar
[39] E., Álvarez and M. A., Osorio, Duality is an Exact Symmetry of String Perturbation Theory, Phys. Rev. D40 (1989) 1150.Google Scholar
[40] L., Álvarez-Gaume and M.A., Vazquez-Mozo, Topics in String Theory and Quantum Gravity, Les Houches Summer School on Gravitation and Quantizations, Session 57. Amsterdam: North-Holland (1995).
[41] S. P., de Alwis, Coupling of Branes and Normalization of Effective Actions in String/M-Theory, Phys. Rev. D56 (1997) 7963.Google Scholar
[42] D., Amati and C., Klimcik, Nonperturbative Computation of the Weyl Anomaly for a Class of Nontrivial Backgrounds, Phys. Lett. B219(1989)443.Google Scholar
[43] S., Åminneborg, I., Bengtsson, S., Holst, and P., Peldán, Making Anti-de Sitter Black Holes, Classical Quant. Grav. 13 (1996) 2707.Google Scholar
[44] L., Andrianopoli, M., Bertolini, A., Ceresole, R., D'auria, S., Ferrara, P., Fré, and T., Magri, N =2 Supergravity and N = 2 Super Yang-Mills Theory on General Scalar Manifolds: Symplectic Covariance, Gaugings and the Momentum Map, J. Geom. Phys. 23 (1997)111.Google Scholar
[45] L., Andrianopoli and R., D'auria, Extremal Black Holes in Supergravity and the Bekenstein-Hawking Entropy, Entropy 4 (2002)65.Google Scholar
[46] L., Andrianopoli, R.|D'auria, and S., Ferrara, U Invariants, Black Hole Entropy and Fixed Scalars, Phys. Lett. B403 (1997) 12.Google Scholar
[47] L., Andrianopoli, R.|D'auria, and S., Ferrara, U Duality and Central Charges in Various Dimensions Revisited, Int. J. Mod. Phys. A13 (1998)431.Google Scholar
[48] L., Andrianopoli, R., D'auria, and S., Ferrara, Supersymmetry Reduction of N-extended Supergravities in Four Dimensions, JHEP 0203 (2002) 025.Google Scholar
[49] L., Andrianopoli, R., D'auria, and S., Ferrara, Consistent Reduction of N = 2 → N =1 Four Dimensional Supergravity Coupled to Matter, Nucl. Phys. B628 (2002) 387.Google Scholar
[50] L., Andrianopoli, R., D'auria, S., Ferrara, A., Marrani, and M., Trigiante, Two-Centered Magical Charge Orbits, JHEP 1104 (2011) 041.Google Scholar
[51] L., Andrianopoli, R., D'auria, S., Ferrara, and M., Trigiante, Extremal Black Holes in Supergravity, Lect. Notes Phys. 737 (2008) 661.Google Scholar
[52] L., Andrianopoli, R., D'auria, E., Orazi, and M., Trigiante, First Order Description of Black Holes in Moduli Space, JHEP 0711 (2007) 032.Google Scholar
[53] L., Andrianopoli, R., D'auria, E., Orazi, and M., Trigiante, First Order Description of D = 4 static Black Holes and the Hamilton-Jacobi Equation, Nucl. Phys. B833 (2010) 1.Google Scholar
[54] C., Angelantonj and A., Sagnotti, Open Strings, Phys. Rep. 371 (2002) 1.Google Scholar
[55] S., Antoci, David Hilbert and the Origin of the “Schwarzschild Solution”, physics/0310104.
[56] A., de Antonio Martin, T., Ortin, and C. S., Shahbazi, The FGK Formalism for Black p-Branes in d Dimensions, JHEP 1205 (2012) 045.Google Scholar
[57] T., Applequist, A., Chodos, and P. G. O., Freund, Modern Kaluza-Klein Theories. Menlo Park, CA: Addison-Wesley (1987).Google Scholar
[58] C., Aragone and S., Deser, Constraints on Gravitationally Coupled Tensor Fields, Nuovo Cim. 3A (1971) 709.Google Scholar
[59] C., Aragone and S., Deser, Consistency Problems of Spin-2 Gravity Coupling, Nuovo Cim. 57B (1980) 33.Google Scholar
[60] I. Ya., Aref'eva, M. G., Ivanov, O. A., Rytchkov, and I. V., Volovich, Non-Extremal Localized Branes and Vacuum Solutions in M-Theory, Classical Quant. Grav. 15 (1998) 2923.Google Scholar
[61] I. Ya., Aref'eva, M. G., Ivanov, and I. V., Volovich, Non-Extremal Intersecting p-Branes in Various Dimensions, Phys. Lett. B406 (1997)44.Google Scholar
[62] I. Ya., Aref'eva, K. S., Viswanathan, and I. V., Volovich, p-Brane Solutions in Diverse Dimensions, Phys. Rev. D55 (1997) 4748.Google Scholar
[63] I. Ya., Aref'eva and A., Volovich, Composite p-Branes in Diverse Dimensions, Classical Quant. Grav. 14 (1997) 2991.Google Scholar
[64] R., Argurio, F., Englert, and L., Houart, Intersection Rules for p-Branes, Phys. Lett. B398 (1997) 61.Google Scholar
[65] R., Argurio, F., Englert, L., Houart, and P., Windey, On the Opening of Branes, Phys. Lett. B408 (1997) 151.Google Scholar
[66] R., Arnowitt, S., Deser, and C., Misner, The Dynamics of General Relativity, in Gravitation: An Introduction to Current Research, ed. L., Witten. New York: Wiley (1962), p. 227. (Reprinted in Gen. Relativ. Grav. 40 (2008) 1997.)Google Scholar
[67] P., Aschieri, S., Ferrara, and B., Zumino, Duality Rotations in Nonlinear Electrodynamics and in Extended Supergravity, Riv. Nuovo Cim. 31 (2008) 625.Google Scholar
[68] A., Ashtekar, Lectures on Non-perturbative Quantum Gravity. Singapore: World Scientific (1991).Google Scholar
[69] P. S., Aspinwall, Compactification, Geometry and Duality: N =2, in Strings, Branes and Gravity, eds. J. A., Harvey, S., Kachruand, and E., Silverstein. River Edge, NJ: World Scientific (2001), p. 723.Google Scholar
[70] M. F., Atiyah and N. J., Hitchin, Low-Energy Scattering of Non-Abelian Monopoles, Phys. Lett. 107A (1985) 21. (Reprinted in Ref. [615].)Google Scholar
[71] R., D'auria and P., Fre, BPS Black Holes in Supergravity: Duality Groups, p-Branes, Central Charges and the Entropy, in Classical and Quantum Black Holes, eds. P., Fré, V., Gorini, G., Magli, and U., Moschella. Bristol: Insitute of Physics Publishing (1999), p. 137.Google Scholar
[72] M. A., Awada, M. J., Duff, and C. N., Pope, N = 8 Supergravity Breaks down to N = 1, Phys. Rev. Lett. 50 (1983) 294.Google Scholar
[73] J. A., de Azcárraga, J. P., Gauntlett, J. M., Izquierdo, and P. K., Townsend, Topological Extensions of the Supersymmetry Algebra for Extended Objects, Phys.Rev.Lett .63 (1989) 2443.Google Scholar
[74] J. A., de Azcárraga and J., Lukierski, Supersymmetric Particles with Internal Symmetries and Central Charges, Phys. Lett. B113 (1982) 170.Google Scholar
[75] J. A., de Azcárraga and J., Lukierski, Supersymmetric Particles in N = 2 Superspace: Phase Space Variables and Hamiltonian Dynamics, Phys. Rev. D28 (1983) 1337.Google Scholar
[76] B. E., Baaquie and L. C., Kwek, Superstrings, Gauge Fields and Black Holes, Int. J. Mod. Phys. A16 (2001) 2605.Google Scholar
[77] S. V., Babak and L. P., Grishchuk, The Energy-Momentum Tensor for the Gravitational Field, Phys. Rev. D61 (2000) 024038.Google Scholar
[78] C., Bachas, Lectures on D-branes, in Cambridge 1997, Duality and Supersymmetric Theories, eds. D. I., Olive and P. C., West. Cambridge: Cambridge University Press (1999), p. 414.
[79] C. P., Bachas, M. R., Douglas, and M. B., Green, Anomalous Creation of Branes, JHEP 9707 (1997) 002.Google Scholar
[80] C. P., Bachas, M. B., Green, and A., Schwimmer, (8, 0) Quantum Mechanics and Symmetry Enhancement in Type I′ Superstrings, JHEP 9801 (1998)006.Google Scholar
[81] F. A., Bais and R. J., Russell, Magnetic Monopole Solution of Nonabelian Gauge Theory in Curved Space-Time, Phys. Rev. D11 (1975) 2692. [Erratum ibid. D12 (1975) 3368.]Google Scholar
[82] J. A., Bagger, Coupling The Gauge Invariant Supersymmetric Nonlinear Sigma Model To Supergravity, Nucl. Phys. B211 (1983) 302.Google Scholar
[83] J., BaggerandE., Witten, The Gauge Invariant Supersymmetric Nonlinear Sigma Model, Phys. Lett. B118 (1982) 103.Google Scholar
[84] I., Bakas, Space-Time Interpretation of S Duality and Supersymmetry Violations of T Duality, Phys. Lett. B343 (1995) 103.Google Scholar
[85] I., Bakas, Solitons of Axion – Dilaton Gravity, Phys. Rev. D54 (1996) 6424.Google Scholar
[86] I., Bakas and K., Sfetsos, T Duality and World Sheet Supersymmetry, Phys. Lett. B349(1995)448.Google Scholar
[87] A. P., Balachandran, P., Salomonson, B. S., Skagerstam, and J. O., Winnberg, Classical Description of Particle Interacting with Nonabelian Gauge Field, Phys. Rev. D15 (1977) 2308.Google Scholar
[88] H., Balasin and H., Nachbagauer, On the Distributional Nature of the Energy-Momentum Tensor of Black Hole or What Curves the Schwarzschild Geometry?, Classical Quant. Grav. 10 (1993) 2271.Google Scholar
[89] H., Balasin and H., Nachbagauer, Distributional Energy-Momentum Tensor of the Kerr-Newman Space-Time Family, Classi-cal Quant. Grav. 11 (1994)1453.Google Scholar
[90] H., Balasin and H., Nachbagauer, The Ultrarelativistic Kerr Geometry and its Energy-Momentum Tensor, Classical Quant. Grav. 12 (1995) 707.Google Scholar
[91] H., Balasin and H., Nachbagauer, Boosting the Kerr Geometry in an Arbitrary Direction, Classical Quant. Grav. 13 (1996) 731.Google Scholar
[92] V., Balasubramanian, How to Count the States of Extremal Black Holes in N =8 Supergravity, in Cargese 1997, Strings, Branes and Dualities, eds. L., Baulieu, P., Di Francesco, M., Douglas, V., Kazakov, M., Picco, and P., Windey. Dordrecht: Kluwer (1999), pp. 399–410.Google Scholar
[93] V., Balasubramanian and F., Larsen, On D-Branes and Black Holes in Four Dimensions, Nucl. Phys. B478 (1996) 199.Google Scholar
[94] V., Balasubramanian, F., Larsen, and R.G., Leigh, Branes at Angles and Black Holes, Phys. Rev. D57(1998)3509.Google Scholar
[95] M., Bañados, C., Teitelboim, and J., Zanelli, Black Hole in Three-Dimensional Spacetime, Phys. Rev. Lett. 69 (1992) 1849.Google Scholar
[96] I. A., Bandos, J. A. de, Azcáirraga, J. M., Izquierdo, and J., Lukierski, An Action for Supergravity Interacting with Super -P -Brane Sources, Phys. Rev. D65 (2002) 021901.Google Scholar
[97] I. A., Bandos, J. A., de Azcáirraga, J. M., Izquierdo, and J., Lukierski, On Dynamical Supergravity Interacting with Super-P-Brane Sources, Invited talk at 3rd Int. Sakharov Conf. on Physics, Moscow, Russia, 24–29 June 2002, hep-th/02110 65.
[98] I., Bandos, K., Lechner, A., Nurmagambetov, P., Pasti, D. P., Sorokin, and M., Tonin, Covariant Action for the Super-Five-Brane of M-Theory, Phys. Rev. Lett. 78 (1997) 4332.Google Scholar
[99] I. A., Bandos, D. P., Sorokin, and M., Tonin, Generalized Action Principle and Superfield Equations of Motion for D = 10 Dp-branes, Nucl. Phys. B497, (1997) 275.Google Scholar
[100] A., Barajas, Birkhoff's Theory of Gravitation and Einstein's for Weak Fields, Proc. Nat. Acad. Sci. 30(1944)54.Google Scholar
[101] A., Barajas, G.D., Birkhoff, C., Graef, and M., Sandoval Vallarta, On Birkhoff's New Theory of Gravitation, Phys. Rev. 66 (1944) 138.Google Scholar
[102] J.M., Bardeen, B., Carter, and S. W., Hawking, The Four Laws of Black Hole Mechanics, Commun. Math. Phys. 31 (1973) 161.Google Scholar
[103] A., Barducci, R., Casalbuoni, and L., Lusanna, Supersymmetries and the Pseudoclassical Relativistic Electron, Nuovo Cim. A35 (1976)377.Google Scholar
[104] A., Barducci, R., Casalbuoni, and L., Lusanna, Classical Scalar and Spinning Particles Interacting with External Yang-MIlls Fields, Nucl. Phys. B124(1977)93.Google Scholar
[105] A., Barducci, R., Casalbuoni, and L., Lusanna, Classical Spinning Particles Interacting with External Gravitational Fields, Nucl. Phys. B124(1977)521.Google Scholar
[106] R., Bartnik and J., McKinnon, Particle-Like Solutions of the Einstein Yang-Mills Equations, Phys. Rev. Lett. 61 (1988)141.Google Scholar
[107] A. O., Barut and R., Raczka, Theory of Group Representations and Applications. Singapore: World Scientific (1986).
[108] B., Bates and F., Denef, Exact Solutions for Supersymmetric Stationary Black Hole Composites, Preprint hep-th/0304094.
[109] H., Bauer, Phys. Z 19 (1918) 163.
[110] K., Bautier, S., Deser, M., Henneaux, and D., Seminara, No Cosmological D =11 Supergravity, Phys. Lett. B406 (1997) 49.Google Scholar
[111] K., Becker, M., Becker, and J. H., Schwarz, String Theory and M-Theory: A Modern Introduction. Cambridge: Cambridge University Press (2007).
[112] K., Behrndt, G. L., Cardoso, B.|de Wit, R., Kallosh, D., Lüst, and T., Mohaupt, Classical and Quantum N = 2 Supersymmetric Black Holes, Nucl. Phys. B488 (1997) 236.Google Scholar
[113] K., Behrndt, R., Kallosh, J., Rahmfeld, M., Shmakova, and W. K., Wong, STU Black Holes and String Triality, Phys. Rev. D54 (1996) 6293.Google Scholar
[114] K., Behrndt, G., Lopes Cardoso, and S., Mahapatra, Exploring the Relation between 4D and 5D BPS Solutions, Nucl. Phys. B732 (2006) 200.Google Scholar
[115] K., Behrndt, D., Lüst, and W. A., Sabra, Stationary Solutions of N = 2 Supergravity, Nucl. Phys. B510 (1998) 264.Google Scholar
[116] R., Beig and W., Simon, On the Uniqueness of Static Perfect-Fluid Solutions in General Relativity, Commun. Math. Phys. 144 (1992) 373.Google Scholar
[117] J. D., Bekenstein, Baryon Number, Entropy, and Black Hole Physics Ph.D. Thesis, Princeton University (1972, unpublished).
[118] J. D., Bekenstein, Nonexistence of Baryon Number for Static Black Holes, Phys. Rev. D5 (1972) 1239.Google Scholar
[119] J. D., Bekenstein, Black Holes and the Second Law, Lett. Nuovo Cim. 4 (1972) 737.Google Scholar
[120] J. D., Bekenstein, Black Holes and Entropy, Phys. Rev. D9 (1973) 2333.Google Scholar
[121] J. D., Bekenstein, Generalized Second Law of Thermodynamics in Black Hole Physics, Phys. Rev. D9 (1974) 3292.Google Scholar
[122] J. D., Bekenstein, Novel “No-Scalar-Hair” Theorem for Black Holes, Phys. Rev. D51 (1995) R6608.Google Scholar
[123] J. D., Bekenstein, Black Hole Hair: 25 Years After, in 2nd Int. Sakharov Conf. on Physics, eds. I. M., Dremin and A. M., Semikhatov. Singapore: World Scientific (1997), p. 216.Google Scholar
[124] A. A., Belavin, A. M., Polyakov, A. S., Schwarz, and Yu. S., Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. 59B (1975) 85.Google Scholar
[125] F. J., Belinfante, On the Spin Angular Momentum of Mesons, Physica VI (1939) 887.Google Scholar
[126] V. A., Belinskii, G. W., Gibbons, D. N., Page, and C. N., Pope, Asymptotically Euclidean Bianchi IX Metrics and Quantum Gravity, Phys. Lett. B76 (1978) 433.Google Scholar
[127] J., Bellorín, Supersymmetric Solutions of Gauged Five-dimensional Supergravity with General Matter Couplings, Classical Quant. Grav. 26 (2009) 195012.Google Scholar
[128] J., Bellorín, P., Meessen, and T., Ortiin, Supersymmetry, Attractors and Cosmic Censorship, Nucl. Phys. B762 (2007) 229.Google Scholar
[129] J., Bellorín, P., Meessen, and T., Ortin, All the Supersymmetric Solutions of N =1, d = 5 Ungauged Supergravity, JHEP 0701 (2007) 020.Google Scholar
[130] J. Bellorín and T., Ortín, A Note on Simple Applications of the Killing Spinor Identities, Phys. Lett. B616 (2005) 118.Google Scholar
[131] J., Bellorín and T., Ortín, All the Supersymmetric Configurations of N = 4, d = 4 Supergravity, Nucl. Phys. B726 (2005) 171.Google Scholar
[132] J., Bellorín and T., Ortín, Characterization of all the supersymmetric solutions of gauged N =1, d = 5 Supergravity, JHEP 0708 (2007) 096.Google Scholar
[133] S., Bellucci, S., Ferrara, M., Gunaydin, and A., Marrani, SAM Lectures on Extremal Black Holes in d = 4 Extended Supergravity, Springer Proc. Phys. 134 (2010) 1.Google Scholar
[134] S., Bellucci, S., Ferrara, A., Marrani, and A., Yeranyan, stu Black Holes Unveiled, Entropy 10 (2008) 507.Google Scholar
[135] I., Bena, Splitting Hairs of the Three Charge Black Hole, Phys. Rev. D70 (2004) 105018.Google Scholar
[136] I., Bena and P., Kraus, Microscopic Description of Black Rings in AdS/CFT, JHEP 0412 (2004) 070.Google Scholar
[137] I., Bena and P., Kraus, Microstates of the D1-D5-KK System, Phys. Rev. D72 (2005) 025007.Google Scholar
[138] I., Bena, P., Kraus, and N. P., Warner, Black Rings in Taub-NUT, Phys. Rev. D72 (2005) 084019.Google Scholar
[139] I., Bena, H., Triendl, and B., Vercnocke, Camouflaged Supersymmetry in Solutions of Extended Supergravities, Phys. Rev. D86 (2012) 061701.Google Scholar
[140] I., Bena and N. P., Warner, One Ring to Rule Them All … And in the Darkness Bind Them?, Adv. Theor. Math. Phys. 9 (2005) 667.Google Scholar
[141] F. A., Berezin and M. S., Marinov, JETP Lett. 21 (1975) 320.
[142] F. A., Berezin and M. S., Marinov, Particle Spin Dynamics as the Grassmann Variant of Classical Mechanics, Ann. Phys. 104 (1977) 336.Google Scholar
[143] M., Berger, Sur les groupes d'holonomie homogène des variétés a connexion affines et des varietes riemanniennes, Bull. Soc. Math. Fran. 83 (1955) 279.Google Scholar
[144] O., Bergman, M. R., Gaberdiel, and G., Lifschytz, Branes, Orientifolds and the Creation of Elementary Strings, Nucl. Phys. B509 (1998) 194.Google Scholar
[145] O., Bergmann, Scalar Theory as a Theory of Gravitation. I, Am. J. Phys. 24 (1956) 38.Google Scholar
[146] P. G., Bergmann, Introduction to the Theory of Relativity. New York: Prentice-Hall (1942); New York: Dover (1976).Google Scholar
[147] P. G., Bergmann and R., Schiller, Classical and Quantum Theories in the Lagrangian Formalism, Phys. Rev. 89 (1953) 4.Google Scholar
[148] E., Bergshoeff, H.-J., Boonstra, and T., Ortin, S Duality and Dyonic p-Brane Solutions in Type II String Theory, Phys. Rev. D53 (1996) 7206.Google Scholar
[149] E., Bergshoeff, W., Chemissany, A., Ploegh, M., Trigiante, and T., Van Riet, Generating Geodesic Flows and Supergravity Solutions, Nucl. Phys. B812 (2009) 343.Google Scholar
[150] E. A., Bergshoeff, C., Condeescu, G., Pradisi, and F., Riccioni, Heterotic-Type II Duality and Wrapping Rules, JHEP 1312 (2013) 057.Google Scholar
[151] E., Bergshoeff, P.M., Cowdall, and P. K., Townsend, Massive IIA Supergravity from the Topologically Massive D-2-Brane, Phys. Lett. 410B (1997) 13.Google Scholar
[152] E., Bergshoeff, S., Cucu, T., de Wit, J., Gheerardyn, R., Halbersma, S., Vandoren, and A., Van Proeyen, Superconformal N = 2, D =5 Matter With and Without Actions, JHEP 0210 (2002) 045.Google Scholar
[153] E., Bergshoeff, S., Cucu, T., de Wit, J., Gheerardyn, S., Vandoren, and A., Van Proeyen, N = 2 Supergravity in Five Dimensions Revisited, Classical Quant. Grav. 21 (2004) 3015.Google Scholar
[154] E., Bergshoeff, I., Entrop, and R., Kallosh, Exact Duality in the String Effective Action, Phys. Rev. D49 (1994) 6663.Google Scholar
[155] E., Bergshoeff, E., Eyras, R., Halbersma, J. P., van der Schaar, C. M., Hull, and Y., Lozano, Space-Time Filling Branes and Strings with Sixteen Supercharges, Nucl. Phys. B564 (2000) 29.Google Scholar
[156] E., Bergshoeff, E., Eyras, and Y., Lozano, The Massive Kaluza-Klein Monopole, Phys. Lett. B430 (1998) 77.Google Scholar
[157] E. A., Bergshoeff, J., Gomis, T. A., Nutma, and D., Roest, Kac-Moody Spectrum of (Half-)Maximal Supergravities, JHEP 0802 (2008) 069.Google Scholar
[158] E., Bergshoeff, J., Gomis, and P. K., Townsend, M-Brane Intersections from Worldvolume Superalgebras, Phys. Lett. B421 (1998) 109.Google Scholar
[159] E. A., Bergshoeff, J., Hartong, O., Hohm, M., Hübscher, and T., Ortín, Gauge Theories, Duality Relations and the Tensor Hierarchy, JHEP 0904 (2009) 123.Google Scholar
[160] E. A., Bergshoeff, J., Hartong, M., Hübscher, and T., Ortín, Stringy Cosmic Strings in Matter Coupled N =2, d = 4 Supergravity, JHEP 0805 (2008) 033.Google Scholar
[161] E. A., Bergshoeff, J., Hartong, T., Ortín, and D., Roest, Seven-branes and Supersymmetry, JHEP 0702 (2007) 003.Google Scholar
[162] E., Bergshoeff, C. M., Hull, and T., Ortín, Duality in the Type II Superstring Effective Action, Nucl. Phys. B451 (1995) 547.Google Scholar
[163] E., Bergshoeff, B., Janssen, and T., Ortín, Solution-Generating Transformations and the String Effective Action, Classical Quant. Grav. 13 (1996) 321.Google Scholar
[164] E., Bergshoeff, B., Janssen, and T., Ortín, Kaluza-Klein Monopoles and Gauged Sigma-Models, Phys. Lett. B410 (1997) 131.Google Scholar
[165] E., Bergshoeff, R., Kallosh, and T., Ortín, Supersymmetric String Waves, Phys. Rev. D47 (1993) 5444.Google Scholar
[166] E., Bergshoeff, R., Kallosh, and T., Ortín, Black Hole-Wave Duality in String Theory, Phys. Rev. D50, (1994) 5188.Google Scholar
[167] E., Bergshoeff, R., Kallosh, and T., Ortín, Duality Versus Supersymmetry and Compactification, Phys. Rev. D51 (1995) 3009.Google Scholar
[168] E., Bergshoeff, R., Kallosh, and T., Ortín, Stationary Axion/Dilaton Solutions and Supersymmetry, Nucl. Phys. B478 (1996) 156.Google Scholar
[169] E., Bergshoeff, R., Kallosh, T., Ortín, and G., Papadopoulos, K-Symmetry, Supersymmetry and Intersecting Branes, Nucl. Phys. B502 (1997) 149.Google Scholar
[170] E., Bergshoeff, R., Kallosh, T., Ortín, D., Roest, and A., Van Proeyen, New Formulations of D = 10 Supersymmetry and D8- 08 Domain Walls, Classical Quant. Grav. 18 (2001) 3359.Google Scholar
[171] E. A., Bergshoeff, A., Kleinschmidt, and F., Riccioni, Supersymmetric Domain Walls, Phys. Rev. D86 (2012) 085043Google Scholar
[172] E., Bergshoeff, I. G., Koh, and E., Sezgin, Coupling of Yang-Mills to N = 4, D = 4 Supergravity, Phys. Lett. B155 (1985) 71.Google Scholar
[173] E., Bergshoeff, L. A. J., London, and P. K., Townsend, Spacetime Scale Invariance and the Super-p-Brane, Classical Quant. Grav. 9 (1992) 2545.Google Scholar
[174] E., Bergshoeff, Y., Lozano, and T., Ortín, Massive Branes, Nucl. Phys. B518 (1998) 363.Google Scholar
[175] E. A., Bergshoeff, A., Marrani, and F., Riccioni, Brane Orbits, Nucl. Phys. B861 (2012) 104.Google Scholar
[176] E. A., Bergshoeff, T., Ortín, and F., Riccioni, Defect Branes, Nucl. Phys. B856 (2012) 210.Google Scholar
[177] E. A., Bergshoeff and F., Riccioni, D-Brane Wess-Zumino Terms and U-Duality, JHEP 1011 (2010) 139.Google Scholar
[178] E. A., Bergshoeff and F., Riccioni, Branes and Wrapping Rules, Phys. Lett. B704 (2011) 367.Google Scholar
[179] E. A., Bergshoeff and F., Riccioni, The D-brane U-scan, arXiv:1109.1725.
[180] E. A., Bergshoeff and F., Riccioni, Heterotic Wrapping Rules, JHEP 1301 (2013) 005.Google Scholar
[181] E. A., Bergshoeff, F., Riccioni, and L., Romano, Branes, Weights and Central Charges, JHEP 1306 (2013) 019.Google Scholar
[182] E. A., Bergshoeff, F., Riccioni, and L., Romano, Towards a Classification of Branes in Theories with Eight Supercharges, JHEP 1405 (2014) 070.Google Scholar
[183] E., Bergshoeff and M., de Roo, D-Branes and T-Duality, Phys. Lett. B380 (1996) 265.
[184] E., Bergshoeff, M., de Roo, E., Eyras, B., Janssen, and J. P., van der Schaar, Multiple Intersections of D-Branes and M-BranesNucl. Phys. B494 (1997) 119.Google Scholar
[185] E., Bergshoeff, M., de Roo, E., Eyras, B., Janssen, and J. P., van der Schaar, Intersections Involving Monopoles and Waves in Eleven Dimensions, Classical Quant. Grav. 14 (1997) 2757.Google Scholar
[186] E., Bergshoeff, M., de Roo, M. B., Green, G., Papadopoulos, and P. K., Townsend, Duality of Type II 7-Branes and 8-Branes, Nucl. Phys. B470 (1996) 113.Google Scholar
[187] E., Bergshoeff, M., de Roo, B., Janssen, and T., Ortiin, The Super D9-Brane and its Truncations, Nucl. Phys. B550 (1999) 289.Google Scholar
[188] E., Bergshoeff, M., de Roo, and T., Ortín, The Eleven-Dimensional Five-Brane, Phys. Lett. B386 (1996) 85.Google Scholar
[189] E., Bergshoeff, M., de Roo, B., de Wit, and P., van Nieuwenhuizen, Ten-Dimensional Maxwell-Einstein Supergravity, its Currents, and the Issue of its Auxiliary Fields, Nucl. Phys. B195 (1982) 97.Google Scholar
[190] E., Bergshoeff, E., Sezgin, and P. K., Townsend, Superstring Actions in D = 3, 4, 6, 10 Curved Superspace, Phys. Lett. B169 (1986) 191.Google Scholar
[191] E., Bergshoeff, E., Sezgin, and P. K., Townsend, Supermembranes and Eleven-Dimensional Supergravity, Phys. Lett. 189B (1987) 75.Google Scholar
[192] E., Bergshoeff, E., Sezgin, and P. K., Townsend, Properties of the Eleven-Dimensional Super Membrane Theory, Ann. Phys. 185 (1988) 330.Google Scholar
[193] E., Bergshoeff and J. P., van der Schaar, On M-9-Branes, Classical Quant. Grav. 16 (1999) 23.Google Scholar
[194] E., Bergshoeff and P. K., Townsend, Super-D-Branes, Nucl. Phys. B490 (1997) 145.Google Scholar
[195] E., Bergshoeff and P. K., Townsend, Super-D-Branes Revisited, Nucl. Phys. B531 (1998) 226.Google Scholar
[196] E., Bergshoeff, T., de Wit, U., Gran, R., Linares, and D., Roest, (Non-)Abelian Gauged Supergravities in Nine Dimensions, JHEP 10 (2002) 61.Google Scholar
[197] M., Berkooz, M. R., Douglas, and R. G., Leigh, Branes Intersecting at Angles, Nucl. Phys. B480 (1996) 265.Google Scholar
[198] M., Berkooz and B., Pioline, 5D Black Holes and Non-linear Sigma Models, JHEP 0805 (2008) 045.Google Scholar
[199] Z., Bern, J. J., Carrasco, L. J., Dixon, H., Johansson, D. A., Kosower, and R., Roiban, Three-Loop Superfiniteness of N = 8 Supergravity, Phys. Rev. Lett. 98 (2007) 161303.Google Scholar
[200] Z., Bern, J. J., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, The Ultraviolet Behavior of N =8 Supergravity at Four Loops, Phys. Rev. Lett. 103 (2009) 081301.Google Scholar
[201] Z., Bern, J. J., Carrasco, L. J., Dixon, H., Johansson, and R., Roiban, Amplitudes and Ultraviolet Behavior of N = 8 Supergravity, Fortsch. Phys. 59 (2011) 561.Google Scholar
[202] Z., Bern, S., Davies, T., Dennen, A. V., Smirnov, and V. A., Smirnov, The Ultraviolet Properties of N = 4 Supergravity at Four Loops, Phys. Rev. Lett. 111 (2013) 231302.Google Scholar
[203] M., Bertolini, P., Fré, and M., Trigiante, The Generating Solution of Regular N = 8 BPS Black Holes, Classical Quant. Grav. 16 (1999) 2987.Google Scholar
[204] M., Bertolini and M., Trigiante, Regular BPS Black Holes: Macroscopic and Microscopic Description of the Generating Solution, Nucl. Phys. B582 (2000) 393.Google Scholar
[205] B., Bertotti, Uniform Electromagnetic Field in the Theory of GR, Phys. Rev. 116 (1959) 1331.Google Scholar
[206] A. L., Besse, Einstein Manifolds. Berlin: Springer Verlag (1987).Google Scholar
[207] M., Bianchi and A., Sagnotti, On the Systematics of Open String Theories, Phys. Lett. B247 (1990) 517.Google Scholar
[208] M., Bianchi and A., Sagnotti, Twist Symmetry and Open String Wilson Lines, Nucl. Phys. B361 (1991) 519.Google Scholar
[209] J., Bičák, Selected Solutions of Einstein's Field Equations: Their Role in General Relativity and Astrophysics. Heidelberg: Springer-Verlag (2000).Google Scholar
[210] J. J., van der Bij, H., van Dam, and Y. J., Ng, Theory Of Gravity and the Cosmological Term: The Little Group Viewpoint, Physica 116A (1982) 307.Google Scholar
[211] A., Bilal, Introduction to Supersymmetry, Lectures given at Summer SchoolGif 2000, hep-th/0101055.
[212] G. D., Birkhoff, Relativity and Modern Physics. Cambridge, MA: Harvard University Press (1923).Google Scholar
[213] G. D., Birkhoff, Matter, Electricity and Gravitation in Flat Space-Time, Proc. Nat. Acad. Sci. 29 (1943) 231. (Reprinted in Ref. [216].)Google Scholar
[214] G. D., Birkhoff, Flat Space-Time and Gravitation, Proc. Nat. Acad. Sci. 30 (1944) 324. (Reprinted in Ref. [216].)Google Scholar
[215] G. D., Birkhoff, El Concepto de Tiempo y la Gravitación, Bol. Soc. Mat. Mexicana 1 (nos. 4, 5) (1944) 1. (Reprinted in Ref. [216].)Google Scholar
[216] G. D., Birkhoff, Collected Mathematical Papers, 3 vol. New York: American Mathematical Society (1950).
[217] D., Birmingham, Topological Black Holes in Anti-de Sitter Space, Report hep-th/9808032.
[218] N. D., Birrell and P. C. W., Davies, Quantum Fields in Curved Space. Cambridge: Cambridge University Press (1989).Google Scholar
[219] P., Bizon, Colored Black Holes, Phys. Rev. Lett. 64 (1990)2844.Google Scholar
[220] P., Bizon and O. T., Popp, No Hair Theorem for Spherical Monopoles and Dyons in SU(2) Einstein Yang-Mills Theory, Classical Quant. Grav. 9 (1992) 193.Google Scholar
[221] M., Blau, J. M., Figueroa-O'Farrill, C. M., Hull, and G., Papadopoulos, A New Maximally Supersymmetric Background of IIB Superstring Theory, JHEP 0201 (2002) 047.Google Scholar
[222] M., Blau, J. M., Figueroa-O'Farrill, C. M., Hull, and G., Papadopoulos, Penrose Limits and Maximal Supersymmetry, Classical Quant. Grav. 19 (2002) L87.Google Scholar
[223] M., Blau, J. M., Figueroa-O'Farrill, and G., Papadopoulos, Penrose Limits, Supergravity and Brane Dynamics, Classical Quant. Grav. 19 (2002) 4753.Google Scholar
[224] M., Blau and M., O'Loughlin, Aspects of U-Duality in Matrix Theory, Nucl. Phys. B525 (1998) 182.Google Scholar
[225] M., Blau, W., Thirring, and G., Landi, Introduction to Kaluza-Klein Theories, in 25th Schladmig Conf., Concepts and Trends in Particle Physics, eds. H., Latal and H., Mitter. Berlin: Springer-Verlag (1987), p. 1.Google Scholar
[226] J., de Boer, E. P., Verlinde, and H. L., Verlinde, On the Holographic Renormalization Group, JHEP 0008 (2000) 003.Google Scholar
[227] E., Bogomol'nyi, Stability of Clasical Solutions, Sov. J. Nucl. Phys. 24 (1976) 449 [Yad. Fiz. 24 (1976) 861].Google Scholar
[228] L., Bombelli, R. K., Koul, G., Kunstatter, J., Lee, and R. D., Sorkin, On Energy in 5-Dimensional Gravity and the Mass of the Kaluza-Klein Monopole, Nucl. Phys. B299 (1987) 735.Google Scholar
[229] W. B., Bonnor, Static Magnetic Fields in General Relativity, Proc. Phys. Soc. London A67 (1954) 225.Google Scholar
[230] W. B., Bonnor, An Exact Solution of the Einstein-Maxwell Equations Referring to a Magnetic Dipole, Z. Phys. 190 (1966) 444.Google Scholar
[231] W. B., Bonnor, A New Interpretation of the NUT Metric in General Relativity, Proc. Camb. Phil. Soc. 66 (1969) 145.Google Scholar
[232] W. B., Bonnor, Physical Interpretation of Vacuum Solutions of Einstein's Equations, Part I. Time-Independent Solutions, Gen. Relativ. Gravit. 24 (1992) 551.Google Scholar
[233] W. B., Bonnor, J. B., Griffiths, and M. A. H., MacCallum, Physical Interpretation of Vacuum Solutions of Einstein's Equations, Part II. Time-Dependent Solutions, Gen. Relativ. Gravit. 26 (1994) 687.Google Scholar
[234] H. J., Boonstra, K., Skenderis, and P. K., Townsend, The Domain-Wall/QFT Correspondence, JHEP 9901 (1999) 003.Google Scholar
[235] M., Born, On the Quantum Theory of the Electromagnetic Field, Proc. Roy. Soc.|London A143 (1934) 410.Google Scholar
[236] M., Born, Théorie non-linéare du champ électromagnétique, Ann. Inst. Poincaré 7 (1939) 155.Google Scholar
[237] M., Born and L., Infeld, Foundations of the New Field Theory, Proc. Roy. Soc. London A144 (1934) 425.Google Scholar
[238] L., Borsten, D., Dahanayake, M.J., Duff, and W., Rubens, Black Holes Admitting a Freudenthal Dual, Phys. Rev. D80 (2009) 026003Google Scholar
[239] G., Bossard, The Extremal Black Holes of N = 4 Supergravity from so (8, 2 + n) Nilpotent Orbits, Gen. Relativ. Grav. 42 (2010) 539.Google Scholar
[240] G., Bossard and S., Katmadas, Duality Covariant Non-BPS First Order Systems, JHEP 1209 (2012) 100.Google Scholar
[241] G., Bossard, Y., Michel, and B., Pioline, Extremal Black Holes, Nilpotent Orbits and the True Fake Superpotential, JHEP 1001 (2010) 038.Google Scholar
[242] G., Bossard, H., Nicolai, and K. S., Stelle, Universal BPS Structure of Stationary Supergravity Solutions, JHEP 0907 (2009) 003.Google Scholar
[243] N., Boulanger and L., Gualtieri, An Exotic Theory of Massless Spin-Two Fields in Three Dimensions, Classical Quant. Grav. 18 (2001) 1485.Google Scholar
[244] B. D., Boulware and S., Deser, Classical General Relativity Derived from Quantum Gravity, Ann. Phys. 89 (1975) 193.Google Scholar
[245] D. G., Boulware, Naked Singularities, Thin Shells and the Reissner Nordstrom Metric, Phys. Rev. D8 (1973) 2363.Google Scholar
[246] R. H., Boyer, Geodesic Killing Orbits and Bifurcate Killing Horizons, Proc. Roy. Soc. London A311 (1969) 245.Google Scholar
[247] M., Bradley, G., Fodor, L. Á.|Gergely, M., Marklund, and Z., Perjeis, Rotating Perfect Fluid Sources of the NUT Metric, Classical Quant. Grav. 16 (1999) 1667.Google Scholar
[248] D., Brecher and M. J., Perry, Ricci-Flat Branes, Nucl. Phys. B566 (2000) 151.Google Scholar
[249] J. C., Breckenridge, D. A., Lowe, R. C., Myers, A. W., Peet, A., Strominger, and C., Vafa, Macroscopic and Microscopic Entropy of Near-Extremal Spinning Black Holes, Phys. Lett. B381 (1996) 423.Google Scholar
[250] J. C., Breckenridge, G., Michaud, and R. C., Myers, More D-Brane Bound States, Phys. Rev. D55 (1997) 6438.Google Scholar
[251] J. C., Breckenridge, G., Michaud, and R. C., Myers, New Angles on D-Branes, Phys. Rev. D56 (1997) 5172.Google Scholar
[252] J. C., Breckenridge, R. C., Myers, A. W., Peet, and C., Vafa, D-Branes and Spinning Black Holes, Phys. Lett. B391 (1997) 93.Google Scholar
[253] P., Breitenlohner, D., Maison, and G. W., Gibbons, Four-Dimensional Black Holes from Kaluza-Klein Theories, Commun. Math. Phys. 120 (1988) 295.Google Scholar
[254] D., Brill, Electromagnetic Fields in a Homogeneous, Nonisotropic Universe, Phys. Rev. 133 (1964) B845.Google Scholar
[255] D. R., Brill and R. W., Lindquist, Interaction Energy in Geometrostatics, Phys. Rev. 131 (1963) 471.Google Scholar
[256] D., Brill, J., Louko, and P., Peldan, Thermodynamics of (3+1)-Dimensional Black Holes with Toroidal or Higher Genus Horizons, Phys. Rev. D56 (1997) 3600.Google Scholar
[257] D., Brill and J. A., Wheeler, Interaction of Neutrinos and Granvitational Fields, Rev. Mod. Phys. 29 (1957) 465.Google Scholar
[258] L., Brink, S., Deser, B., Zumino, P., Di Vecchia, and P. S., Howe, Local Supersymmetry for Spinning Particles, Phys. Lett. B64 (1976) 435.Google Scholar
[259] L., Brink, P., Di Vecchia, and P., Howe, A Locally Supersymmetric and Reparametrization Invariant Action for the Spinning String, Phys. Lett. 65B (1976) 471.Google Scholar
[260] L., Brink, P., Di Vecchia, and P., Howe, A Lagrangian Formulation of the Classical and Quantum Dynamics of Spinning Particles, Nucl. Phys. B118 (1977) 76.Google Scholar
[261] L., Brink and J. H., Schwarz, Quantum Superspace, Phys. Lett. B100 (1981) 310.Google Scholar
[262] L., Brink, J. H., Schwarz, and J., Scherk, Supersymmetric Yang-Mills Theories, Nucl. Phys. B121 (1977) 77.Google Scholar
[263] H. W., Brinkmann, Proc. Nat. Acad. Sci. 9 (1923) 1.
[264] H. W., Brinkmann, Einstein Spaces which are Mapped Conformally on Each Other, Math. Annal. 94 (1925) 119.Google Scholar
[265] R., Brout, S., Massar, R., Parentani, and P., Spindel, A Primer for Black Hole Quantum Physics, Phys. Rep. 260 (1995) 329.Google Scholar
[266] J. D., Brown, Black Hole Pair Creation and the Entropy Factor, Phys. Rev. D51 (1995) 5725.Google Scholar
[267] P., Bueno, R., Davies, and C. S., Shahbazi, Quantum Black Holes in Type-IIA String Theory, JHEP 1301 (2013) 089.Google Scholar
[268] P., Bueno, P., Galli, P., Meessen, and T., Ortín, Black Holes and Equivariant Charge Vectors in N =2, d = 4 Supergravity, JHEP 1309 (2013)010.Google Scholar
[269] L., Burko and A., Ori, Introduction to the Internal Structure of Black Holes, in Internal Structure of Black Holes and Spacetime Singularities, eds. L., Burko and A. Ori., Bristol: Institute of Physics Publishing, and Jerusalem: The Israel Physical Society (1997).Google Scholar
[270] T., Buscher, Quantum Corrections and Extended Supersymmetry in New Sigma Models, Phys. Lett. 159B (1985) 127.Google Scholar
[271] T., Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. 194B (1987) 59.Google Scholar
[272] T., Buscher, Path Integral Derivation of Quantum Duality in Non-Linear Sigma Models, Phys. Lett. 201B (1988) 466.Google Scholar
[273] M., Cahen and N., Wallach, Lorentzian Symemtric Spaces, Bull. Am. Math. Soc. 76 (1970) 585.Google Scholar
[274] A. C., Cadavid, A., Ceresole, R., D'auria, and S., Ferrara, Eleven-dimensional Supergravity Compactified on Calabi-Yau Threefolds, Phys. Lett. B357 (1995) 76.Google Scholar
[275] S. L., Cacciatori, M. M., Caldarelli, D., Klemm, and D. S., Mansi, More on BPS Solutions of N =2, D = 4 Gauged Supergravity, JHEP 0407 (2004)061.Google Scholar
[276] S. L., Cacciatori, M. M., Caldarelli, D., Klemm, D. S., Mansi, and D., Roest, Geometry of Four-dimensional Killing Spinors, JHEP 0707 (2007) 046.Google Scholar
[277] S. L., Cacciatori, A., Celi, and D., Zanon, BPS Equations in N = 2, D =5 Supergravity with Hypermultiplets, ClassicalQuant. Grav. 20 (2003) 1503.Google Scholar
[278] S. L., Cacciatori, D., Klemm, D. S., Mansi, and E., Zorzan, All Timelike Supersymmetric Solutions of N = 2, D = 4 Gauged Supergravity Coupled to Abelian Vector Multiplets, JHEP 0805 (2008) 097.Google Scholar
[279] R.-G., Cai and Y.-Z., Zhang, Black Plane Solutions in Four-Dimensional Space-Times, Phys. Rev. D54 (1996) 4891.Google Scholar
[280] E., Calabi and E., Visentini, Ann. Math. 71 (1960) 472.
[281] M. M., Caldarelli and D., Klemm, Supersymmetry of Anti-De Sitter Black Holes, Nucl. Phys. B545 (1999) 434.Google Scholar
[282] M. M., Caldarelli and D., Klemm, All Supersymmetric Solutions of N = 2, D =4 Gauged Supergravity, JHEP 0309 (2003) 019.Google Scholar
[283] C. G., Callan, Jr. A., Harvey, and A., Strominger, World-Sheet Approach to Heterotic Instantons and Solitons, Nucl. Phys. B359 (1991)611.Google Scholar
[284] C. G., Callan, J. A., Harvey, and A., Strominger, Supersymmetric String Solitons, in String Theory and Quantum Gravity '91, ed. J.A., Harvey. Singapore: World Scientific (1992), p. 208.Google Scholar
[285] C. G., Callan, E. J., Martinec, M. J., Perry, and D., Friedan, Strings In Background Fields, Nucl. Phys. B262 (1985) 593.Google Scholar
[286] C. G., Callan Jr., S., Coleman, and R., Jackiw, A New Improved Energy-Momentum Tensor, Ann. Phys. 59 (1970) 42.Google Scholar
[287] C. G., Callan Jr. and J. M., Maldacena, D-Brane Approach to Black Hole Quantum Mechanics, Nucl. Phys. B472 (1996) 591.Google Scholar
[288] C. G., Callan Jr. and J. M., Maldacena, Brane Dynamics from the Born-Infeld Action, Nucl. Phys. B513 (1998) 198.Google Scholar
[289] C., Callan and L., Thorlacius, Sigma Models and String Theory, in Particles, Strings and Supernovae, vol. 2, eds. A., Jevicki and C. I., Tan. Singapore: World Scientific (1989), p. 795.Google Scholar
[290] I. C. G., Campbell and P. C., West, N = 2, d =10 Non chiral Supergravity and its Spontaneous Compactification, Nucl. Phys. B243 (1984) 112.Google Scholar
[291] P., Candelas, Lectures on Complex Manifolds, in Superstrings'87. Singapore: World Scientific, (1988).Google Scholar
[292] P., Candelas, Yukawa Couplings Between (2,1) Forms, Nucl. Phys. B298 (1988) 458.Google Scholar
[293] P., Candelas, P. S., Green, and T., Hubsch, Rolling Among Calabi-Yau Vacua, Nucl. Phys. B330 (1990) 49.Google Scholar
[294] P., Candelas, G. T., Horowitz, A., Strominger, and E., Witten, Vacuum Configurations for Superstrings, Nucl. Phys. B258 (1985) 46.Google Scholar
[295] P., Candelas and X. C., de la Ossa, Comments on Conifolds, Nucl. Phys. B342 (1990) 246.Google Scholar
[296] P., Candelas and X., de la Ossa, Moduli Space Of Calabi-Yau Manifolds, Nucl. Phys. B355 (1991) 455.Google Scholar
[297] P., Candelas, X. C., de la Ossa, P. S., Green, and L., Parkes, An Exactly Soluble Superconformal Theory from a Mirror Pair of Calabi-Yau Manifolds,Phys. Lett. B258 (1991) 118.Google Scholar
[298] F., Canfora, F., Correa, A., Giacomini, and J., Oliva, Exact Meron Black Holes in Four Dimensional SU(2) Einstein-Yang-Mills Theory, Phys. Lett. B722 (2013) 364.Google Scholar
[299] G. L., Cardoso and V., Grass, On Five-dimensional Non-extremal Charged Black Holes and FRW Cosmology, Nucl. Phys. B803 (2008) 209.Google Scholar
[300] G. L., Cardoso, B., de Wit, J., Käppeli, and T., Mohaupt, Stationary BPS Solutions in N =2 Supergravity with R2 Interactions, JHEP 0012 (2000) 019.Google Scholar
[301] G.L., Cardoso, B., deWit, and T., Mohaupt, Area Law Corrections from State Counting and Supergravity, ClassicalQuant. Grav. 17 (2000) 1007.Google Scholar
[302] M., Cariglia and O.A.P., Mac Conamhna, The General Form of Supersymmetric Solutions of N = (1,0) U(1) and SU(2) Gauged Supergravities in Six Dimensions, Classical Quant. Grav. 21 (2004) 3171.Google Scholar
[303] M., Cariglia and O. A. P., Mac Conamhna, Timelike Killing Spinors in Seven Dimensions, Phys. Rev. D70 (2004) 125009.Google Scholar
[304] S., Carlip, Black Hole Entropy from Horizon Conformal Field Theory, Nucl. Phys. Proc. Suppl. 88 (2000) 10.Google Scholar
[305] B. J., Carr, Black Holes in Cosmology and Astrophysics, in General Relativity, Eds. G. S., Hall and J. R., Pulham. London: Institute of Physics Publishing (1996), p. 143.Google Scholar
[306] J. J. M., Carrasco, R., Kallosh, and R., Roiban, Covariant Procedures for Perturbative Non-linear Deformation of Duality-invariant Theories, Phys. Rev. D85 (2012) 025007.Google Scholar
[307] E., Cartan, Sur les éiquations de la gravitation de Einstein, J. Math. Pure Appl. 1 (1922) 141.Google Scholar
[308] E., Cartan, Oeuvres complètes. Paris: Editions du Centre National de la Recherche Scientifique (1984).Google Scholar
[309] B., Carter, Axisymmetric Black Hole Has Only Two Degrees of Freedom, Phys. Rev. Lett. 26 (1971) 331.Google Scholar
[310] B., Carter, Properties of the Kerr Metric, in Black Holes, eds. C., Dewitt and B. S., DeWitt. New York: Gordon and Breach (1973).Google Scholar
[311] B., Carter, Charge and Particle Conservation in Black-Hole Decay, Phys.Rev. Lett. 33 (1974) 558.Google Scholar
[312] R., Casalbuoni, Relativity and Supersymmetries, Phys. Lett. B62 (1976) 49.Google Scholar
[313] L., Castellani, A., Ceresole, R., D'auria, S., Ferrara, P., Fré, and M., Trigiante, G/H M-Branes and AdS(p+2) Geometries, Nucl. Phys. B527 (1998) 142.Google Scholar
[314] L., Castellani, R., D'auria, and S., Ferrara, Special Geometry Without Special Coordinates, Classical Quant. Grav. 1 (1990) 317.Google Scholar
[315] L., Castellani, R., D'auria, and P., Fré, Supergravity and Superstrings, A Geometric Perspective, 3 vol. Singapore: World Scientific (1991).Google Scholar
[316] A., Castro and M. J., Rodríguez, Universal Properties and the First Law of Black Hole Inner Mechanics, Phys. Rev. D86 (2012) 024008.Google Scholar
[317] S., Cecotti, S., Ferrara, and L., Girardello, Geometry of Type II Superstrings and the Moduli of Superconformal Field Theories, Int. J. Mod. Phys. A4 (1989) 2475.Google Scholar
[318] M., Cederwall, A., von Gussich, B. E., Nilsson, P., Sundell, and A., Westerberg, The Dirichlet Super-p-Branes in Ten-Dimensional Type IIA and IIB Supergravity, Nucl. Phys. B490 (1997) 179.Google Scholar
[319] M., Cederwall, A., von Gussich, B. E., Nilsson, and A., Westerberg, The Dirichlet Super-Three-Brane in Ten-Dimensional Type IIB Supergravity, Nucl. Phys. B490 (1997) 163.Google Scholar
[320] A., Celi, Toward the Classification of BPS Solutions of N =2, d = 5 Gauged Supergravity with Matter Couplings, Ph.D. Thesis, hep-th/0405283.
[321] A, Ceresole and G., Dall' Agata, General Matter Coupled N = 2, D = 5 Gauged Supergravity, Nucl. Phys. B585 (2000) 143.Google Scholar
[322] A., Ceresole and G., Dall' Agata, Flow Equations for Non-BPS Extremal Black Holes, JHEP 0703 (2007) 110.Google Scholar
[323] A., Ceresole, G., Dall'Agata, S., Ferrara and A., Yeranyan, Universality of the Superpotential for d = 4 Extremal Black Holes, Nucl. Phys. B832 (2010) 358.Google Scholar
[324] A., Ceresole, G., Dall'Agata, S., Ferrara and A., Yeranyan, First Order Flows for N= 2 Extremal Black Holes and Duality Invariants, Nucl. Phys. B824 (2010) 239.Google Scholar
[325] A., Ceresole, R., D'auria, and S., Ferrara, The Symplectic Structure of N = 2 Supergravity and its Central Extension, Nucl. Phys. Proc. Suppl. 46 (1996) 67.Google Scholar
[326] A., Ceresole, R., D'auria, S., Ferrara, and A., Van Proeyen, On Electromagnetic Duality in Locally Supersymmetric N = 2 Yang-Mills Theory, in Physics from Planck Scale to Electroweak Scale, eds. P., Nath, T., Taylor, and S., Pokorski. River Edge, NJ: World Scientific (1995).Google Scholar
[327] A., Ceresole, R., D'auria, S., Ferrara, and A., Van Proeyen, Duality Transformations in Supersymmetry Yang-Mills Theories Coupled to Supergravity, Nucl. Phys. 444 (1995) 92.Google Scholar
[328] A., Ceresole, S., Ferrara, A., Gnecchi, and A., Marrani, More on N = 8 Attractors, Phys. Rev. D80 (2009) 045020.Google Scholar
[329] A., Ceresole, S., Ferrara, A., Gnecchi, and A., Marrani, d-GeometriesRevisited, JHEP 1302 (2013) 059.Google Scholar
[330] A. H., Chamseddine, Massive Supergravity from Spontaneously Breaking Orthosymplectic Gauge Symmetry, Ann. Phys. 113 (1978) 219.Google Scholar
[331] A., Chamseddine, N = 4 Supergravity Coupled to N = 4 Matter and Hidden Symmetries, Nucl. Phys. B185 (1981) 403.Google Scholar
[332] A. H., Chamseddine, S., Ferrara, G. W., Gibbons, and R., Kallosh, Enhancement of Supersymmetry Near 5d Black Hole Horizon, Phys. Rev. D55 (1997) 3647.Google Scholar
[333] A.H., Chamseddine, J.M., Figueroa-O'Farrill, and W., Sabra, Six-Dimensional Supergravity Vacua and Anti-Selfdual Lorentzian Lie Groups, hep-th/0306278.
[334] A. H., Chamseddine and H., Nicolai, Coupling the SO(2) Supergravity through Dimensional Reduction, Phys. Lett. B96 (1980) 89.Google Scholar
[335] A. H., Chamseddine and W. A., Sabra, Metrics Admitting Killing Spinors in Five Dimensions, Phys. Lett. B426 (1998) 36.Google Scholar
[336] A. H., Chamseddine and W. A., Sabra, Calabi-Yau Black Holes and Enhancement of Supersymmetry in Five-dimensions, Phys. Lett. B460 (1999) 63.Google Scholar
[337] A. H., Chamseddine and M. S., Volkov, Non Abelian BPS Monopolesin N = 4 Gauged Supergravity, Phys. Rev. Lett. 79 (1997) 3343.Google Scholar
[338] A. H., Chamseddine and M. S., Volkov, Non Abelian Solitons in N = 4 Gauged Supergravity and Leading Order String Theory, Phys. Rev. D57(1998) 6242.Google Scholar
[339] A. H., Chamseddine and P. C., West, Supergravity as a Gauge Theory of Supersymmetry, Nucl. Phys. B129 (1977) 39.Google Scholar
[340] S., Chandrasekhar, The Mathemetical Theory of Black Holes. Oxford: Clarendon Press (1983).Google Scholar
[341] G. F., Chapline and N. S., Manton, Unification of Yang-Mills Theory and Supergravity in Ten Dimensions, Phys. Lett. B120 (1983) 105.Google Scholar
[342] J. E., Chase, Commun. Math. Phys. 19 (1970) 276.
[343] J., Chazy, Sur le champ de gravitation de deux masses fixes dans la théorie de la relativité, Bull. Soc. Math. France 52 (1924) 17.Google Scholar
[344] W., Chemissany, P., Fré, J., Rosseel, A. S., Sorin, M., Trigiante, and T., Van Riet, Black Holes in Supergravity and Integrability, JHEP 1009 (2010) 080.Google Scholar
[345] W., Chemissany, P., Fré, and A. S., Sorin, The Integration Algorithm of Lax Equation for both Generic Lax Matrices and Generic Initial Conditions, Nucl. Phys. B833 (2010) 220.Google Scholar
[346] W., Chemissany, R., Kallosh, and T., Ortín, Born-Infeld with Higher Derivatives, Phys. Rev. D85 (2012) 046002.Google Scholar
[347] W., Chemissany, A., Ploegh, and T., Van Riet, A Note on Scaling Cosmologies, Geodesic Motion and Pseudo-susy, Classical Quant. Grav. 24 (2007) 4679.Google Scholar
[348] W., Chemissany, J., Rosseel, M., Trigiante and T., Van Riet, The Full Integration of Black Hole Solutions to Symmetric Supergravity theories, Nucl. Phys. B830 (2010) 391.Google Scholar
[349] J., Chen and J., Li, Quaternionic Maps Between HyperKahler Manifolds, J. Diff. Geom. 55 (2000) 355.Google Scholar
[350] S. S., Chern, On the Curvature Integral in a Riemannian Manifold, Ann. Math. 46 (1945) 674.Google Scholar
[351] Y. M., Cho, Einstein Lagrangian as the Translational Yang-Mills Lagrangian, Phys. Rev. D14 (1976) 2521.Google Scholar
[352] Y.M., Cho and P. G. O., Freund, Gravitating't Hooft Monopoles, Phys. Rev. D12 (1975) 1588. [Erratum ibid. D13 (1976) 531.]Google Scholar
[353] Y.M., Cho and S.W., Zoh, Explicit Construction of Massive Spin-Two Fields inKaluza-KleinTheory, Phys. Rev .D46 (1992) R2290.Google Scholar
[354] Y.M., Cho and S.W., Zoh, Virasoro Invariance and Theory of Internal String, Phys. Rev. D46 (1992) 3483.Google Scholar
[355] D. D. K., Chow and G., Compère, Seed for General Rotating Non-extremal Black Holes of N = 8 Supergravity, Classical Quant. Grav. 31 (2014) 022001.Google Scholar
[356] Y., Choquet-Bruhat, C., DeWitt-Morette, and M., Dillard-Bleick, Analysis, Manifolds and Physics. Amsterdam: Elsevier (1977).Google Scholar
[357] D., Christodoulou, Investigation in Gravitational Collapse and the Physics of Black Holes, Ph.D. Thesis, Princeton University (1971, unpublished).
[358] P. T., Chruściel, “No-Hair” Theorems: Folklore, Conjectures, Results, Contemp. Math. 170 (1994) 23.Google Scholar
[359] P. T., Chruściel, H. S., Reall, and P., Tod, On Israel-Wilson-Perjes Black Holes, Classical Quant. Grav. 23 (2006) 2519.Google Scholar
[360] J., Ciufolini and J. A., Wheeler, Gravitation and Inertia. Princeton, NJ: Princeton University Press (1995).Google Scholar
[361] C. J. S., Clarke, The Analysis of Space-Time Singularities. Cambridge: Cambridge University Press (1993).Google Scholar
[362] C. J. S., Clarke, A Review of Cosmic Censorship, Classical Quant. Grav. 10 (1993) 1375.Google Scholar
[363] G., Clément and D. V., Gal'tsov, Stationary BPS Solutions to Dilaton-Axion Gravity, Phys. Rev. D54 (1996) 6136.Google Scholar
[364] S., Coleman, in Gauge Theories in High EnergyPhysics, eds. M. K., Gaillard and R. F., Stora. Amsterdam: North-Holland (1983).Google Scholar
[365] S., Coleman and R., Jackiw, Why Dilatation Generators do not Generate Dilatations?, Ann. Phys. 67 (1971) 552.Google Scholar
[366] S., Coleman, S., Parke, A., Neveu, and C. M., Sommerfield, Can One Dent a Dyon?, Phys. Rev. D15 (1977) 544.Google Scholar
[367] S., Coleman, J., Preskill, and F., Wilczek, Quantum Hair on Black Holes, Nucl. Phys. B378 (1992) 175.Google Scholar
[368] A. A., Coley, A Class of Exact Classical Solutions to String Theory, Phys. Rev. Lett. 89 (2002) 281601.Google Scholar
[369] P. A., Collins and R. W., Tucker, An Action Principle for the Neveu-Schwarz-Ramond String and Other Systems Using Supernumer-aryVariables, Nucl. Phys. B121 (1977) 307.Google Scholar
[370] R., Coquereaux and A., Jadczyk, Riemannian Geometry, Fiber Bundles, Kaluza-Klein Theories and all that. Singapore: World Scientific (1988).Google Scholar
[371] F., Cordaro, P., Fre, L., Gualtieri, P., Termonia, and M., Trigiante, N = 8 Gaugings Revisited: An Exhaustive Classification, Nucl. Phys. B532 (1998) 245.Google Scholar
[372] N. J., Cornish and J. W., Moffat, Remarks on Theoretical Problems in Nonsymmetric Gravitational Theory, Phys. Rev. D47 (1993) 4421.Google Scholar
[373] E., Corrigan and D. B., Fairlie, Scalar Field Theory and Exact Solutions to a Classical SU (2) Gauge Theory, Phys. Lett. B67 (1977) 69.Google Scholar
[374] M.S., Costa, Composite M-Branes, Nucl. Phys. B490 (1997) 202.Google Scholar
[375] M. S., Costa, Black Composite M-Branes, Nucl. Phys. B495 (1997) 195.Google Scholar
[376] M. S., Costa and G., Papadopoulos, Superstring Dualities and p-Brane Bound States, Nucl. Phys. B510 (1998) 217.Google Scholar
[377] M.S., Costa and M. J., Perry, Interacting Black Holes, Nucl. Phys. B591 (2000) 469.Google Scholar
[378] P. M., Cowdall, Novel Domain Wall and Minkowski Vacua of D = 9 Maximal SO (2)Gauged Supergravity, hep-th/0009016.
[379] B., Craps, F., Roose, W., Troost, and A., VanProeyen, What is Special Kaehler Geometry?, Nucl. Phys. B503 (1997) 565.Google Scholar
[380] J. D. E., Creighton and R. B., Mann, Quasilocal Thermodynamics of Dilaton Gravity Coupled to Gauge Fields, Phys. Rev. D52 (1995) 4569.Google Scholar
[381] J. D. E., Creighton and R. B., Mann, gr-qc/9511012.
[382] E., Cremmer, Supergravities in Five Dimensions, in Superspace & Supergravity, eds. S. W., Hawking and M., Roček. Cambridge: Cambridge University Press (1981), p. 267.Google Scholar
[383] E., Cremmer and S., Ferrara, Formulation of Eleven-Dimensional Supergravity in Superspace, Phys. Lett. B91 (1980) 61.Google Scholar
[384] E., Cremmer, S., Ferrara, L., Girardello, and A., Van Proeyen, Yang-Mills Theories With Local Supersymmetry: Lagrangian, Transformation Laws And SuperHiggs Effect, Nucl. Phys. B212 (1983) 413.Google Scholar
[385] E., Cremmer and B., Julia, The SO(8) Supergravity, Nucl. Phys. B159 (1979) 141.Google Scholar
[386] E., Cremmer, B., Julia, and J., Scherk, Supergravity Theory in 11 Dimensions, Phys. Lett. 76B (1978) 409.Google Scholar
[387] E., Cremmer, C., Kounnas, A., Van Proeyen, J. P., Derendinger, S., Ferrara, B., de Wit, and L., Girardello, Vector Multiplets Coupled to N = 2 Supergravity: Super Higgs Effect, Flat Potentials and Geometric Structure, Nucl. Phys. 250 (1985) 385.Google Scholar
[388] E., Cremmer, J., Scherk, and S., Ferrara, U(n) Invariance in Extended Supergravity, Phys. Lett. B68 (1977) 234.Google Scholar
[389] E., Cremmer, J., Scherk, and S., Ferrara, SU(4) Invariant Supergravity Theory, Phys. Lett. 74B (1978) 64.Google Scholar
[390] E., Cremmer and A., Van Proeyen, Classification Of Kähler Manifolds in N = 2 Vector Multiplet Supergravity Couplings, Classical Quant. Grav. 2 (1985) 445.Google Scholar
[391] J. F., Cornwell, Group Theory in Physics, vols. 1, 2, and 3. London: Academic Press (1989).Google Scholar
[392] H. E. J., Curzon, Cylindrical Solutions of Einstein's Gravitational Equations, Proc. London Math. Soc. 23 (1924) 477.Google Scholar
[393] C., Cutler and R. M., Wald, A New Type of Gauge Invariance for a Collection of Massless Spin-2 Fields. 1. Existence and Uniqueness, Classical Quant. Grav. 4 (1987) 1267.Google Scholar
[394] M., Cvetič, G. W., Gibbons, and C. N., Pope, Universal Area Product Formulae for Rotating and Charged Black Holes in Four and Higher Dimensions, Phys. Rev. Lett. 106 (2011) 121301.Google Scholar
[395] M., Cvetič and C. M., Hull, Black Holes and U-Duality, Nucl. Phys. B480 (1996) 296.Google Scholar
[396] M., Cvetič and F., Larsen, General Rotating Black Holes in String Theory: Grey Body Factors and Event Horizons, Phys. Rev. D56 (1997) 4994.
[397] M., Cvetič and F., Larsen, Grey Body Factors for Rotating Black Holes in Four-dimensions, Nucl. Phys. B506 (1997) 107.Google Scholar
[398] M., Cvetic and F., Larsen, Near Horizon Geometry of Rotating Black Holes in Five Dimensions, Nucl. Phys. B531 (1998) 239.Google Scholar
[399] M., Cvetič and F., Larsen, Greybody Factors and Charges in Kerr/CFT, JHEP 0909 (2009) 088.Google Scholar
[400] M., Cvetič and H., Soleng, Supergravity Domain Walls, Phys. Rep. 282 (1997) 159.Google Scholar
[401] M., Cvetič and A. A., Tseytlin, Non-Extreme Black Holes from Non-Extreme Intersecting M-Branes, DAMTP Report DAMTP-R-96-27 and hep-th/9606033.
[402] M., Cvetic and A. A., Tseytlin, General Class of BPS Saturated Dyonic Black Holes as Exact Superstring Solutions, Phys. Lett. B366 (1996) 95.Google Scholar
[403] M., Cvetič and A. A., Tseytlin, Solitonic Strings and BPS Saturated Dyonic Black Holes, Phys. Rev. D53 (1996) 5619.Google Scholar
[404] M., Cvetič and D., Youm, Singular BPS Saturated States and Enhanced Symmetries of Four-Dimensional N = 4 Supersymmetric String Vacua, Phys. Lett. B359 (1995) 87.Google Scholar
[405] M., Cvetič and D., Youm, Entropy of Nonextreme Charged Rotating Black Holes in String Theory, Phys. Rev. D54 (1996) 2612.Google Scholar
[406] A., Dabholkar, Ten-Dimensional Heterotic String as a Soliton, Phys. Lett. B357 (1995) 307.Google Scholar
[407] A., Dabholkar, Microstates of Non-supersymmetric Black Holes, Phys. Lett. B402 (1997) 53.Google Scholar
[408] A., Dabholkar, Lectures on Orientifolds and Duality, in High Energy Physics and Cosmology 1997, eds. E., Gava, A., Masiero, K. S., Narainet al. Singapore: World Scientific (1998), p. 128.Google Scholar
[409] A., Dabholkar, G. W., Gibbons, J., Harvey, and F., Ruiz-Ruiz, Superstrings and Solitons, Nucl. Phys. B340 (1990) 33.Google Scholar
[410] A., Dabholkar and J., Harvey, Non-renormalization of the Superstring Tension, Phys.Rev.Lett. 63 (1989) 478.Google Scholar
[411] A., Dabholkar, R., Kallosh, and A., Maloney, A Stringy Cloak for a Classical Singularity, JHEP 0412 (2004) 059.Google Scholar
[412] J., Dai, R. G., Leigh, and J., Polchinski, New Connections between String Theories, Mod. Phys. Lett. A4 (1989) 2073.Google Scholar
[413] T., Damour, Strings and Black Holes, Ann. Phys. 11 (2000) 1.Google Scholar
[414] T., Damour, S., Deser, and J., McCarthy, Theoretical Problems in Non-symmetric Gravitational Theory, Phys. Rev. D45 (1992) R3289.Google Scholar
[415] T., Damour, S., Deser, and J., McCarthy, Nonsymmetric Gravity Theories: Inconsistencies and a Cure, Phys. Rev. D47 (1993) 1541.Google Scholar
[416] T., Damour and A. M., Polyakov, The String Dilaton and a Least Coupling Principle, Nucl. Phys. B423 (1994) 532.Google Scholar
[417] T., Damour and A. M., Polyakov, String Theory and Gravity, Gen. Relativ. Gravit. 26 (1994) 1171.Google Scholar
[418] T., Damour and R., Ruffini, Quantum Electrodynamical Effects in Kerr-Newman Geometries, Phys. Rev. Lett. 35 (1975) 463.Google Scholar
[419] U., Danielsson, G., Ferretti, and I. R., Klebanov, Creation of Fundamental Strings by Crossing D-Branes, Phys. Rev. Lett. 79 (1997) 1984.Google Scholar
[420] A., Das and D. Z., Freedman, Gauge Internal Symmetry in Extended Supergravity, Nucl. Phys. B120 (1977) 221.Google Scholar
[421] S. R., Das, G. W., Gibbons, and S. D., Mathur, Universality of Low Energy Absorption Cross Sections for Black Holes, Phys. Rev. Lett. 78 (1997)417.Google Scholar
[422] S. R., Das and S. D., Mathur, Comparing Decay Rates for Black Holes and D-Branes, Nucl. Phys. B478 (1996) 561.Google Scholar
[423] S. R., Das and S. D., Mathur, The Quantum Physics of Black Holes: Results from String Theory, Ann. Rev. Nucl. Part. Sci. 50 (2000) 153.Google Scholar
[424] A., Davidson and E., Gedalin, Finite Magnetic Flux Tube as a Black and White Dihole, Phys. Lett. B339 (1994) 304.Google Scholar
[425] T., De Donder, La gravique Einsteinienne. Paris: Gauthier-Villars (1921).Google Scholar
[426] J., De Rydt, T. T., Schmidt, M., Trigiante, A., Van Proeyen, and M., Zagermann, Electric/Magnetic Duality for Chiral Gauge Theories with Anomaly Cancellation, JHEP 0812 (2008) 105.Google Scholar
[427] N. S., Deger, H., Samtleben, and O., Sarioglu, On The Supersymmetric Solutions of D = 3 Half-maximal Supergravities, Nucl. Phys. B840 (2010) 29.Google Scholar
[428] M., Demiański and E. T., Newman, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 14 (1966) 653.
[429] F., Denef, Supergravity Flows and D-brane Stability, JHEP 0008 (2000) 050.Google Scholar
[430] S., Deser, Self-Interaction and Gauge Invariance, Gen. Relativ. Gravit. 1 (1970) 9.Google Scholar
[431] S., Deser, The Gravitational Field, Lectures given at Brandeis University 1971–1972 (unpublished).Google Scholar
[432] S., Deser, Absence of Static Solutions in Source-Free Yang-Mills Theory, Phys. Lett. B64 (1976) 463.Google Scholar
[433] S., Deser, Gravity from Self-Interaction on a Curved Background, Classical Quant. Grav. 4 (1987) L99.Google Scholar
[434] S., Deser, Black-Hole Electromagnetic Duality, in Proc. 7th Mexican School of Particles and Fields and 1st Latin American Symp. High-Energy Physics, eds. J. C., D'Oliva, M., Klein-Kreisler, and H., Méndez. New York: American Institute of Physics (1997), p. 437.Google Scholar
[435] S., Deser, D = 11 Supergravity Revisited, in College Station 1998, Relativity, Particle Physics and Cosmology, ed. R.E., Allen. Singapore: World Scientific (1999), p. 1.
[436] S., Deser, Uniqueness of D = 11 Supergravity, in Santiago 1997, Black Holes and the Structure of the Universe, eds. C., Teitelboim and J., Zanelli. Singapore: World Scientific (2000), p. 70.
[437] S., Deser and J., Franklin, Schwarzschild and Birkhoff a la, Weyl, Am. J. Phys. 73(2005)261.
[438] S., Deser, A., Gomberoff, M., Henneaux, and C., Teitelboim, p-Brane Dyons and Electric-Magnetic Duality, Nucl. Phys. B520 (1998) 179.Google Scholar
[439] S., Deser and L., Halpern, Self-Coupled Scalar Gravitation, Gen. Relativ. Gravit. 1 (1970) 131.Google Scholar
[440] S., Deser, M., Hennaaux, and C., Teitelboim, Electric-Magnetic Black-Hole Duality, Phys. Rev. D55 (1997) 826.Google Scholar
[441] S., Deser and B. E., Laurent, Gravitation without Self-Interaction, Ann. Phys. 50 (1968) 76.Google Scholar
[442] S., Deser and P., van Nieuwenhuizen, One Loop Divergences of Quantized Einstein-Maxwell Fields, Phys. Rev. D10 (1974) 401.Google Scholar
[443] S., Deser and P., van Nieuwenhuizen, Nonrenormalizability of the Quantized Dirac-Einstein System, Phys. Rev. D10 (1974) 411.Google Scholar
[444] S., Deser and M., Soldate, Gravitational Energy in Spaces with Compactified Dimensions, Nucl. Phys. B311 (1988/89) 739.Google Scholar
[445] S., Deser and C., Teitelboim, Supergravity has Positive Energy, Phys.Rev.Lett. 39 (1977) 249.Google Scholar
[446] S., Deser, H.-S., Tsao, and P., van Nieuwenhuizen, Nonrenormalizability of Einstein Yang-Mills Interactions at the One Loop Level, Phys. Lett. B50(1974)491.Google Scholar
[447] S., Deser, H.-S., Tsao, and P., van Nieuwenhuizen, One Loop Divergences of the EinsteinYang-MillsSystem, Phys. Rev. D10 (1974) 3337.Google Scholar
[448] S., Deser and F., Wilczek, Nonuniqueness of Gauge Field Potentials, Phys. Lett. D65 (1976) 391.Google Scholar
[449] S., Deser and B., Zumino, Consistent Supergravity, Phys. Lett. 62B (1976) 335.Google Scholar
[450] S., Deser and B., Zumino, A Complete Action for the Spinning String, Phys. Lett. 65B (1976) 369.Google Scholar
[451] B. S., DeWitt, Quantum Theory of Gravity, II, Phys. Rev. 162 (1967) 1195.Google Scholar
[452] B. S., DeWitt, Quantum Theory of Gravity, III, Phys. Rev. 162 (1967) 1239.Google Scholar
[453] D. E., Diaconescu, D-Branes, Monopoles and Nahm Equations, Nucl. Phys. B503 (1997) 220.Google Scholar
[454] M., Dine, P., Huet, and N., Seiberg, Large and Small Radius in String Theory, Nucl. Phys. B322 (1989) 301.Google Scholar
[455] P. A. M., Dirac, Quantised Singularities in the Electromagnetic Field, Proc. Roy. Soc. London A113 (1931) 60.Google Scholar
[456] P. A. M., Dirac, An Extensible Model of the Electron, Proc. Roy. Soc. London A268 (1962) 57.Google Scholar
[457] P., Dobiasch and D., Maison, Stationary, Spherically Symmetric Solutions of Jordan's Unified Theory of Gravity and Electromagnetism, Gen. Relativ. Grav. 14 (1982) 231.Google Scholar
[458] L., Dolan and M. J., Duff, Kac-Moody Symmetries of Kaluza-Klein Theories, Phys. Rev. Lett. 52 (1984) 14.Google Scholar
[459] F., Dowker, J. P., Gauntlett, G. W., Gibbons, and G. T., Horowitz, Nucleation of p-Branes and Fundamental Strings, Phys. Rev. D53 (1996) 7115.Google Scholar
[460] F., Dowker, J. P., Gauntlett, S. B., Giddings, and G.T., Horowitz, On Pair Creation of Extremal Black Holes and KK Monopoles, Phys. Rev. D50 (1994)2662.Google Scholar
[461] F., Dowker, J. P., Gauntlett, D. A., Kastor, and J., Traschen, Pair Creation of Dilaton Black Holes, Phys. Rev. D49 (1994) 2909.Google Scholar
[462] J. S., Dowker, The NUT Solution as a Gravitational Dyon, Gen. Relativ. Gravit. 5 (1974) 603.Google Scholar
[463] J. S., Dowker and J. A., Roche, Proc. Phys. Soc. London 92 (1967) 1.Google Scholar
[464] E., Dudas and J., Mourad, Consistent Gravitino Couplings in Non-Supersymmetric Strings, Phys. Lett. B514 (2001) 173.Google Scholar
[465] M. J., Duff, Kaluza-Klein Theory in Perspective, in Oskar Klein Centenary Nobel Symposium, hep-th/9410046.
[466] M. J., Duff, Strong/Weak Coupling Duality from the Dual String, Nucl. Phys. B442 (1995) 47.Google Scholar
[467] M. J., Duff, Supermembranes, hep-th/9611203.
[468] M. J., Duff, G. W., Gibbons, and P. K., Townsend, Macroscopic Superstrings as Interpolating Solitons, Phys. Lett. B332 (1994) 321.Google Scholar
[469] M. J., Duff, P. S., Howe, T., Inami, and K. S., Stelle, Superstrings in D =10 From Supermembranes in D = 11, Phys. Lett. B191 (1987) 70.Google Scholar
[470] M. J., Duff and R. R., Khuri, Four Dimensional String/String Duality, Nucl. Phys. B411 (1994) 473.
[471] M. J., Duff, R. R., Khuri, and J. X., Lu, String Solitons, Phys. Rep. 259 (1995) 213.Google Scholar
[472] M. J., Duff, J. T., Liu, and J., Rahmfeld, Four-Dimensional String-String-String Triality, Nucl. Phys. B459 (1996) 125.Google Scholar
[473] M. J., Duff and J. X., Lu, Type II p-Branes: The Brane Scan Revisited, Nucl. Phys. B390 (1993) 276.Google Scholar
[474] M. J., Duff, H., , and C. N., Pope, Supersymmetry Without Supersymmetry, Phys. Lett. B409 (1997) 136.Google Scholar
[475] M. J., Duff, H., , C. N., Pope, and E., Sezgin, Supermembranes with Fewer Supersymmetries, Phys. Lett. B371 (1996) 206.Google Scholar
[476] M. J., Duff, B. E. W., Nilsson, and C. N., Pope, Kaluza-Klein Supergravity, Phys. Rep. 130 (1986) 1.Google Scholar
[477] M. J., Duff and C. N., Pope, Kaluza-Klein Supergravity and the Seven Sphere, in School on Supergravity and Supersymmetry, eds. S., Ferrara, J. G., Taylor, and P., van Nieuwenhuizen. Singapore: World Scientific (1983).Google Scholar
[478] M. J., Duff and K. S., Stelle, Multi-Membrane Solutions of D = 11 Supergravity, Phys. Lett. B253 (1991) 113.Google Scholar
[479] A. S., Eddington, Nature 113 (1924) 192.
[480] J. D., Edelstein, L., Tataru, and R., Tatar, Rules for Localized Overlappings and Intersections of p-Branes, JHEP 9806 (1998) 003.Google Scholar
[481] T., Eguchi, P. B., Gilkey, and A. J., Hanson, Gravitation, Gauge Theories and Differential Geometry, Phys. Rep. 66 (1980) 213.Google Scholar
[482] T., Eguchi and A. J., Hanson, Asymptotically Flat, Self-Dual Solutions to Euclidean Gravity, Phys. Lett. 74B (1978) 249.Google Scholar
[483] J., Ehlers and W., Rindler, Local and Global Light Bending in Einstein's and other Gravitational Theories, Gen. Relativ. Gravit. 29 (1997) 519.Google Scholar
[484] A., Einstein, Über das Relativitatsprinzip und die aus demslben gezogenen Folgerungen, Jahrbuch der Radioaktivität und Elektronik 4 (1908) 411.Google Scholar
[485] A., Einstein, Über den Einfulss der Schwerkraft auf die Ausbreitung des Lichtes, Ann. Phys. 35 (1911) 898.Google Scholar
[486] A., Einstein, Ann. Phys. 35 (1912) 355.
[487] A., Einstein, Ann. Phys. 35 (1912) 443.
[488] A., Einstein, Phys. Z. 14 (1913) 1251.
[489] A., Einstein, Sitzungsber. Preuβ. Akad. Wiss., phys.-math. Kl. (1915) 778.
[490] A., Einstein, Sitzungsber. Preuβ. Akad.|Wiss., phys.-math. Kl. (1918) 154.
[491] A., Einstein, Sitzungsber. Preuβ. Akad. Wiss., phys.-math. Kl. (1918) 448.
[492] A., Einstein, Sitzungsber. Preuβ. Akad. Wiss. (1925) 414.
[493] A., Einstein, Riemann-Geometrie mit Aufrechterhaltung des Begriffes des Fernparallelismus, Sitzungsber. Preβ. Akad. Wiss., phys.-math. Kl. (1928) 217.Google Scholar
[494] A., Einstein, Zur einheitliche, Feldtheorie, Sitzungsber. Preβ. Akad. Wiss., phys.-math. Kl. (1929) 2.
[495] A., Einstein, Einheiliche Feldtheorie und Hamiltonsches Prinzip, Sitzungsber. Preβ. Akad. Wiss., phys.-math. Kl. (1929) 156.Google Scholar
[496] A., Einstein, Zur theorie der Räume mit Riemann-Metrik und Fernparallelismus, Sitzungsber. Preuβ. Akad. Wiss., phys.-math. Kl. (1930)401.Google Scholar
[497] A., Einstein, Auf die Riemann-Metrik und den Fern-Parallelismus gegründete einheitliche Feldtheorie, Math. Ann. 102 (1930) 685.Google Scholar
[498] A., Einstein, The Meaning of Relativity. Including the Relativistic Theory of the Non-symmetric Field, 5th edn. Princeton, NJ: Princeton University Press (1955).Google Scholar
[499] A., Einstein and A. D., Fokker, Die Nordströmsche Gravitationstheories vom Standpunkt des absolunten Differentialkalküls, Ann. Phys. 44 (1914) 321.Google Scholar
[500] A., Einstein, L., Infeld, and B., Hoffmann, Ann. Math. 39 (1938) 65.
[501] A., Einstein and B., Kaufman, Ann. Math. 62 (1955) 128.
[502] A., Einstein and W. R. P., Mayer, Zwei strenge statische Lüsungen der Feldgleichungen der einheitlichen Feldtheorie, Sitzungsber. Preuβ. Akad. Wiss., phys.-math. Kl. (1930) 110.Google Scholar
[503] A., Einstein and E. G., Straus, Ann. Math. 47 (1946) 731.
[504] J., Eisland, Trans. A.M. S. 27 (1925) 213.
[505] S., Elitzur, A., Giveon, and D., Kutasov, Branes and N = 1 Duality in String Theory, Phys. Lett. B400 (1997) 269.Google Scholar
[506] H., Elvang, A Charged Rotating Black Ring, Phys. Rev. D68 (2003) 124016.Google Scholar
[507] H., Elvang, R., Emparan, D., Mateos, and H. S., Reall, A Supersymmetric Black Ring, Phys. Rev. Lett. 93 (2004) 211302.Google Scholar
[508] H., Elvang, R., Emparan, D., Mateos, and H. S., Reall, Supersymmetric Black Rings and Three-charge Supertubes, Phys. Rev. D71 (2005) 024033.Google Scholar
[509] H., Elvang, R., Emparan, D., Mateos, and H.S.|Reall, Supersymmetric 4D Rotating Black Holes from 5D Black Rings, JHEP 0508 (2005) 042.Google Scholar
[510] R., Emparan, Black Diholes, Phys. Rev. D61 (2000) 104009.Google Scholar
[511] R., Emparan and H. S., Reall, Generalized Weyl Solutions, Phys. Rev. D65 (2002) 084025.Google Scholar
[512] R., Emparan and H. S., Reall, A Rotating Black Ring in Five Dimensions, Phys. Rev. Lett. 88 (2002) 101101.Google Scholar
[513] R., Emparan and E., Teo, Macroscopic and Microscopic Description of Black Diholes, Nucl. Phys. B610 (2001) 190.Google Scholar
[514] A. A., Ershov and D. V., Gal'tsov, Nonexistence of Regular Monopoles and Dyons in the SU(2) Einstein Yang-Mills Theory, Phys. Lett. A150 (1990) 159.Google Scholar
[515] E., Eyras, B., Janssen, and Y., Lozano, Five-Branes, KK Monopoles and T, Duality, Nucl. Phys. B531 (1998) 275.
[516] E., Eyras and Y., Lozano, The Kaluza-Klein Monopole in a Massive IIA Background, Nucl. Phys. B546 (1999) 197.Google Scholar
[517] J., Fang and C., Fronsdal, Deformation of Gauge Groups. Gravitation, J. Math. Phys. 20 (1979) 2264.Google Scholar
[518] J., Faulkner, A Construction of Lie Algebras from a Class of Ternary Algebras, Trans. Am. Math. Soc. 155 (1971) 397.Google Scholar
[519] A., Fayyazuddin and D. J., Smith, Localized Intersections of M5-Branes and Four-Dimensional Superconformal Field Theories, JHEP 9904 (1999) 030.Google Scholar
[520] J. J., Fernández-Melgarejo, T., Ortín, and E., Torrente-Luján, The general gaugings of maximal d =9 supergravity, JHEP 1110 (2011).Google Scholar
[521] J. J., Fernández-Melgarejo and E., Torrente-Luján, N = 2 SUGRA BPS Multi-center Solutions, Quadratic Prepotentials and Freudenthal Transformations, arXiv:1310.4182.
[522] S., Ferrara, G. W., Gibbons, and R., Kallosh, Black Holes and Critical Points in Moduli Space, Nucl. Phys. B500 (1997) 75.Google Scholar
[523] S., Ferrara, E. G., Gimon, and R., Kallosh, Magic Supergravities, N = 8 and Black Hole Composites, Phys. Rev. D74 (2006) 125018.Google Scholar
[524] S., Ferrara and M., Günaydin, Orbits of Exceptional Groups, Duality and BPS States in String Theory, Int. J. Mod. Phys. A13 (1998) 2075.Google Scholar
[525] S., Ferrara, K., Hayakawa, and A., Marrani, Lectures on Attractors and Black Holes, Fortsch. Phys. 56 (2008) 993.Google Scholar
[526] S., Ferrara and R., Kallosh, Supersymmetry and Attractors, Phys. Rev. D54 (1996) 1514.Google Scholar
[527] S.|Ferrara and R., Kallosh, Universality of Supersymmetric Attractors, Phys. Rev. D54 (1996) 1525.Google Scholar
[528] S., Ferrara and R., Kallosh, On N =8 attractors, Phys. Rev. D73 (2006) 125005.Google Scholar
[529] S., Ferrara and R., Kallosh, Creation of Matter in the Universe and Groups of Type E7, JHEP 1112 (2011) 096.Google Scholar
[530] S., Ferrara, R., Kallosh, and A., Marrani, Degeneration of Groups of Type E7 and Minimal Coupling in Supergravity, JHEP 1206 (2012) 074.Google Scholar
[531] S., Ferrara, R., Kallosh, and A., Strominger, N = 2 Extremal Black Holes, Phys. Rev. D52 (1995) 5412.Google Scholar
[532] S., Ferrara and J. M., Maldacena, Branes, Central Charges and U-Duality Invariant BPS Conditions, Classical Quant. Grav. 15 (1998) 749.Google Scholar
[533] S., Ferrara and A., Marrani, Black Holes and Groups of Type E7, Pramana 78 (2012) 893.Google Scholar
[534] S., Ferrara, A., Marrani, and E., Orazi, Maurer-Cartan Equations and Black Hole Superpotentials in N= 8 Supergravity, Phys. Rev. D81 (2010) 085013.Google Scholar
[535] S., Ferrara, A., Marrani,and E., Orazi, Split Attractor Flowin N =2 Minimally Coupled Supergravity, Nucl. Phys. B846 (2011)512.Google Scholar
[536] S., Ferrara, A., Marrani, and A., Yeranyan, Freudenthal Duality and Generalized Special Geometry, Phys. Lett. B701 (2011) 640.Google Scholar
[537] S., Ferrara and P., van Nieuwenhuizen, Consistent Supergravity with Complex Spin 3/2 Gauge Fields, Phys. Rev. Lett. 37 (1976) 1669.Google Scholar
[538] S., Ferrara, C. A., Savoy, and B., Zumino, General Massive Multiplets in Extended Supersymmetry, Phys. Lett. 100B (1981) 393.Google Scholar
[539] S., Ferrara, J., Scherk, and B., Zumino, Algebraic Properties of Extended Supergravity Theories, Nucl. Phys. B121 (1977) 393.Google Scholar
[540] V., Ferrari and P., Pendenza, Boosting the Kerr Metric, Gen. Relativ. Gravit. 22 (1990) 1105.Google Scholar
[541] R.P., Feynman, Quantum Theory of Gravitation, Act a Phys. Polon. 24(1963) 697.Google Scholar
[542] R. P., Feynman, Feynman Lectures on Gravitation, eds. F. B., Morinigo, W. G., Wagner, and B., Hatfield. Reading, MA: Addison-Wesley (1995).
[543] M., Fierz and W., Pauli, Relativistic Wave Equations for Particles of Arbitrary Spin in an Electromagnetic Field, Proc. Roy. Soc. London A173 (1939) 211.Google Scholar
[544] P., Figueras, E., Jamsin, J. V., Rocha, and A., Virmani, Integrability of Five Dimensional Minimal Supergravity and Charged Rotating Black Holes, Classical Quant. Grav. 27(2010)135011.Google Scholar
[545] J. M., Figueroa-O'Farrill, Near-Horizon Geometries of Supersymmetric Branes, hep-th/9807149.
[546] J. M., Figueroa-O'Farrill, On the Supersymmetries of Anti-de Sitter Vacua, Classical Quant. Grav. 16 (1999) 2043.Google Scholar
[547] J.M., Figueroa-O'Farrill, More Ricci-Flat Branes, Phys. Lett. B471 (1999)128.Google Scholar
[548] J. M., Figueroa-O'Farrill and G., Papadopoulos, Homogeneous Fluxes, Branes and a Maximally Supersymmetric Solution of M Theory, JHEP 0108(2001)036.Google Scholar
[549] J. M., Figueroa-O'Farrill and G., Papadopoulos, Maximally Supersymmetric Solutions of Ten- And Eleven-Dimensional Supergravities, JHEP 0303 (2003) 048.Google Scholar
[550] D., Finkelstein, Past-Future Asymmetry of the Gravitational Field of a Point Particle, Phys. Rev. 110 (1958) 965.Google Scholar
[551] W., Fischler and L., Susskind, Dilaton, Tadpoles, String Condensates and Scale Invariance, Phys. Lett. B171 (1986)383.Google Scholar
[552] V. A., Fock, J. Phys. USSR 1 (1939) 81.
[553] A., Font, L.E., Ibáñez, D., Lüst, and F., Quevedo, Strong-Weak Coupling Duality and Nonperturbative Effects in String Theory, Phys. Lett. B249(1990)35.Google Scholar
[554] E. S., Fradkin and M. A., Vasiliev, Model of Supergravity with Minimal Electromagnetic Interaction, Lebedev Institute preprint N 197(1976).Google Scholar
[555] P., Fré, Lectures on Special Kähler Geometry and Electric-magnetic Duality Rotations, Nucl. Phys. Proc. Suppl. 45BC (1996) 59.Google Scholar
[556] P., Fré, Gaugings and Other Supergravity Tools of p-Brane Physics, Lectures given at the school Recent Advances in M-Theory, hep-th/0102114.
[557] P. G., Fré, Gravity, a Geometrical Course. Vol. 2: Black Holes, Cosmology and Introduction to Supergravity. Dordrecht: Springer Verlag (2013).
[558] P., Fré, V., Gili, F., Gargiulo, A. S., Sorin, K., Rulik, and M., Trigiante, Cosmological Backgrounds of Superstring Theory and Solvable Algebras: Oxidation and Branes, Nucl. Phys. B685 (2004) 3.Google Scholar
[559] P., Fré and P., Soriani, The N = 2 Wonderland: From Calabi-Yau Manifolds to Topological Field Theories. Singapore: World Scientific (1995).Google Scholar
[560] P., Fré and A. S., Sorin, Integrability of Supergravity Billiards and the Generalized Toda Lattice Equation, Nucl. Phys. B733 (2006) 334.Google Scholar
[561] P., Fré and A. S., Sorin, The Weyl Group and Asymptotics: All Supergravity Billiards have a Closed Form General Integral, Nucl. Phys. B815 (2009) 430.Google Scholar
[562] D. Z., Freedman, Supergravity withAxial-gauge Invariance, Phys. Rev. D15 (1977) 1173.Google Scholar
[563] D. Z., Freedman, P., van Nieuwenhuizen, and S., Ferrara, Progress Toward aTheory of Supergravity, Phys. Rev. D13 (1976) 3214.Google Scholar
[564] D. Z., Freedman and A., Van Proeyen, Supergravity. Cambridge: Cambridge University Press (2012).Google Scholar
[565] P. G. O., Freund, Introduction to Supersymmetry. Cambridge: Cambridge University Press (1986).Google Scholar
[566] P. G. O., Freund and Y., Nambu, Scalar Fields Coupled to the Trace of the Energy-Momentum Tensor, Phys. Rev. 174 (1968) 1741.Google Scholar
[567] P.O., Freund and M.A., Rubin, Dynamics of Dimensional Reduction, Phys. Lett. B97(1980)233.Google Scholar
[568] J.L., Friedman, K., Schleich, and D.M., Witt, Topological Censorship, Phys. Rev. Lett. 71 (1993) 1486. [Erratum ibid. 75 (1995) 1872.]Google Scholar
[569] M., Fukuma, S., Matsuura, and T., Sakai, Holographic Renormalization Group, Prog. Theor. Phys. 109 (2003) 489.Google Scholar
[570] M.K., Gaillard and B., Zumino, Duality Rotations for InteractingFields, Nucl. Phys. B193(1981)221.Google Scholar
[571] M. K., Gaillard and B., Zumino, Selfduality in Nonlinear Electromagnetism, in Supersymmetry and Quantum Field Theory: Proceedings of the D. Volkov Memorial Seminor held in Kharkov, Ukraine 5-7 January 1997, eds. J., Wess and V.P., Akulov, Lecture Notes in Physics.Google Scholar
[572] D., Gaiotto, W., Li, and M., Padi, Non-Supersymmetric Attractor Flow in Symmetric Spaces, JHEP 0712 (2007) 093.Google Scholar
[573] D., Gaiotto, A., Strominger, and X., Yin, 5D Black Rings and 4D Black Holes, JHEP 0602 (2006) 023.Google Scholar
[574] D., Gaiotto, A., Strominger, and X., Yin, New Connections between 4D and 5D Black Holes, JHEP 0602 (2006) 024.Google Scholar
[575] P., Galli, K., Goldstein, S., Katmadas, and J., Perz, First-order Flows and Stabilisation Equations for Non-BPS Extremal Black Holes, JHEP 1106 (2011) 070.Google Scholar
[576] P., Galli, K., Goldstein, and J., Perz, On Anharmonic Stabilisation Equations for Black Holes, JHEP 1303 (2013) 036.Google Scholar
[577] P., Galli, P., Meessen, and T., Ortìn, The Freudenthal Gauge Symmetry of the Black Holes of N =2, d = 4 Supergravity, JHEP 1305 (2013)011.Google Scholar
[578] P., Galli, T., Ortìn, J., Perz, and C. S., Shahbazi, Non-extremal Black Holes of N = 2, d = 4 Supergravity, JHEP 1107 (2011) 041.Google Scholar
[579] P., Galli, T., Ortìn, J., Perz, and C. S., Shahbazi, Black Hole Solutions of N = 2, d = 4 Supergravity with a Quantum Correction, in the H-FGK formalism, arXiv:1212.0303 [hep-th].
[580] D.V., Gal'tsov and A.A., Ershov, Nonabelian Baldness of Colored Black Holes, Phys. Lett. A138 (1989) 160.Google Scholar
[581] D. V., Gal'tsov, A. A., Garcia, and O. V., Kechkin, Symmetries of the Stationary Einstein-Maxwell Dilaton-Axion Theory, J. Math. Phys. 36 (1995) 5023.Google Scholar
[582] D.V., Gal'tsov and O.V., Kechkin, Ehlers-Harrison-Type Transformations in Dilaton-Axion Gravity, Phys. Rev. D50 (1994) 7394.Google Scholar
[583] D. V., Gal'tsov and O. V., Kechkin, U Duality and Symplectic Formulation of Dilaton-Axion Gravity, Phys. Rev. D54 (1996) 1656.Google Scholar
[584] D. V., Gal'tsov and P. S., Letelier, Ehlers-Harrison Transformations and Black Holes in Dilaton-Axion Gravity with Multiple Vector Fields, Phys. Rev. D55 (1997) 3580.Google Scholar
[585] D. V., Gal'tsov and O. A., Rytchkov, Generating Branes via Sigma Models, Phys. Rev. D58 (1998) 122001.Google Scholar
[586] D. V., Gal'tsov and S. A., Sharakin, Matrix Ernst Potentials for EMDA with Multiple Vector Fields, Phys. Lett. B399 (1997) 250.Google Scholar
[587] R., Gambini and J., Pullin, Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge: Cambridge University Press (1996).Google Scholar
[588] A., Garcia, D.V., Gal'tsov, and O.V., Kechkin, Class of Stationary Axisymmetric Solutions of the Einstein-Maxwell Dilaton-Axion Field Equations, Phys. Rev. Lett. 74 (1995) 1276.Google Scholar
[589] D., Garfinkle, G., Horowitz, and A., Strominger, Charged Black Holes in String Theory, Phys. Rev. D43 (1991) 3140. [Erratum ibid. D45 (1992) 3888.]Google Scholar
[590] J. P., Gauntlett, Intersecting Branes, in Dualities of Gauge and String Theories, eds. Y. M., Cho and S., Nam. Singapore: World Scientific (1998), p. 146.Google Scholar
[591] J. P., Gauntlett, G. W., Gibbons, G., Papadopoulos, and P. K., Townsend, Hyper-Kaehler Manifolds and Multiply Intersecting Branes, Nucl. Phys. B500 (1997) 133.Google Scholar
[592] J. P., Gauntlett, J., Gomis, and P. K., Townsend, BPS Bounds for World volume Branes, JHEP 9801 (1998) 003.Google Scholar
[593] J. P., Gauntlett and J. B., Gutowski, All Supersymmetric Solutions of Minimal Gauged Supergravity in Five Dimensions, Phys. Rev. D68 (2003) 105009. [Erratum ibid. D 70 (2004) 089901.]Google Scholar
[594] J. P., GauntlettandJ. B., Gutowski, Concentric Black Rings, Phys. Rev. D71 (2005) 025013.Google Scholar
[595] J. P., Gauntlett and J. B., Gutowski, General Concentric Black Rings, Phys. Rev. D71 (2005) 045002.Google Scholar
[596] J. P., Gauntlett, J. B., Gutowski, C. M., Hull, S., Pakis, and H. S., Reall, All Supersymmetric Solutions of Minimal Supergravity in Five- Dimensions, Classical Quant. Grav. 20 (2003) 4587Google Scholar
[597] J. P., Gauntlett, D. A., Kastor, and J., Traschen, Overlapping Branes in M Theory, Nucl. Phys. B478 (1996) 544.Google Scholar
[598] J. P., Gauntlett, R. C., Myers, and P. K., Townsend, Supersymmetry of Rotating Branes, Phys. Rev. D59 (1999) 025001.Google Scholar
[599] J. P., Gauntlett and S., Pakis, The Geometry of D =11 Killing Spinors, JHEP 0304 (2003) 039.Google Scholar
[600] S. P., Gavrilov and D. M., Gitman, Quantization of Point-Like Particles and Consistent Relativistic Quantum Mechanics, Int. J. Mod. Phys. A15 (2000) 4499.Google Scholar
[601] H., Georgi and S. L., Glashow, Unified Weak and Electromagnetic Interactions without Neutral Currents, Phys. Rev. Lett. 28 (1972) 1494.Google Scholar
[602] J., Gheerardyn and P., Meessen, Supersymmetry of Massive D = 9 Supergravity, Phys. Lett. B525 (2002) 322.Google Scholar
[603] F., Giani and M., Pernici, N =2 Supergravity in Ten Dimensions, Phys. Rev. D30 (1984) 325.Google Scholar
[604] G. W., Gibbons, The Motion of Black Holes, Commun. Math. Phys. 35 (1974) 13.Google Scholar
[605] G. W., Gibbons, Vacuum Polarization and the Spontaneous Loss of Charge by Black Holes, Commun. Math. Phys. 44 (1975) 245.Google Scholar
[606] G. W., Gibbons, Proc. Roy. Soc. London A372 (1980) 535.
[607] G. W., Gibbons, An Introduction to Black Hole Thermodynamics, Notes of Lectures given at the 1980 Summer Institute of the Ecole Normale Supérieure, LPT, Paris, France, August 4-23, 1980 (unpublished).
[608] G. W., Gibbons, Antigravitating Black Hole Solitons with Scalar Hair in N = 4 Supergravity, Nucl. Phys. B207 (1982) 337.Google Scholar
[609] G. W., Gibbons, Aspects of Supergravity Theories (three lectures), in Supersymmetry, Supergravity and Related Topics, eds. F., del Águila, J., de Azcárraga, and L., Ibáñez. Singapore: World Scientific (1985), p. 147.
[610] G. W., Gibbons, Born-Infeld Particles and Dirichlet p-Branes, Nucl. Phys. B514 (1998) 603.Google Scholar
[611] G. W., Gibbons, M. B., Green, and M. J., Perry. Instantons and Seven-Branes in Type IIB Superstring Theory, Phys. Lett. B370 (1996) 37.Google Scholar
[612] G. W., Gibbons and S. W., Hawking, Action Integrals and Partition Functions in Quantum Gravity, Phys. Rev. D15 (1977) 2752. (Reprinted in Ref. [615].)Google Scholar
[613] G. W., Gibbons and S. W., Hawking, Gravitational Multi-instantons, Phys. Lett. 78B (1978) 430. (Reprinted in Ref. [615].)Google Scholar
[614] G.W., Gibbons and S.W., Hawking, Classification of Gravitational Instanton Symmetries, Commun. Math. Phys. 66 (1979) 291. (Reprinted in Ref. [615].)Google Scholar
[615] G.W., Gibbons and S.W., Hawking (eds.), Euclidean Quantum Gravity. Singapore: World Scientific (1993).
[616] G. W., Gibbons and C. A. R., Herdeiro, Supersymmetric Rotating Black Holes and Causality Violation, Classical Quant. Grav. 16 (1999) 3619.Google Scholar
[617] G. W., Gibbons, G. T., Horowitz, and P. K., Townsend, Higher-Dimensional Resolution of Dilatonic Black Hole Singularities, Classical Quant. Grav. 12 (1995) 297.Google Scholar
[618] G.W., Gibbons and C.M., Hull, A Bogomol'nyi Bound for General Relativity and Solitons in N =2 Supergravity, Phys.Lett. 109B (1982) 190.Google Scholar
[619] G.W., Gibbons, C.M., Hull, and N.P., Warner, The Stability of Gauged Supergravity, Nucl. Phys. B218(1983)173.Google Scholar
[620] G. W., Gibbons, D., Ida, and T., Shiromizu, Uniqueness and Non-Uniqueness of Static Vacuum Black Holes in Higher Dimensions, Phys. Rev. Lett. 89 (2002) 041101.Google Scholar
[621] G.W., Gibbons and R.E., Kallosh, Topology, Entropy and Witten Index of Dilaton Black Holes, Phys. Rev. D51 (1995)2839.Google Scholar
[622] G. W., Gibbons, R., Kallosh, and B., Kol, Moduli, Scalar Charges and the First Law of Black Hole Thermodynamics, Phys.Rev.Lett. 77(1996)4992.Google Scholar
[623] G. W., Gibbons and K., Maeda, Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields, Nucl. Phys. B298 (1988) 741.Google Scholar
[624] G. W., Gibbons and M. J., Perry, New Gravitational Instantons and their Interactions, Phys. Rev. D22 (1980) 313.Google Scholar
[625] G. W., Gibbons and C. N., Pope, The Positive Action Conjecture and Asymptotically Euclidean Metrics in Quantum Gravity, Commun. Math. Phys. 66 (1979) 267. (ReprintedinRef. [615].)Google Scholar
[626] G. W., Gibbons and D. A., Rasheed, Electric-Magnetic Duality Rotations in Nonlinear Electrodynamics, Nucl. Phys. B454 (1995) 185.Google Scholar
[627] G. W., Gibbons and D. A., Rasheed, SL(2,R) Invariance of Non-Linear Electrodynamics Coupled to an Axion and a Dilaton, Phys. Lett. B365 (1996) 46.Google Scholar
[628] G.W., Gibbons and P.J., Ruback, The Hidden Symmetries Of MulticenterMetrics, Commun. Math. Phys. 115(1988)267.Google Scholar
[629] G. W., Gibbons and P. K., Townsend, Vacuum Interpolation in Supergravity via Super p-Branes, Phys. Rev. Lett. 71 (1993) 3754.Google Scholar
[630] S.B., Giddings and A., Strominger, String Wormholes, Phys. Lett. B230(1989)46.Google Scholar
[631] J., Gillard, U., Gran, and G., Papadopoulos, The Spinorial Geometry of Supersymmetric Backgrounds, Classical Quant. Grav. 22 (2005) 1033.Google Scholar
[632] R., Gilmore, Lie Groups, Lie Algebras and Some of Their Applications. New York: Wiley (1974).Google Scholar
[633] E. G., Gimon, F., Larsen, and J., Simon, Constituent Model of Extremal non-BPS Black Holes, JHEP 0907 (2009) 052.Google Scholar
[634] P., Ginsparg, Applied Conformal Field Theory, in Fields, Strings and Critical Phenomena, eds. E., Breizin and J., Zinn-Justin. Amsterdam: North Holland (1990), pp. 1–168.Google Scholar
[635] A., Giveon, M., Porrati, and E., Rabinovici, Target Space Duality in String Theory, Phys. Rep. 244 (1994) 77.Google Scholar
[636] F., Gliozzi, J., Scherk, and D., Olive, Supersymmetry, Supergravity Theories and the Dual Spinor Model, Nucl. Phys. B122 (1977) 253.Google Scholar
[637] P., Goddard, J., Goldstone, C., Rebbi, and C. B., Thorn, Quantum Dynamics of a Massless Relativistic String, Nucl. Phys. B56 (1973) 109.Google Scholar
[638] P., Goddard and D. I., Olive, Magnetic Monopoles in Gauge Field Theories, Rep. Prog. Phys. 41 (1978) 91.Google Scholar
[639] M., Godina and P., Matteucci, Reductive G-structures and Lie Derivatives, math.DG/0201235.
[640] K., Goldstein, N., Iizuka, R. P., Jena, and S. P., Trivedi, Non-supersymmetric Attractors, Phys. Rev. D72 (2005) 124021.Google Scholar
[641] A., Gomberoff, D., Kastor, D., Marolf, and J., Traschen, Fully Localized Brane Intersections: The Plot Thickens, Phys. Rev. D61 (2000) 024012.Google Scholar
[642] M.H., Goroff and A., Sagnotti, The Ultraviolet Behavior of Einstein Gravity, Nucl. Phys. B266(1986)709.Google Scholar
[643] T., Goto, Relativistic Quantum Mechanics of One-Dimensional Mechanical Continuum and Subsidiary Condition of Dual Resonance Model, Prog. Theor. Phys. 46 (1971) 1560.Google Scholar
[644] J., Govaerts, Quantum Consistency of Open String Theories, Phys. Lett. B220 (1989) 77.Google Scholar
[645] U., Gran, J., Gutowski, and G., Papadopoulos, The Spinorial Geometry of Supersymmetric IIb Backgrounds, Classical Quant. Grav. 22 (2005) 2453.Google Scholar
[646] U., Gran, J., Gutowski, and G., Papadopoulos, The G(2) Spinorial Geometry of Supersymmetric IIB Backgrounds, Classical Quant. Grav. 23 (2006) 143.Google Scholar
[647] U., Gran, J., Gutowski, and G., Papadopoulos, Geometry of all Supersymmetric Four-dimensional N= 1 Supergravity Backgrounds, JHEP 0806 (2008) 102.Google Scholar
[648] U., Gran, J., Gutowski, and G., Papadopoulos, Invariant Killing Spinors in 11D and Type II Supergravities, Classical Quant. Grav. 26 (2009) 155004.Google Scholar
[649] U., Gran, J., Gutowski, and G., Papadopoulos, Classification of IIB Backgrounds with 28 Supersymmetries, JHEP 1001 (2010) 044.Google Scholar
[650] U., Gran, J., Gutowski, and G., Papadopoulos, M-theory Backgrounds with 30 Killing Spinors are Maximally Supersymmetric, JHEP 1003 (2010) 112.Google Scholar
[651] U., Gran, J., Gutowski, G., Papadopoulos, and D., Roest, Systematics of IIB Spinorial Geometry, Classical Quant. Grav. 23 (2006) 1617.Google Scholar
[652] U., Gran, J., Gutowski, G., Papadopoulos, and D., Roest, Maximally Supersymmetric G-Backgrounds of IIB Supergravity, Nucl. Phys. B753 (2006) 118.Google Scholar
[653] U., Gran, J.|Gutowski, G., Papadopoulos, and D., Roest, N =31 is not IIB, JHEP 0702 (2007) 044.Google Scholar
[654] U., Gran, J., Gutowski, G., Papadopoulos, and D., Roest, Aspects of Spinorial Geometry, Mod. Phys. Lett. A22 (2007) 1.Google Scholar
[655] U., Gran, J., Gutowski, G., Papadopoulos, and D., Roest, IIB solutions with N= 28 Killing Spinors are Maximally Supersymmetric, JHEP 0712 (2007)070.Google Scholar
[656] U., Gran, P., Lohrmann, and G., Papadopoulos, The Spinorial Geometry of Supersymmetric Heterotic String Backgrounds, JHEP 0602 (2006) 063.Google Scholar
[657] U., Gran, P., Lohrmann, and G., Papadopoulos, Geometry of Type II Common sector N= 2 Backgrounds, JHEP 0606 (2006) 049.Google Scholar
[658] U., Gran, G., Papadopoulos, and D., Roest, Systematics of M-Theory Spinorial Geometry, Classical Quant. Grav. 22 (2005) 2701.Google Scholar
[659] U., Gran, G., Papadopoulos, and D., Roest, Supersymmetric Heterotic String Backgrounds, Phys. Lett. B656 (2007) 119.Google Scholar
[660] U., Gran, G., Papadopoulos, D., Roest, and P., Sloane, Geometry of all Supersymmetric Type I Backgrounds, JHEP 0708 (2007) 074.Google Scholar
[661] J. C., Graves and D., Brill, Oscillatory Character of Reissner-Nordstrom Metric for an Ideal Charged Wormhole, Phys. Rev. 120 (1960)1507.Google Scholar
[662] M. B., Green, Introduction to string and superstring Theory 1, in From the Planck Scale to the Weak Scale: Towards a Theory of the Universe, ed. H. E., Haber. Singapore: World Scientific (1987).Google Scholar
[663] M. B., Green, Point-like States for Type IIB Superstrings, Phys. Lett. B329(1994)435.Google Scholar
[664] M. B., Green, A Gas of D Instantons, Phys. Lett. B354 (1995) 271.Google Scholar
[665] M. E., Peskin, Introduction to String and Superstring Theory 2, in From the Planck Scale to the Weak Scale: Towards a Theory of the Universe, ed. H. E, . Haber, Singapore: World Scientific (1987).Google Scholar
[666] M. B., Green and M., Gutperle, Comments on Three-Branes, Phys. Lett. B377(1996)28.Google Scholar
[667] M. B., Green, C. M., Hull, and P. K., Townsend, D-p-brane Wess-Zumino Actions, T-Duality and the Cosmological Constant, Phys. Lett. B382(1996)65.Google Scholar
[668] M. B., Green and J. H., Schwarz, Covariant Description of Superstrings, Phys. Lett. B136 (1984) 367.Google Scholar
[669] M. B., Green and J. H., Schwarz, Properties of the Covariant Formulation of Superstring Theories, Nucl. Phys. B243 (1984) 285.Google Scholar
[670] M. B., Green, J. H., Schwarz, and E., Witten, Superstring Theory, 2 vol. Cambridge: Cambridge University Press (1987).Google Scholar
[671] B. R., Greene, String theory on Calabi-Yau manifolds, in Fields, strings and duality, eds. C., Efthimiou and B. R., Greene, Singapore, Singapore: World Scientific (1997).Google Scholar
[672] B. R., Greene and M. R., Plesser, (2,2) and (2,0) Superconformal Orbifolds, Harvard University PreprintHUTP-89/A043 (1989).
[673] B. R., Greene and M. R., Plesser, Duality In Calabi-yau Moduli Space, Nucl. Phys. B338 (1990) 15.Google Scholar
[674] B. R., Greene, A., Shapere, C., Vafa, and S.-T., Yau, Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds, Nucl. Phys. B337 (1990)1.Google Scholar
[675] R., Gregory and J. A., Harvey, Black Holes with a Massive Dilaton, Phys. Rev. D47 (1993) 2411.Google Scholar
[676] R., Gregory, J. A., Harvey, and G., Moore, Unwinding Strings and T-duality of Kaluza-Klein and H-Monopoles, Adv. Theor. Math. Phys. 1 (1997)283.Google Scholar
[677] R., Gregory and R., Laflamme, Black Strings and P-Branes are Unstable, Phys. Rev. Lett. 70 (1993) 2837.Google Scholar
[678] R., Gregory and R., Laflamme, The Instability of Charged Black Strings and p-Branes, Nucl. Phys. B428 (1994) 399.Google Scholar
[679] R., Gregory and R., Laflamme, Evidence for Stability of Extremal Black p-Branes, Phys. Rev. D51 (1995) 305.Google Scholar
[680] M., Grisaru, Positivity of the Energy in Einstein's Theory, Phys. Lett. 73B (1978) 207.Google Scholar
[681] M. T., Grisaru, P. S., Howe, L., Mezincescu, B., Nilsson, and P. K., Townsend, N = 2 Superstrings in a Supergravity Background, Phys. Lett. B162 (1985) 116.Google Scholar
[682] M. T., Grisaru, P. van Nieuwenhuizen, and J. A. M., Vermaseren, One Loop Renormalizability of Pure Supergravity and of Maxwell-Einstein Theory in Extended Supergravity, Phys. Rev. Lett. 37 (1976) 1662.Google Scholar
[683] F., Gronwald and F. W., Hehl, On the Gauge Aspects of Gravity, Proc. 14th Course of the School ofCosmology and Gravitation on Quantum Gravity, eds. P. G., Bergmann, V., de Sabbata, and H.-J., Treder. Singapore: World Scientific (1996), p. 148.Google Scholar
[684] D.J., Gross and M.J., Perry, Magnetic Monopoles in Kaluza-Klein Theories, Nucl. Phys. B226 (1983) 29.Google Scholar
[685] S.S., Gubser, Special Holonomy in String Theory and M-Theory, Lectures given at TASI (2001), hep-th/0201114.
[686] S.S., Gubser and I., Mitra, Instability of Charged Black Holes in Anti-De Sitter Space, hep-th/00 0912 6.
[687] S. S., Gubser and I., Mitra, The Evolution of Unstable Black Holes in Anti-De Sitter Space, JHEP 0108 (2001) 018.Google Scholar
[688] M., Günaydin, Lectures on Spectrum Generating Symmetries and U-duality in Supergravity, Extremal Black Holes, Quantum Attractors and Harmonic Superspace, arXiv:0908.0374.
[689] M., Günaydin, K., Koepsell, and H., Nicolai, Conformal and Quasiconformal Realizations of Exceptional Lie Groups, Com-mun. Math. Phys. 221 (2001) 57.Google Scholar
[690] M., Günaydin and N., Marcus, The Spectrum of the S5 Compactification of the Chiral N = 2, D = 10 Supergravity and the Unitary Supermultiplets of U(2, 2/4), Classical Quant. Grav. 2 (1985) L11.Google Scholar
[691] M., Günaydin, A., Neitzke, B., Pioline, and A., Waldron, Quantum Attractor Flows, JHEP 0709 (2007) 056.Google Scholar
[692] M., Güunaydin, G., Sierra, and P. K., Townsend, Exceptional Supergravity Theories and the MAGIC Square, Phys. Lett. B133 (1983) 72.Google Scholar
[693] M., Günaydin, G., Sierra, and P. K., Townsend, The Geometry of N = 2 Maxwell-Einstein Supergravity and Jordan Algebras, Nucl. Phys. B242 (1984) 244.Google Scholar
[694] M., Günaydin, G., Sierra, and P. K., Townsend, Gauging The D =5 Maxwell-Einstein Supergravity Theories: More On Jordan Algebras, Nucl. Phys. B253 (1985) 573.Google Scholar
[695] M., Günaydin and M., Zagermann, The Gauging of Five-dimensional, N =2 Maxwell-Einstein Supergravity Theories Coupled to Tensor Multiplets, Nucl. Phys. B572 (2000) 131.Google Scholar
[696] M., Günaydin and M., Zagermann, Gauging the Full R-symmetry Group in Five-dimensional, N = 2 Yang-Mills/Einstein/Tensor Supergravity, Phys. Rev. D63 (2001) 064023.Google Scholar
[697] F., Gürsey, Ann. Phys. 24 (1963) 211.
[698] R., Güven, Plane Waves in Effective Field Theories of Superstrings, Phys. Lett. B191 (1987) 275.Google Scholar
[699] R., Güven, Black p-Brane Solutions of D = 11 Supergravity Theory, Phys. Lett. 276B (1992) 49.Google Scholar
[700] R., Güven, Plane Wave Limits and T Duality, Phys. Lett. B482 (2000) 255.Google Scholar
[701] S. N., Gupta, Gravitation and Electromagnetism, Phys. Rev. 96 (1954) 1683.Google Scholar
[702] S. N., Gupta, Einstein's and Other Theories of Gravitation, Rev. Mod. Phys. 29 (1957) 334.Google Scholar
[703] M., Gurses and F., Gursey, Derivation of the String Equation of Motion in General Relativity, Phys. Rev. D11 (1975) 967.Google Scholar
[704] J. B., Gutowski, D., Martelli, and H.S., Reall, All Supersymmetric Solutions of Minimal Supergravity in Six Dimensions, Classical Quant. Grav. 20 (2003) 5049.Google Scholar
[705] J. B., Gutowski and H. S., Reall, General Supersymmetric AdS(5) Black Holes, JHEP 0404 (2004) 048.Google Scholar
[706] J. B., Gutowski and W., Sabra, General Supersymmetric Solutions of Five-dimensional Supergravity, JHEP 0510 (2005) 039.Google Scholar
[707] R., Haag, J. T., Lopuszański, and M., Sohnius, All Possible Generators of Supersymmetries of the S Matrix, Nucl. Phys. B88 (1975) 257.Google Scholar
[708] A., Hanany and E., Witten, Type IIB Superstrings, BPS Monopoles and 3-Dimensional Gauge Dynamics, Nucl. Phys. B492 (1997) 152.Google Scholar
[709] B. J., Harrington and H. K., Shepard, Periodic Euclidean Solutions and the Finite Temperature Yang-Mills Gas, Phys. Rev. D17 (1978) 2122.Google Scholar
[710] B. K., Harrison, New Solutions of the Einstein-Maxwell Equations from Old, J. Math. Phys. 9 (1968) 1744.Google Scholar
[711] J. B., Hartle and S. W., Hawking, Solutions of the Einstein-Maxwell Equations with Many Black Holes, Commun. Math. Phys. 26, (1972) 87.Google Scholar
[712] J., Hartong, M., Hübscher, and T., Ortńn, The Supersymmetric Tensor Hierarchy of N = 1, d = 4 supergravity, JHEP 0906 (2009) 090.Google Scholar
[713] J., Hartong and T., Ortńn, Tensor Hierarchies of 5- and 6-Dimensional Field Theories, JHEP 0909 (2009) 039.Google Scholar
[714] J. A., Harvey and J., Liu, Magnetic Monopoles in N = 4 Supersymmetric Low-energy Superstring Theory, Phys. Lett. B268 (1991) 40.Google Scholar
[715] J. A., Harvey and A., Strominger, The Heterotic String is a Soliton, Nucl. Phys. B449 (1995) 535. [Erratum ibid. B458 (1996) 456.]Google Scholar
[716] A., Hashimoto, The Shape of Branes Pulled by Strings, Phys. Rev. D57 (1998) 6441.Google Scholar
[717] A., Hashimoto, Supergravity Solutions for Localized Intersections of Branes, JHEP 9901 (1999) 018.Google Scholar
[718] S. F., Hassan, T Duality and Nonlocal Supersymmetries, Nucl. Phys. B460 (1996) 362.Google Scholar
[719] S. F., Hassan, T-Duality, Space-Time Spinors and R-R Fields in Curved Backgrounds, Nucl. Phys. B568 (2000) 145.Google Scholar
[720] S. F., Hassan, SO (d,d) Transformations of Ramond-Ramond Fields and Space-Time Spinors, Nucl. Phys. B583 (2000) 431.Google Scholar
[721] S. W., Hawking, Commun. Math. Phys. 25 (1972) 152.
[722] S. W., Hawking, The Event Horizon, in Black Holes, eds. C., DeWitt and B. S., DeWitt. New York: Gordon and Breach (1973).
[723] S. W., Hawking, Nature 248 (1974) 30.
[724] S. W., Hawking, Particle Creation by Black Holes, Commun. Math. Phys. 43 (1975) 199. (Reprinted in Ref. [615].)Google Scholar
[725] S. W., Hawking, Black Holes and Thermodynamics, Phys. Rev. D13 (1976) 191.Google Scholar
[726] S. W., Hawking, Gravitational Instantons, Phys. Lett. 60A (1977) 81.Google Scholar
[727] S. W., Hawking, The Path-integral Approach to Quantum Gravity, in General Relativity, An Einstein Centenary Survey, eds. S. W., Hawking and W., Israel.Cambridge: Cambridge University Press (1979), p. 746.Google Scholar
[728] S. W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-Time. Cambridge: Cambridge University Press (1973).Google Scholar
[729] S. W., Hawking and G. T., Horowitz, Gravitational Hamiltonian, Action, Entropy and Surface Terms, Classical Quant. Grav. 13 (1996) 1487.Google Scholar
[730] S. W., Hawking, G. T., Horowitz, and S. F., Ross, Entropy, Area and Black Hole Pairs, Phys. Lett. B383 (1996) 383.Google Scholar
[731] S. W., Hawking and C. J., Hunter, The Gravitational Hamiltonian in the Presence of Non-Orthogonal Boundaries, Classical Quant. Grav. 13 (1996) 2735.Google Scholar
[732] S. W., Hawking and C. J., Hunter, Gravitational Entropy and Global Structure, Phys. Rev. D59 (1999) 044025.Google Scholar
[733] S.W., Hawking, C. J., Hunter, and D. N.|Page, Nut Charge, Anti-de Sitter Space and Entropy, hep-th/9 80 903 5.
[734] S. W., Hawking and S. F., Ross, Duality Between Electric and Magnetic Black Holes, Phys. Rev. D52 (1995) 5865.Google Scholar
[735] K., Hayashi and T., Nakano, Extended Translation Invariance and Associated Gauge Fields, Prog. Theor. Phys. 38 (1967) 491.Google Scholar
[736]K., Hayashi and T., Shirafuji, New General Relativity, Phys. Rev. D19 (1979) 3524.Google Scholar
[737] F. W., Hehl, P., von der Heyde, G. D., Kerlick, and J., MNester, General Relativity with Spin and Torsion: Foundations and Prospects, Rev. Mod. Phys. 48 (1976) 393.Google Scholar
[738] F. W., Hehl, J. D., McCrea, E. W., Mielke, and Y., Ne'eman, Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance, Phys. Rep. 258 (1995) 1.Google Scholar
[739] K. R., Heiderich and W. G., Unruh, Spin-two Fields, General Covariance and Conformal Invariance, Phys. Rev. D38 (1988) 490.Google Scholar
[740] K. R., Heiderich and W. G., Unruh, Nonlinear, Noncovariant Spin-Two Theories, Phys. Rev. D42 (1990) 2057.Google Scholar
[741] S., Helgason, Differential Geometry, Lie Groups and Symmetric Spaces. New York: Academic Press (1978).Google Scholar
[742] M., Henneaux and L., Mezincescu, A Sigma Model Interpretation of Green-Schwarz Covariant Superstring Action, Phys. Lett. B152 (1985) 340.Google Scholar
[743]M., Henneaux and C., Teitelboim, Relativistic Quantum Mechanics of Supersymmetric Particles, Ann. Phys. 143 (1982) 127.Google Scholar
[744] M., Henneaux and C., Teitelboim, The Cosmological Constant and General Covariance, Phys. Lett. B222 (1989) 195.Google Scholar
[745] M., Henneaux, C., Teitelboim, and J., Zanelli, Gauge Invariance and Degree of Freedom Count, Nucl. Phys. B332 (1990) 169.Google Scholar
[746] C. A. R., Herdeiro, Spinning Deformations of the D1-D5 System and a Geometric Resolution of Closed Timelike Curves, Nucl. Phys. B665 (2003) 189.Google Scholar
[747] M., Heusler, Black Holes Uniqueness Theorems. Cambridge: Cambridge University Press (1996).Google Scholar
[748] M., Heusler, No-Hair Theorems and Black Holes with Hair, Helv. Phys. Acta 69 (1996) 501.Google Scholar
[749] M., Heusler, Stationary Black Holes: Uniqueness and Beyond, Living Rev. Relativ. 1 (1998) 6.Google Scholar
[750] M., Heusler and N., Straumann, The First Law of Black Hole Physics For a Class of Nonlinear Matter Models, Classical Quant. Grav. 10 (1993) 1299.Google Scholar
[751] P., von der Heyde, Is Gravitation Mediated by the Torsion of Spacetime?, Z. Naturforsch. 31a (1976) 1725.Google Scholar
[752] D., Hilbert, Die Grundlagen der Physik (Erste Mitteilung), Königl. Gesell. Wiss. Göttingen. Math.-phys. Klasse. Nachr. (1915) 395.Google Scholar
[753] J. W., van Holten, Propagators and Path Integrals, Nucl. Phys. B457 (1995) 375.Google Scholar
[754] J. W., van Holten, D =1 Supergravity and Spinning Particles, in From Field Theory to Quantum Groups, eds. B., Jancewicz and J., Sobczyk.Singapore: World Scientific (1996), p. 173.Google Scholar
[755] J. W., Van Holten and A., Van Proeyen, N =1 Supersymmetry Algebras in D = 2, D = 3, D = 4 Mod 8, J. Phys. A15 (1982) 3763.Google Scholar
[756] C. F., Holzhey and F., Wilczek, Black Holes as Elementary Particles, Nucl. Phys. B380 (1992) 447.Google Scholar
[757] H., Hopf, Math. Ann. 104 (1931) 637.
[758] P., Hořava, Strings on World Sheet Orbifolds, Nucl. Phys. B327 (1989) 461.Google Scholar
[759] P., Hořava, Background Duality of Open String Models, Phys. Lett. B231 (1989) 251.Google Scholar
[760] P., Hořava and E., Witten, Heterotic and Type I String Dynamics from Eleven Dimensions, Nucl. Phys. B460 (1996) 506.Google Scholar
[761] P., Hořava and E., Witten, Eleven-Dimensional Supergravity on a Manifold with Boundary, Nucl. Phys. B475 (1996) 94.Google Scholar
[762] J. H., Horne and G. T., Horowitz, Black Holes Coupled to a Massive Dilaton, Nucl. Phys. B399 (1993) 169.Google Scholar
[763] G. T., Horowitz, The Dark Side of String Theory: Black Holes and Black Strings, in String Theory and Quantum Gravity, eds. J. A., Harvey, R., Iengo, K. S., Narain, S., Randjbar-Daemi, and H. L., Verlinde. Singapore: World Scientific (1993), p. 55.Google Scholar
[764] G. T., Horowitz, Quantum States of Black Holes, in Black Holes and Relativistic Stars. Chicago, IL: University of Chicago Press (1998), p. 241.Google Scholar
[765] G. T., Horowitz, The Origin of Black Hole Entropy in String Theory, in Proc. Pacific Conf. Gravitation and Cosmology, eds. Y. M., Cho, C. H., Lee, and S.W., Kim. Singapore: World Scientific (1999), p. 46.Google Scholar
[766] G. T., Horowitz, D. A., Lowe, and J. M., Maldacena, Statistical Entropy of Nonextremal Four-Dimensional Black Holes and U Duality, Phys.Rev. Lett. 77 (1996) 430.Google Scholar
[767] G.T., Horowitz and K., Maeda, Fate of the Black String Instability, Phys. Rev. Lett. 87 (2001) 131301.Google Scholar
[768] G. T., Horowitz and K., Maeda, Inhomogeneous Near-Extremal Black Branes, Phys. Rev. D65 (2002) 104028.Google Scholar
[769] G. T., Horowitz, J. M., Maldacena, and A., Strominger, Nonextremal Black Hole Microstates and U Duality, Phys. Lett. B383 (1996) 151.Google Scholar
[770] G. T., Horowitz and J., Polchinski, A Correspondence Principle for Black Holes and Strings, Phys. Rev. D55 (1997) 6189.Google Scholar
[771] G. T., Horowitz and J., Polchinski, Self-Gravitating Fundamental Strings, Phys. Rev. D57 (1998) 2557.Google Scholar
[772] G. T., Horowitz and S. F., Ross, Naked Black Holes, Phys. Rev. D56 (1997) 2180.Google Scholar
[773] G.T., Horowitz and S.F., Ross, Properties of Naked Black Holes, Phys. Rev. D57 (1998) 1098.Google Scholar
[774] G. T., Horowitz and A. R., Steif, Space-Time Singularities in String Theory, Phys. Rev. Lett. 64 (1990) 260.Google Scholar
[775] G. T., Horowitz and A., Strominger, Black Strings and p-Branes, Nucl. Phys. B360 (1991) 197.Google Scholar
[776] G. T., Horowitz and A. A., Tseytlin, A New Class of Exact Solutions in String Theory, Phys. Rev. D51 (1995) 2896.Google Scholar
[777] K., Hosomichi, On Branes Ending on Branes in Supergravity, JHEP 0006 (2000) 004.Google Scholar
[778] Y., Hosotani, Dynamical Mass Generation by Compact Extra Dimensions, Phys. Lett. B126 (1983) 309.Google Scholar
[779] Y., Hosotani, Dynamical Gauge Symmetry Breaking as the Casimir Effect, Phys. Lett. B129 (1983) 193.Google Scholar
[780] Y., Hosotani, Dynamics of Nonintegrable Phases and Gauge Symmetry Breaking, Ann. Phys. 190 (1989) 233.Google Scholar
[781] K., Hotta, Holographic RG Flow Dual to Attractor Flow in Extremal Black Holes, Phys. Rev. D79 (2009) 104018.Google Scholar
[782] M., Hotta and M., Tanaka, Shock-wave Geometry with Non-Vanishing Cosmological Constant, Classical Quant. Grav. 10 (1993) 307.Google Scholar
[783] P. S., Howe, N. D., Lambert, and P. C., West, A New Massive Type IIA Supergravity from Compactification, Phys. Lett. B416 (1998) 303.Google Scholar
[784] P. S., Howe, N. D., Lambert, and P. C., West, The Self-Dual String Soliton, Nucl. Phys. B515 (1998) 203.Google Scholar
[785] P.S., Howe, N. D., Lambert, and P. C., West, The Threebrane Soliton of the M-Fivebrane, Phys. Lett. B419 (1998) 79.Google Scholar
[786] P. S., Howe and E., Sezgin, Superbranes, Phys. Lett. B390 (1997) 133.Google Scholar
[787] P. S., Howe and E., Sezgin, D = 11, p = 5, Phys. Lett. B394 (1997) 62.
[788] P., Howe and P. C., West, The Complete N = 2, d =10 Supergravity, Nucl. Phys. B238 (1984) 181.Google Scholar
[789] K., Hristov, On BPS Bounds in D =4 N =2 Gauged Supergravity II: General Matter Couplings and Black Hole Masses, JHEP 1203 (2012) 095.Google Scholar
[790] K., Hristov, C., Toldo, and S., Vandoren, On BPS Bounds in D =4 N = 2 Gauged Supergravity, JHEP 1112 (2011) 014.Google Scholar
[791] K., Hristov, C., Toldo, and S., Vandoren, Black Branes in AdS: BPS Bounds and Asymptotic Charges, Fortsch. Phys. 60 (2012) 1057.Google Scholar
[792] C.-G., Huang and C.-B., Liang, A Torus Like Black Hole, Phys. Lett. A201 (1995) 27.Google Scholar
[793] V. E., Hubený, Overcharging a Black Hole and Cosmic Censorship, Phys. Rev. D59 (1999) 064013.Google Scholar
[794] T., Hübsch, Calabi-Yau Manifolds: A Bestiary for Physicists, 2nd edn. Singapore: World Scientific (1994).
[795] M., Hübscher, P., Meessen, and T., Ortín, Supersymmetric Solutions of N =2 d = 4 SUGRA: The Whole Ungauged Shebang, Nucl. Phys. B759 (2006) 228.Google Scholar
[796] M., Hübscher, P., Meessen, and T., Ortín, Domain Walls and Instantons in N =1, d = 4 Supergravity, JHEP 1006 (2010) 001.Google Scholar
[797] M., Hübscher, P., Meessen, T., Ortín, and S., Vaula, Supersymmetric N = 2 Einstein-Yang-Mills Monopoles and Covariant Attractors, Phys. Rev. D78 (2008) 065031.Google Scholar
[798] M., Hübscher, P., Meessen, T., Ortín, and S., Vaula, N = 2 Einstein-Yang-Mills's BPS Solutions, JHEP 0809 (2008) 099.Google Scholar
[799] M., Hübscher, T., Ortín, and C. S., Shahbazi, The Tensor Hierarchies of Pure N = 2, d = 4, 5, 6 Supergravities, JHEP 1011 (2010) 130.Google Scholar
[800] J., Hughes, J., Liu, and J., Polchinski, Supermembranes, Phys. Lett. B180 (1986) 370.Google Scholar
[801] C. M., Hull, The Positivity of Gravitational Energy and Global Supersymmetry, Commun. Math. Phys. 90 (1983) 545.Google Scholar
[802] C. M., Hull, Lectures on Non-Linear Sigma Models and Strings, in Super Field Theories, eds. H. C., Lee, V., Elias, G., Kunstatter, R. B., Mann, and K. S., Viswanathan. New York: Plenum Press (1987).
[803] C. M., Hull, String-String Duality in Ten-Dimensions, Phys. Lett. B357 (1995) 545.Google Scholar
[804] C. M., Hull, Gravitational Duality, Branes and Charges, Nucl. Phys. B509 (1998) 216.Google Scholar
[805] C. M., Hull, U-Duality and BPS Spectrum of Super Yang-Mills Theory and M-Theory, JHEP 9807 (1998) 018.Google Scholar
[806] C. M., Hull, The Nonperturbative SO(32) Heterotic String, Phys. Lett. B462 (1999) 271.Google Scholar
[807] C. M., Hull, Holonomy and Symmetry in M-Theory, hep-th/0305039.
[808] C. M., Hull and P. K., Townsend, Unity of Superstring Dualities, Nucl. Phys. B438 (1995) 109.Google Scholar
[809] C. J., Hunter, The Action of Instantons with NUT Charge, Phys. Rev. D59 (1999) 024009.Google Scholar
[810] M., Huq and M. A., Namazie, Kaluza-Klein Supergravity in Ten Dimensions, Classical Quant. Grav. 2 (1985) 293.Google Scholar
[811] D. J., Hurley and M. A., Vandyck, On the Concepts of Lie and Covariant Derivatives of Spinors. Part 1, J. Phys. A27 (1994) 4569.Google Scholar
[812] C. A., Hurst, Ann. Phys. 50 (1968) 51.
[813] T.Z., Husain, If I Only Had aBrane!, Ph.D. Thesis, Stockholm University, hep-th/03 04143.
[814] S., Hwang, Geometriae Dedicata 71 (1998) 5.
[815] S., Hyun, U-Duality Between Three and Higher Dimensional Black Holes, hep-th/9704055.
[816] A. Yu., Ignatev and G. C., Joshi, Massive Electrodynamics and the Magnetic Monopoles, Phys. Rev. D53 (1996) 984.Google Scholar
[817] E., Inönü and E. P., Wigner, Proc. Nat. Acad. Sci. 39 (1953) 510.
[818] W., Israel, Event Horizons in Static Vacuum Space-Times, Phys. Rev. 164 (1967) 1776.Google Scholar
[819] W., Israel, Commun. Math. Phys. 8 (1968) 245.
[820] W., Israel and K. A., Khan, Collinear Particles and Bondi Dipoles in General Relativity, Nuovo Cim. 33 (1964) 331.Google Scholar
[821] W., Israel and J.M., Nester, Positivity of the Bondi Gravitational Mass, Phys. Lett. 85A, (1981) 259.Google Scholar
[822] W., Israel and G. A., Wilson, A Class of Stationary Electromagnetic Vacuum Fields, J. Math. Phys. 13, (1972) 865.Google Scholar
[823] N., Itzhaki, A. A., Tseytlin, and S., Yankielowicz, Supergravity Solutions for Branes Localized Within Branes, Phys. Lett. B432 (1998) 298.Google Scholar
[824] C., Itzykson and B., Zuber, QuantumField Theory. New York: McGraw-Hill (1980).Google Scholar
[825] J. M., Izquierdo, N. D., Lambert, G., Papadopoulos, and P. K., Townsend, Dyonic Membranes, Nucl. Phys. B460 (1996) 560.Google Scholar
[826] R., Jackiw, C., Nohl, and C., Rebbi, Conformal Properties of Pseudoparticle Configurations, Phys. Rev. D15 (1977) 1642.Google Scholar
[827] A. I., Janis, E. T., Newman, and J., Winicour, Reality of the Schwarzschild Singularity, Phys. Rev. Lett. 20 (1968) 878.Google Scholar
[828] B., Janssen, Curved Branes and Cosmological (a,b)-Models, JHEP 0001 (2000) 044.Google Scholar
[829] B., Janssen, P., Meessen, and T., Ortiin, The D8-Brane Tied Up: String and Brane Solutions in Massive Type IIIA Supergravity, Phys. Lett. B453 (1999) 229.Google Scholar
[830] B., Janssen, P., Smyth, T., Van Riet and B., Vercnocke, A First-Order Formalism for Timelike and Spacelike Brane Solutions, JHEP 0804, (2008) 007.Google Scholar
[831] J.T., Jebsen, Ark. f Mat. Astron. och Fys. 15(18) (1921) 9 S.
[832] C. V., Johnson, D-Brane Primer, Lectures given at ICTP, TASI, and BUSSTEPP, hep-th/00 07170.
[833] C. V., Johnson, D-Branes. Cambridge: Cambridge University Press (2002).
[834] C. V., Johnson, R. R., Khuri, and R. C., Myers, Entropy of 4-d Extremal Black Holes, Phys. Lett. B378 (1996) 78.Google Scholar
[835] D. C., Jong, A., Kaya, and E., Sezgin, 6D Dyonic String With Active Hyperscalars, JHEP 0611 (2006) 047.Google Scholar
[836] D.D., Joyce, Compact Manifolds with Special Holonomy. Oxford: Oxford University Press (2000).Google Scholar
[837] B., Julia, Group Disintegrations, in Superspace and Supergravity, eds. S. W., Hawking and M., Rocrek. Cambridge: Cambridge University Press (1981), p. 331.Google Scholar
[838] M., Kaku, Introduction to Superstrings. New York: Springer-Verlag (1988).Google Scholar
[839] R., Kallosh, D., Kastor, T., Ortiin, and T., Torma, Supersymmetry and Stationary Solutions in Dilaton-Axion Gravity, Phys. Rev. D50 (1994) 6374.Google Scholar
[840] R., Kallosh and B., Kol, E7Symmetric Area of the Black Hole Horizon, Phys. Rev. D53 (1996) 5344.Google Scholar
[841] R., Kallosh, A., Linde, T., Ortin, A., Peet, and A., Van Proeyen, Supersymmetry as a Cosmic Censor, Phys. Rev. D46 (1992) 5278.Google Scholar
[842] R., Kallosh and T., Ortin, Charge Quantization of Axion-Dilaton Black Holes, Phys. Rev. D48 (1993) 742.Google Scholar
[843] R., Kallosh and T., Ortin, Killing Spinor Identities, hep-th/93 0 6 085.
[844] R., Kallosh and T., Ortin, Exact SU(2) x U(1) Stringy Black Holes, Phys. Rev. D50 (1994) 7123.Google Scholar
[845] R., Kallosh and T., Ortin, New E77 Invariants and Amplitudes, JHEP 1209 (2012) 137.Google Scholar
[846] R., Kallosh, A., Rajaraman, and W. K., Wong, Supersymmetric Rotating Black Holes and Attractors, Phys. Rev. D55 (1997) 3246.Google Scholar
[847] R., Kallosh and M., Soroush, Explicit Action of E7(7) on N = 8 Supergravity Fields, Nucl. Phys. B801 (2008) 25.Google Scholar
[848] T., Kaluza, Zum Unitätsproblem der Physik, Sitzungsber. Preuß. Akad. Wiss., phys.-math. kl. (1921) 966 (translated into English in Ref. [57]).
[849] P. F., Kelly, Expansions of Non-Symmetric Gravitational Theories about a GR Background, Classical Quant. Grav. 6 (1991) 1217. [Erratum ibid. 8 (1992) 1423(E).]Google Scholar
[850] R. P., Kerr, Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics, Phys. Rev. Lett. 11 (1963) 237.Google Scholar
[851] S. V., Ketov, Universal Hypermultiplet Metrics, Nucl. Phys. B604 (2001) 256.Google Scholar
[852] R. R., Khuri, Self-Gravitating Strings and String/Black Hole Correspondence, Phys. Lett. B470 (1999) 73.Google Scholar
[853] R. R., Khuri, Entropy and String/Black-Hole Correspondence, Nucl. Phys. B588 (2000) 253.Google Scholar
[854] R. R., Khuri and T., Ortín, Supersymmetric Black Holes in N = 8 Supergravity, Nucl. Phys. B467 (1996) 355.Google Scholar
[855] R. R., Khuri and T., Ortín, A Non-Supersymmetric Dyonic Extreme Reissner-Nordstrom Black Hole, Phys. Lett. B373 (1996) 56.Google Scholar
[856] K., Kikkawa and M., Yamasaki, Casimir Effects in Superstring Theories, Phys. Lett. B149 (1984) 357.Google Scholar
[857] H. J., Kim, L. J., Romans, and P., van Nieuwenhuizen, The Mass Spectrum of Chiral N = 2 D = 10 Supergravity on S5, Phys. Rev. D32 (1985) 389.Google Scholar
[858] E., Kiritsis, Introduction to Non-perturbative String Theory, hep-th/9708130.
[859] E., Kiritsis, Introduction to Superstring Theory, Leuven Notes in Mathematical and Theoretical Physics B9. Leuven: Leuven University Press (1998).
[860] E., Kiritsis, String Theory in a Nutshell. Princeton, NJ: Princeton University Press (2007).Google Scholar
[861] F., Klein, Konigl. Gesell. Wiss. Göttinger Nachr., math.-phys. Kl. (1918) 394.
[862] O., Klein, Quantum Theory and Five Dimensional Theory of Relativity, Z. Phys. 37 (1926) 895.Google Scholar
[863] D., Klemm, V., Moretti, and L., Vanzo, Rotating Topological Black Holes, Phys. Rev. D57 (1998) 6127.Google Scholar
[864] D., Klemm and L., Vanzo, Quantum Properties of Topological Black Holes, Phys. Rev. D58 (1998) 104025.Google Scholar
[865] D., Klemm and O., Vaughan, Nonextremal Black Holes in Gauged Supergravity and the Real Formulation of Special Geometry, JHEP 1301 (2013) 053.Google Scholar
[866] D., Klemm and E., Zorzan, All Null Supersymmetric Backgrounds of N = 2, D = 4 Gauged Supergravity Coupled to Abelian Vector Multiplets, Classical Quant. Grav. 26 (2009) 145018.Google Scholar
[867] D., Klemm and E., Zorzan, The Timelike Half-supersymmetric Backgrounds of N = 2, D = 4 Supergravity with Fayet-Iliopoulos Gauging, Phys. Rev. D82 (2010) 045012.Google Scholar
[868] S., Kobayashi and K., Nomizu, Foundations of Differential Geometry, vol. 1 and 2. New York: Interscience (1969).Google Scholar
[869] A., Komar, Covariant Conservation Laws in General Relativity, Phys. Rev. 113 (1954) 934.Google Scholar
[870] Y., Kosmann, Dérivées de Lie des spineurs, C. R. Acad. Sci. Paris Sér. A. 262 (1966) A289.Google Scholar
[871] Y., Kosmann, Dérivées de Lie des spineurs, Annali Mat. Pura Appl. (IV) 91 (1972) 317.Google Scholar
[872] V. A., Kostelecky and M. J., Perry, Solitonic Black Holes in Gauged N = 2 Supergravity, Phys. Lett. B371 (1996) 191.Google Scholar
[873] F., Kottler, Encyklopädie der mathematikalischen Wissenschaft, vol. 6, part II. Leipzig: B. G. Teubner (1922).Google Scholar
[874] J., Kowalski-Glikman, Vacuum States in Supersymmetric Kaluza-Klein Theory, Phys. Lett. B134 (1984) 194.Google Scholar
[875] J., Kowalski-Glikman, Positive Energy Theorem and Vacuum States for the Einstein-Maxwell System, Phys. Lett. B150 (1985) 125.Google Scholar
[876] R.H., Kraichnan, Special Relativity Derivation of Generally Covariant Gravitation Theory, Phys. Rev. 98 (1955) 1118. [Erratum ibid. 99(1955) 1906.]Google Scholar
[877] R. H., Kraichnan, Possibility of Unequal Gravitational and Inertial Masses, Phys. Rev. 107 (1957) 1485.Google Scholar
[878] D., Kramer, H., Stephani, M., MacCallum, and E., Herlt, Exact Solutions of Einstein's Field Equations. Cambridge: Cambridge University Press (1980).Google Scholar
[879] M., Kruskal, Maximal Extension of the Schwarzschild Metric, Phys. Rev. 119 (1960) 1743.Google Scholar
[880] H. P., Künzle, Construction of Singularity-Free Spherically Symmetric Spacetime Manifolds, Proc. Roy. Soc. London A297 (1967) 244.Google Scholar
[881] H.P., Künzle and A. K., M. Masood-ul-Alam, Spherically Symmetric Static SU(2) Einstein Yang-Mills Fields, J. Math. Phys. 31 (1990) 928.Google Scholar
[882] T., Kugo and P. K., Townsend, Supersymmetry and the Division Algebras, Nucl. Phys. B221 (1983) 357.Google Scholar
[883] L. D., Landau and E. M., Lifshitz, The Classical Theory of Fields. Oxford: Pergamon Press (1975).Google Scholar
[884] F., Larsen, A String Model of Black Hole Microstates, Phys. Rev. D56 (1997) 1005.Google Scholar
[885] M., von Laue, Jahrbuch der Radioaktivitat und Elektronik 14 (1917) 263.
[886] S.M., Lee, A., Peet, and L., Thorlacius, Brane-Waves and Strings, Nucl. Phys. B514 (1998) 161.Google Scholar
[887] R. G., Leigh, Dirac-Born-Infeld Action from Dirichlet Sigma Model, Mod. Phys. Lett. A4 (1989) 2767.Google Scholar
[888] J. P. S., Lemos, Two-Dimensional Black Holes and Planar General Relativity, Classical Quant. Grav. 12 (1995) 1081.Google Scholar
[889] J.P.S., Lemos, Cylindrical Black Hole in General Relativity, Phys. Lett. B353 (1995) 46.Google Scholar
[890] J. P. S., Lemos and V. T., Zanchin, Rotating Charged Black String And Three-Dimensional Black Holes, Phys. Rev. D54 (1996) 3840.Google Scholar
[891] T., Levi-Cività, Vereinfachte Herstellung der Einsteinschen einheitlichen Feldgleichungen, Sitzungsber. Preuß. Akad. Wiss., phys.-math. Kl. (1929) 137.Google Scholar
[892] S., Liberati and G., Pollifrone, Entropy and Topology of Gravitational Instantons, Phys. Rev. D56 (1997) 6558.Google Scholar
[893] S., Liberati, T., Rothman, and S., Sonego, Nonthermal Nature of Incipient Extremal Black Holes, Phys. Rev. D62 (2000) 024005.Google Scholar
[894] A., Lichnerowicz, Théories relativistes de la gravitation et de l'électromagnétisme. Paris: Masson (1955).Google Scholar
[895] A., Lichnerowicz, Spineurs harmoniques, C. R. Acad. Sci. Paris 257 (1963) 7.Google Scholar
[896] L., Lindblom and A. K. M., Masood-ul-Alam, On the Spherical Symmetry of Static Stellar Models, Commun. Math. Phys. 162 (1994) 123.Google Scholar
[897] U., Lindstrom and R., von Unge, A Picture of D-Branes at Strong Coupling, Phys. Lett. B403 (1997) 233.Google Scholar
[898] A., Loewy, Semi Localized Brane Intersections in SUGRA, Phys. Lett. B463 (1999) 41.Google Scholar
[899] A. A., Logunov, The Relativistic Theory of Gravity and Mach's Principle, Phys. Part. Nucl. 29 (1) (1998) 1–32. (Fiz. Élem. Chast. Atom Yadra29 (1998) 5.)Google Scholar
[900] G., Lopes Cardoso, A., Ceresole, G., Dall'Agata, J. M., Oberreuter, and J., Perz, First-order Flow Equations for Extremal Black Holes in Very Special Geometry, JHEP 0710 (2007) 063.Google Scholar
[901] H. A., Lorentz, Amsterd. Versl. 25 (1916) 468.
[902] C. O., Lousto and N., Sánchez, The Ultrarrelativistic Limit of the Boosted Kerr-Newman Geometry and the Scattering of Spin 1/2 Particles, Nucl. Phys. B383 (1992) 377.Google Scholar
[903] D., Lovelock, The Einstein Tensor and Its Generalizations, J. Math. Phys. 12 (1971) 498.Google Scholar
[904] Y., Lozano, Eleven Dimensions fromthe Massive D-2-Brane, Phys. Lett. B414 (1997) 52.Google Scholar
[905] E., Lozano-Tellechea, P., Meessen, and T., Ortín, On d = 4, d = 5, d = 6 Vacua with Eight Supercharges, Classical Quant. Grav. 19 (2002) 5921.Google Scholar
[906] E., Lozano-Tellechea and T., Ortín, The General, Duality-Invariant Family of Non-BPS Black-Hole Solutions of N = 4, d = 4 Supergravity, Nucl. Phys. B569 (2000) 435.Google Scholar
[907] E., Lozano-Tellechea and T., Ortín, 7-Branes and Higher Kaluza-Klein Branes, Nucl. Phys. B607 (2001) 213.Google Scholar
[908] J. X., Lu, ADM Masses for Black Strings and p-Branes, Phys. Lett. B313 (1993) 29.Google Scholar
[909] J. X., Lu and Shibaji, RoyAn Si(2, Z Multiplet of Type IIB Super Five-Branes, Phys. Lett. B428 (1998) 289.Google Scholar
[910] J.X., Lu and Shibaji, Roy, Nonthreshold (F, Dp) Bound States, Nucl. Phys. B560 (1999) 181.Google Scholar
[911] J. X., Lu and Shibaji, Roy, (F, D5) Bound State, Si(2, Z) Invariance and the Descendant States in Type IIB/A String Theory, Phys. Rev. D60 (1999) 126002.Google Scholar
[912] H., , C.N., Pope, and J., Rahmfeld, A Construction of Killing Spinors on Sn, J. Math. Phys. 40 (1999) 4518.Google Scholar
[913] H., , C. N., Pope, E., Sezgin, and K. S., Stelle, Stainless Super p-Branes, Nucl. Phys. B456 (1995) 669.Google Scholar
[914] H., , C. N., Pope, T. A., Tran, and K. W., Xu, Classification of p-Branes, NUTs, Waves and Intersections, Nucl. Phys. B511 (1998) 98.Google Scholar
[915] D., Lüst and S., Theisen, Lectures on String Theory. Heidelberg: Springer-Verlag (1989).
[916] S.W., MacDowell and F., Mansouri, Unified Geometric Theory of Gravity and Supergravity, Phys. Rev. Lett. 38 (1977) 739. [Erratum ibid. 38 (1977) 1376.]Google Scholar
[917] J. Maharana and J. H., Schwarz, Non-compact Symmetries in String Theory, Nucl. Phys. B390 (1993) 3.
[918] S. D., Majumdar, A Class of Exact Solutions of Einstein's Field Equations, Phys. Rev. 72 (1947) 390.Google Scholar
[919] J. M., Maldacena, Black Holes in String Theory, Ph.D. Thesis, Princeton University, hep-th/9607235.
[920] J.M., Maldacena, Black Holes and D-Branes, Nucl. Phys. Proc. Suppl. 61A (1998) 111.Google Scholar
[921] J. M., Maldacena, The Large N Limit of Superconformal Field Theories and Supergravity, Adv. Theor. Math. Phys. 2 (1998) 231.Google Scholar
[922] J. M., Maldacena and A., Strominger, Statistical Entropy of Four-Dimensional Extremal Black Holes, Phys. Rev. Lett. 77 (1996) 428.Google Scholar
[923] J. M., Maldacena and A., Strominger, Black Hole Greybody Factors and D-Brane Spectroscopy, Phys. Rev. D55 (1997) 861.Google Scholar
[924] G., Mangano, Are there Metric Theories of Gravity other than General Relativity?, gr-qc/9511027.
[925] R. B., Mann, Pair Production of Topological Anti-de Sitter Black Holes', Classical Quant. Grav. 14 (1997) L109.Google Scholar
[926] R. B., Mann, Topological Black Holes: Outside Looking In, in Internal Structure of Black Holes and Spacetime Singularities, eds. L., Burko and A., Ori. Bristol: Institute of Physics Publishing, and Jerusalem: The Israel Physical Society (1997), p. 311.Google Scholar
[927] Y., Mao, M., Tegmark, A. H., Guth, and S., Cabi, Constraining Torsion with Gravity Probe B, Phys. Rev. D76 (2007) 104029.Google Scholar
[928] N., Marcus and J. H., Schwarz, Field Theories that have no Manifestly Lorentz Invariant Formulation, Phys. Lett. 115B (1982) 111.Google Scholar
[929] M. A., Markov and V. P., Frolov, Teor. Mat. Fiz. 3 (1970) 3.
[930] D., Marolf, Chern-Simons Terms and the Three Notions of Charge, in Proc. of the E.S. Fradkin Memorial Conf., hep-th/0006117.
[931] D., Marolf and A., Peet, Brane Baldness vs. Superselection Sectors, Phys. Rev. D60 (1999) 105007.Google Scholar
[932] A., Marrani, E., Orazi, and F., Riccioni, Exceptional Reductions, J. Phys. A44 (2011) 155207.Google Scholar
[933] A. E., Mayo and J. D., Bekenstein, No Hair for Spherical Black Holes: Charged and Nonminimally Coupled Scalar Field With Selfinteraction, Phys. Rev. D54 (1996) 5059.Google Scholar
[934] P., Meessen, A Small Note on pp-Wave Vacua in Six Dimensions and Five Dimensions, Phys. Rev. D65 (2002) 087501.Google Scholar
[935] P., Meessen, Supersymmetric Coloured/Hairy Black Holes, Phys. Lett. B665 (2008) 388.Google Scholar
[936] P., Meessen and T., Ortín, An Sl(2, Z) Multiplet of Nine-Dimensional Type II Supergravity Theories, Nucl. Phys. B541 (1999) 195.Google Scholar
[937] P., Meessen and T., Ortín, The Supersymmetric Configurations of N = 2, D = 4 Supergravity Coupled to Vector Supermultiplets, Nucl. Phys. B749 (2006) 291.Google Scholar
[938] P., Meessen and T., Ortín, Ultracold Spherical Horizons in Gauged N = 1, d = 4 Supergravity, Phys. Lett. B693 (2010) 358.Google Scholar
[939] P., Meessen and T., Ortín, Non-Extremal Black Holes of N = 2, d = 5 Supergravity, Phys. Lett. B707 (2012) 178.Google Scholar
[940] P., Meessen and T., Ortín, Supersymmetric Solutions to Gauged N = 2 d = 4 sugra: The Full Timelike Shebang, Nucl. Phys. B 863 (2012) 65.Google Scholar
[941] P., Meessen, T., Ortín, J., Perz, and C.S., Shahbazi, H-FGK-formalism for Black-Hole Solutions of N = 2, d = 4 and d = 5 Supergravity, Phys. Lett. B709 (2012) 260.Google Scholar
[942] P., Meessen, T., Ortín, J., Perz, and C. S., Shahbazi, Black Holes and Black Strings of N = 2, d = 5 Supergravity in the H-FGK formalism, JHEP 1209 (2012) 001.Google Scholar
[943] P., Meessen, T., Ortín, and S., Vaulà, All the Timelike Supersymmetric Solutions of all Ungauged d = 4 Supergravities, JHEP 1011 (2010) 072.Google Scholar
[944] M. A., Melvin, Pure Electric and Magnetic Geons, Phys. Lett. 8 (1964) 65.Google Scholar
[945] K., Menou, E., Quataert, and R., Narayan, Astrophysical Evidence for Black Hole Event Horizons, in The Eighth Marcel Grossman Meeting: Proceedings, ed. T., Piran. Singapore: World Scientific (1999), p. 204.Google Scholar
[946] R. R., Metsaev, Type IIB Green-Schwarz Superstring in Plane Wave Ramond-Ramond Background, Nucl. Phys. B625 (2002) 70.Google Scholar
[947] R. R., Metsaev and A. A., Tseytlin, Superstring Action in AdS5×S5: Kappa-Symmetry Light Cone Gauge, Phys. Rev. D63 (2001) 046002.Google Scholar
[948] R. R., Metsaev and A. A., Tseytlin, Exactly Solvable Model of Superstring in Plane Wave Ramond-Ramond Background, Phys. Rev. D65 (2002) 126004.Google Scholar
[949] C. M., Miller, K., Schalm, and E. J., Weinberg, Nonextremal Black Holes are BPS, Phys. Rev. D76 (2007) 044001.Google Scholar
[950] C., Misner, The Flatter Regions of Newman, Unti and Tambourino's Generalized Schwarzschild Space, J. Math. Phys. 4 (1963) 924.Google Scholar
[951] C., Misner, Interpretation of Gravitational Wave Observations, Phys. Rev. Lett. 28 (1972) 994.Google Scholar
[952] C. W., Misner, K. S., Thorne, and J. A., Wheeler, Gravitation. New York: W. H. Freeman and Co. (1973).Google Scholar
[953] C. W., Misner and J. A., Wheeler, Classical Physics as Geometry: Gravitation, Electromagnetism, Unquantized Charge, and Mass as Properties of Curved Empty Space, Annals Phys. 2 (1957) 525.Google Scholar
[954] J.W., Moffat, New Theory of Gravitation, Phys. Rev. D19 (1979) 3554.Google Scholar
[955] T., Mohaupt, Black Holes in Supergravity and String Theory, Classical Quant. Grav. 17 (2000) 3429.Google Scholar
[956] T., Mohaupt, Black Hole Entropy, Special Geometry and Strings, Fortsch. Phys. 49 (2001) 3.Google Scholar
[957] T., Mohaupt and O., Vaughan, Non-extremal Black Holes, Harmonic Functions, and Attractor Equations, Classical Quant. Grav. 27 (2010) 235008.Google Scholar
[958] T., Mohaupt and O., Vaughan, The Hesse Potential, the c-map and Black Hole Solutions, JHEP 1207 (2012) 163.Google Scholar
[959] T., Mohaupt and K., Waite, Instantons, Black Holes and Harmonic Functions, JHEP 0910 (2009) 058.Google Scholar
[960] C., Møller, Ann. Phys. 4 (1958) 347.
[961] C., Møller, Ann. Phys. 12 (1961) 118.
[962] C., Møller, Conservation Laws and Absolute Parallelism in General Relativity, Mat. Fys. Skr. Dan. Vid. Selsk. 1(10) (1961).Google Scholar
[963] S., Moriyama, USp(32) String as Spontaneously Supersymmetry Broken Theory, Phys. Lett. B522 (2001) 177.Google Scholar
[964] D. R., Morrison and N., Seiberg, Extremal Transitions and Five-Dimensional Supersymmetric Field Theories, Nucl. Phys. B483 (1997) 229.Google Scholar
[965] M., Moshinski, On the Interactions of Birkhoff's Gravitational Field with the Electromagnetic and Pair Fields, Phys. Rev. 80 (1950) 514.Google Scholar
[966] H., Müller zum Hagen and H.J., Seifert, Two Axisymmetric Black Holes Cannot Lie in Static Equilibrium, Int. J. Theor. Phys. 8 (1973) 443.Google Scholar
[967] U., Muench, F., Gronwald, and F. W., Hehl, A Small Guide to Variations in Teleparallel Gauge Theories of Gravity and the Kaniel-Itin Model, gr-qc/9801036.
[968] R. C., Myers and M. J., Perry, Black Holes in Higher Dimensional Space-Times, Ann. Phys. 172 (1986) 304.Google Scholar
[969] R. C., Myers and M. J., Perry, Higher-Dimensional Black Holes in Compactified Space, Phys. Rev. D35 (1987) 455.Google Scholar
[970] R. C., Myers and M. J., Perry, Stress Tensors and Casimir Energies in the AdS/CFT Correspondence, Phys. Rev. D60 (1999) 046002.Google Scholar
[971] R. C., Myers and M. J., Perry, Black Holes and String Theory, Summary of Lectures given at Fourth Mexican School on Gravitation and Mathematical Physics, gr-qc/0107034.
[972] M., Nakahara, Geometry, Topology and Physics. London: Institute of Physics Publishing (1990).Google Scholar
[973] T., Nakamura and H., Sato, Absorption of Massive Scalar Field by a Charged Black Hole, Phys. Lett. B61 (1976) 371.Google Scholar
[974] C., Nash and S., Sen, Topology and Geometry for Physicists. London: Academic Press (1983).Google Scholar
[975] R. I., Nepomechie, Magnetic Monopoles from Antisymmetric Tensor Gauge Fields, Phys. Rev. D31 (1985) 1921.Google Scholar
[976] J. M., Nester, A new Gravitational Energy Expression with a Simple Positivity Proof, Phys. Lett. 83A, (1981) 241.Google Scholar
[977] J. M., Nester and H.-J., Yo, Symmetric Teleparallel General Relativity, gr-qc/9809049.
[978] G., Neugebauer, Untersuchungen zu Einstein-Maxwell-Feldern mit eindimensionaler Bewegunsgruppe, Habilitationsschrift, University of Jena (1969).
[979] A., Neveu and J. H., Schwarz, Factorizable Dual Model of Pions, Nucl. Phys. D31 (1971) 86.Google Scholar
[980] E. T., Newman, E., Couch, K., Chinnapared, A., Exton, A., Prakash, and R., Torrence, Metric of a Rotating Charged Mass, J. Math. Phys. 6 (1965) 918.Google Scholar
[981] E., Newman, L., Tambourino, and T., Unti, Empty-space Generalization of the Scwarzschild Metric, J. Math. Phys. 4 (1963) 915.Google Scholar
[982] P., van Nieuwenhuizen, An Introduction to Covariant Quantization of Gravity, in 1975 Marcel Grossmann Meeting on General Relativity. Oxford: Oxford University Press (1977), p. 1.Google Scholar
[983] P., van Nieuwenhuizen, Supergravity, Phys. Rep. 68 (1981) 189.Google Scholar
[984] P., van Nieuwenhuizen, Six Lectures at the Trieste 1981 Summer School on Supergravity, in Supergravity '81. Cambridge: Cambridge University Press (1982), p. 151.Google Scholar
[985] P., van Nieuwenhuizen and J. A. M., Vermaseren, One Loop Divergences in the Quantum Theory of Supergravity, Phys. Lett. B65 (1976) 263.Google Scholar
[986] A. I., Nikishov, On Energy-Momentum Tensors of Gravitational Field, Phys. Part. Nuclei 32 (2001) 1. (Fiz. Élem. Chast. Atom. Yadra32 (2001) 5.)Google Scholar
[987] H., Nishino and S., Rajpoot, Gauged N = 2 Supergravity in Nine-Dimensions and Domain-Wall Solutions, Phys. Lett. B546 (2002) 261.Google Scholar
[988] H., Nishino and E., Sezgin, The Complete N = 2, D = 6 Supergravity With Matter And Yang-Mills Couplings, Nucl. Phys. B278 (1986) 353.Google Scholar
[989] G., Nordström, Phys. Z. 13 (1912) 1126.
[990] G., Nordström, Ann. Phys. 40 (1913) 856.
[991] G., Nordström, Theorie der Gravitation rom Standpunkt des Relativiätsprinzips, Ann. Phys. 42 (1913) 533.Google Scholar
[992] G., Nordström, Ann. Phys. 43 (1914) 1101.
[993] G., Nordström, Phys. Z. 15 (1914) 375.
[994] G., Nordström, Über die Möglichkeit, das elektromagnetische Feld und das Gravitationsfeld zu vereinigen, Phys. Z. 15 (1914) 504 (translated into English in Ref. [57]).Google Scholar
[995] G., Nordström, Ann. Acad. Sci. Fenn. 57 (1914, 1915).
[996] G., Nordström, Proc. Kon. Ned. Akad. Wet. 20 (1918) 1238.
[997] J. D., Norton, Arch. Hist. Exact Sciences 45 (1993) 17.
[998] I., Novikov and V. P., Frolov, Physics of Black Holes. Dordrecht: Kluwer Academic Publishers (1989).Google Scholar
[999] N. A., Obers, B., Pioline, and E., Rabinovici, M-Theory and U-Duality on Td with Gauge Backgrounds, Nucl. Phys. B525 (1998) 163.Google Scholar
[1000] V. I., Ogievetsky and I. V., Polubarinov, Interacting Field of Spin-2 and the Einstein Equations, Ann. Phys. 35 (1965) 167.Google Scholar
[1001] D. W., Olson and W. G., Unruh, Conversion of Electromagnetic to Gravitational Radiation by Scattering from a Charged Black Hole, Phys. Rev. Lett. 33 (1974) 1116.Google Scholar
[1002] B., O'Neill, The Geometry of Kerr Black Holes. Wellesley, MA: A. K. Peters (1994).Google Scholar
[1003] H., Ooguri and Z., Yin, TASI Lectures on Perturbative String Theories, in Fields, Strings and Duality. Proceedings, Summer School, Theoretical Advanced Study Institute in Elementary Particle Physics, TASI'96, Boulder, USA, June 2–28, 1996, eds. C., Efthimiou and B., Greene. Singapore: World Scientific (1997), p. 5. hep-th/9612254.
[1004] L., O'Raifeartaigh, The Dawning of Gauge Theory. Princeton, NJ: Princeton University Press (1997).Google Scholar
[1005] T., Ortin, Electric-Magnetic Duality and Supersymmetry in Stringy Black Holes, Phys. Rev. D47 (1993) 3136.Google Scholar
[1006] T., Ortín, Time-Symmetric Initial-Data Sets in 4-D Dilaton Gravity, Phys. Rev. D52 (1995) 3392.Google Scholar
[1007] T., Ortín, A Note on the D-2-Brane of the Massive Type IIA Theory and Gauged Sigma Models, Phys. Lett. B415 (1997) 39.Google Scholar
[1008] T., Ortín, Non-sypersymmetric (but) Extreme Black Holes, Scalar Hair, Massless Black Holes and Other Open Problems, Nucl. Phys. Proc. Suppl. 61A (1998) 131.Google Scholar
[1009] T., Ortín, A Note on Lie-Lorentz Derivatives, Classical Quant. Grav. 19 (2002) L1.Google Scholar
[1010] T., Ortín, A Note on Supersymmetric Godel Black Holes, Strings and Rings of Minimal d = 5 Supergravity, Classical Quant. Grav 22 (2005) 939.Google Scholar
[1011] T., Ortín, The Supersymmetric Solutions and Extensions of Ungauged Matter-coupled N = 1, d = 4 Supergravity, JHEP 0805 (2008) 034.Google Scholar
[1012] T., Ortín, A Simple Derivation of Supersymmetric Extremal Black Hole Attractors, Phys. Lett. B700 (2011) 261.Google Scholar
[1013] T., Ortín and C. S., Shahbazi, The Supersymmetric Black Holes of N = 8 Supergravity, Phys. Rev. D86 (2012) 061702.Google Scholar
[1014] D. N., Page, Particle Emission Rates from a Black Hole III. Charged Leptons froma Nonrotating Black Hole, Phys. Rev. D16 (1977) 2402.Google Scholar
[1015] D. N., Page, Taub-NUT Instanton with an Horizon, Phys. Lett. B78 (1978) 249.Google Scholar
[1016] A., Palatini, Deduzione invariantiva della equazioni gravitazionali dal principio di Hamilton, Red. Circ. Mat. Palermo 43 (1919) 203.Google Scholar
[1017] G., Papadopoulos, New Half Supersymmetric Solutions of the Heterotic String, Classical Quant. Grav. 26 (2009) 135001.Google Scholar
[1018] G., Papadopoulos and P. K., Townsend, Intersecting M-Branes, Phys. Lett. B380 (1996) 273.Google Scholar
[1019] A., Papapetrou, A Static Solution of the Equations of the Gravitational Field for an Arbitrary Charge-Distribution, Proc. Roy. Irish Acad. A51 (1947) 191.Google Scholar
[1020] A., Papapetrou, Proc. Roy. Soc. London 209A (1951) 248.
[1021] P., Pasti, D. P., Sorokin, and M., Tonin, Covariant Action for a D = 11 Five-Brane with the Chiral Field, Phys. Lett. B398 (1997) 41.Google Scholar
[1022] A. W., Peet, The Bekenstein Formula and String Theory (N-Brane Theory), Classical Quant. Grav. 15 (1998) 3291.Google Scholar
[1023] A. W., Peet, TASI Lectures on Black Holes in String Theory, hep-th/0 00 8241.
[1024] A. W., Peet, Baldness/Delocalization in Intersecting Brane Systems, Classical Quant. Grav. 17 (2000) 1235.Google Scholar
[1025] C., Pellegrini and J., Plebański, Tetrad Fields and Gravitational Fields, Mat. Fys. Skr. Dan. Vid. Selsk. 2(4) (1963).Google Scholar
[1026] R., Penrose, Structure of Space-Time, in Battelle Rencontres, eds. C., DeWitt and J. A., Wheeler. New York: Benjamin (1968).Google Scholar
[1027] R., Penrose, Gravitational Collapse: The Role of General Relativity, Riv. Nuovo Cim. 1 (1969) 252.Google Scholar
[1028] R., Penrose, Any Spacetime has a Plane Wave as a Limit, in Differential Geometry and Relativity. Dordrecht: Reidel (1976), p. 271.Google Scholar
[1029] R., Penrose, Singularities and Time-Asymmetry, in General Relativity: An Einstein Centenary Survey, eds. S. W., Hawking and W., Israel. Cambridge: Cambridge University Press (1979), p. 581.Google Scholar
[1030] R., Penrose, On Schwarzschild Causality – A Problem for “Lorentz Covariant” General Relativity, in Essays in General Relativity, ed. F. J., Tipler. New York: Academic Press (1980), p. 1.
[1031] R., Penrose, The Question of Cosmic Censorship, in Black Holes and Relativistic Stars. Chicago, IL: The University of Chicago Press (1998).Google Scholar
[1032] R., Penrose and W., Rindler, Spinors and Space-Time, vol. 1 and 2. Cambridge: Cambridge University Press (1984).Google Scholar
[1033] Z., Perjés, Solutions of the Coupled Einstein-Maxwell Equations Representing the Fields of Spinning Sources, Phys. Rev. Lett. 27 (1971) 1668.Google Scholar
[1034] M. J., Perry, Black Holes Are Colored, Phys. Lett. B71 (1977) 234.Google Scholar
[1035] J., Perz, P., Smyth, T., Van Riet, and B., Vercnocke, First-order Flow Equations for Extremal and Non-extremal Black Holes, JHEP 0903 (2009) 150.Google Scholar
[1036] .E., Peskin, Introduction to String and Superstring Theory 2, in From the Planck Scale to the Weak Scale: Towards a Theory ofthe Universe, ed. H. E., Haber. Singapore: World Scientific (1987).Google Scholar
[1037] A. N., Petrov, On the Cosmological Constant as a Constant of Integration, Mod. Phys. Lett. A6 (1991) 2107.Google Scholar
[1038] A. N., Petrov and J., Katz, Relativistic Conservation Laws on Curved Backgrounds and the Theory of Cosmological Perturbations, Proc. Roy. Soc. London 458 (2002) 319.Google Scholar
[1039] K., Pilch, P., van Nieuwenhuizen, and P. K., Townsend, Compactification of D = 11 Supergravity on S(4) (or 11 = 7 + 4, too), Nucl. Phys. B242 (1984) 377.Google Scholar
[1040] B., Pioline, Lectures on Black Holes, Topological Strings and Quantum Attractors, Classical Quant. Grav. 23 (2006) S981.Google Scholar
[1041] B., Pioline, Lectures on Black Holes, Topological Strings and Quantum Attractors (2.0), Lect. Notes Phys. 755 (2008) 283.Google Scholar
[1042] J.F., Plebański, A Class of Solutions of the Einstein-Maxwell Equations, Ann. Phys. 90 (1975) 196.Google Scholar
[1043] J. F., Plebański and M., Demiański, Rotating, Charged, and Uniformly Accelarating Mass in General Relativity, Ann. Phys. 98 (1976) 98.Google Scholar
[1044] J., Podolský, Exact Impulsive Gravitational Waves in Spacetimes of Constant Curvature, in Gravitation: Following the Prague Inspiration, eds. O., Semerak, J., Podolský, and M., Zefka. Singapore: World Scientific (2002), p. 205.Google Scholar
[1045] J., Podolsky and J. B., Griffiths, Boosted Static Multipole Particles as Sources of Impulsive Gravitational Waves, Phys. Rev. D58 (1998) 124024.Google Scholar
[1046] J., Polchinski, Combinatorics of Boundaries in String Theory, Phys. Rev. D50 (1994) 6041.Google Scholar
[1047] J., Polchinski, Dirichlet Branes and Ramond–Ramond Charges, Phys. Rev. Lett. 75 (1995) 4724.Google Scholar
[1048] J., Polchinski, TASI Lectures on D branes, hep-th/9611050.
[1049] J., Polchinski, String Theory, vol. 1 and 2. Cambridge: Cambridge University Press (1998).Google Scholar
[1050] J., Polchinski, Scale and Conformal Invariance in Quantum Field Theory, Nucl. Phys. B303 (1988) 226.Google Scholar
[1051] J., Polchinski, S., Chaudhuri, and C. V., Johnson, Notes on D branes, hep-th/96 02 052.
[1052] J., Polchinski and E., Witten, Evidence for Heterotic - Type I String Duality, Nucl. Phys. B460 (1996) 525.Google Scholar
[1053] A. M., Polyakov, Particle Spectrum in the Quantum Field Theory, Sov. Phys. JETP Lett. 20 (1974) 194.Google Scholar
[1054] A. M., Polyakov, Quantum Geometry of Bosonic Strings, Phys. Lett. B103 (1981) 207.Google Scholar
[1055] A.M., Polyakov, Quantum Geometry of Fermionic Strings, Phys. Lett. B103 (1981) 211.Google Scholar
[1056] G., Pradisi and A., Sagnotti, Open String Orbifolds, Phys. Lett. B216 (1989) 59.Google Scholar
[1057] M. K., Prasad, Equivalence of Eguchi-Hanson Metric to Two-center Gibbons-Hawking Metric, Phys. Lett. B83 (1979) 310.Google Scholar
[1058] M.K., Prasad and C.M., Sommerfield, An Exact Classical Solution for the 't Hooft Monopole and the Julia-Zee Dyon, Phys. Rev. Lett. 35 (1975) 760.Google Scholar
[1059] V., Pravda, A., Pravdova, A., Coley, and R., Milson, All Spacetimes With Vanishing Curvature Invariants, Classical Quant. Grav. 19 (2002) 6213.Google Scholar
[1060] J., Preskill, P., Schwarz, A., Shapere, S., Trivedi, and F., Wilczek, Limitations on the Statistical Description of Black Holes, Mod. Phys. Lett. A6 (1991) 2353.Google Scholar
[1061] R. H., Price, Non-spherical Perturbations of Gravitational Collapse. I. Scalar and Gravitational Perturbations, Phys. Rev. D5 (1972) 2419.Google Scholar
[1062] R. H., Price, Non-spherical Perturbations of Gravitational Collapse. II. Integer-Spin, Zero-Rest-Mass-Fields, Phys. Rev. D5 (1972) 2439.Google Scholar
[1063] A. P., Protogenov, Exact Classical Solutions Of Yang-Mills Sourceless Equations, Phys. Lett. B67 (1977) 62.Google Scholar
[1064] H., Quevedo, Fortsch. Phys. 38 (1990) 733.
[1065] J., Rahmfeld, Extremal Black Holes as Bound States, Phys. Lett. B372 (1996) 198.Google Scholar
[1066] A., Rajaraman, Supergravity Solutions for Localised Brane Intersections, JHEP 0109 (2001) 018.Google Scholar
[1067] P., Ramond, Dual Theory of Free Fermions, Phys. Rev. D3 (1971) 2415.Google Scholar
[1068] P., Ramond, Field Theory: A Modern Primer. Reading, MA: Benjamin/Cummings (1981).Google Scholar
[1069] L., Randall and R., Sundrum, A Large Mass Hierarchy from a Small Extra Dimension, Phys. Rev. Lett. 83 (1999) 3370.Google Scholar
[1070] L., Randall and R., Sundrum, An Alternative to Compactification, Phys. Rev. Lett. 83 (1999) 4690.Google Scholar
[1071] J., Rayski, Acta Phys. Polon. 27 (1965) 89.
[1072] H. S., Reall, Classical and Thermodynamic Stability of Black Branes, Phys. Rev. D64 (2001) 044005.Google Scholar
[1073] M., Rees, Astrophysical Evidence for Black Holes, in Black Holes and Relativistic Stars, ed. R. M., Wald. Chicago, IL: University of Chicago Press (1998).Google Scholar
[1074] H., Reissner, Ann. Phys. 50 (1916) 106.
[1075] S. J., Rey, Confining Phase of Superstrings and Axionic Strings, Phys. Rev. D43, 526 (1991).Google Scholar
[1076] F., Riccioni, Truncations of the D9-Brane Action and Type-I Strings, hep-th/03 01021.
[1077] I., Robinson, A Solution of the Maxwell-Einstein Equations, Bull. Acad. Polon. Sci. 7 (1959) 351.Google Scholar
[1078] M., Rocek and E., Verlinde, Duality, Quotients, and Currents, Nucl. Phys. B373 (1992) 630.Google Scholar
[1079] M., Rogatko, Stationary Axisymmetric Axion-Dilaton Black Holes: Mass Formulae, Classical Quant. Grav. 11 (1994) 689.Google Scholar
[1080] M., Rogatko, The Bogomolnyi-Type Bound in Axion-Dilaton Gravity, Classical Quant. Grav. 12 (1995) 3115.Google Scholar
[1081] M., Rogatko, Extrema of Mass, First Law of Black Hole Mechanics and Staticity Theorem in Einstein-Maxwell Axion Dilaton Gravity, Phys. Rev. D58 (1998) 044011.Google Scholar
[1082] M., Rogatko, Uniqueness Theorem for Static Dilaton U(1)N Black Holes, Classical Quant. Grav. 19 (2002) 875.Google Scholar
[1083] L. J., Romans, Massive N = 2a Supergravity in Ten Dimensions, Phys. Lett. B169 (1986) 374.Google Scholar
[1084] L. J., Romans, Supersymmetric, Cold and Lukewarm Black Holes in Cosmological Einstein-Maxwell Theory, Nucl. Phys. B383 (1992) 395.Google Scholar
[1085] M., de Roo, Matter Coupling in N = 4 Supergravity, Nucl. Phys. B255 (1985) 515.Google Scholar
[1086] L., Rosenfeld, Sur le tenseur d'impulsion-énergie, Mem. Acad. Roy. Belgique 6 (1930) 30.Google Scholar
[1087] R., Ruffini and J. A., Wheeler, Introducing the Black Hole, Phys. Today, 24 (1971) 30.Google Scholar
[1088] H., Rumpf, On the Translational Part of the Lagrangian of the Poincaré Gauge Theory of Gravitation, Z. Naturforsch. 33a (1978) 1224.Google Scholar
[1089] H., Rumpf, Supersymmetric Dirac Particles in Riemann-Cartan Space-Time, Gen. Relativ. Gravit. 14 (1982) 873.Google Scholar
[1090] V., de Sabbata and M., Gasperini, Introduction to Gravitation. Singapore: World Scientific (1985).Google Scholar
[1091] V., de Sabbata and C., Sivaram, Spin and Torsion in Gravitation. Singapore: World Scientific (1994).Google Scholar
[1092] W. A., Sabra, General Static N = 2 Black Holes, Mod. Phys. Lett. A12 (1997) 2585.Google Scholar
[1093] W. A., Sabra, Black Holes in N = 2 Supergravity Theories and Harmonic Functions, Nucl. Phys. B510 (1998) 247.Google Scholar
[1094] W.A., Sabra, General BPS Black Holes in Five Dimensions, Mod. Phys. Lett. A13 (1998) 239.Google Scholar
[1095] A., Sagnotti, Open Strings and their Symmetry Groups, in Nonperturbative Quantum Field Theory, eds. G., 't Hooft, A., Jaffe, G., Mack, P. K., Mitter, and R., Stora. NewYork: Plenum Press (1988), p. 521.Google Scholar
[1096] N., Sakai and I., Senda, Vacuum Energies of String Compactified on Torus, Prog. Theor. Phys. 75 (1986) 692. [Erratum ibid. 77 (1987) 773.]Google Scholar
[1097] A., Salam and E., Sezgin, eds. Supergravities in Diverse Dimensions, vol. 1 and 2. Amsterdam/Singapore: North Holland/World Scientific (1989).
[1098] A., Salam and J., Strathdee, On Kaluza-Klein Theory, Ann. Phys. (NY) 141 (1982) 316.Google Scholar
[1099] S., Salamon, Riemannian Geometry and Holonomy Groups. Harlow: Longman Scientific and Technical (1989).Google Scholar
[1100] H., Samtleben, Lectures on Gauged Supergravity and Flux Compactifications, Classical Quant. Grav. 25 (2008) 214002.Google Scholar
[1101] H., Samtleben and M., Weidner, The Maximal D = 7 Supergravities, Nucl. Phys. B725 (2005) 383.Google Scholar
[1102] J., Scherk, An Introduction to the Theory of Dual Models and Strings, Rev. Mod. Phys. 47 (1975) 123.Google Scholar
[1103] J., ScherkandJ.H., Schwarz, Dual Models for Nonhadrons, Nucl. Phys. B81 (1974) 118.Google Scholar
[1104] J., Scherk and J.H., Schwarz, Dual Models and the Geometry of Space-Time, Phys. Lett. B52 (1974) 347.Google Scholar
[1105] J., Scherk and J.H., Schwarz, Spontaneous Breaking of Supersymmetry through Dimensional Reduction, Phys. Lett. 82B (1979) 60.Google Scholar
[1106] J., ScherkandJ.H., Schwarz, How to Get Masses from Extra Dimensions, Nucl. Phys. B153 (1979) 61.Google Scholar
[1107] R., SchoenandS.-T., Yau, On the Proof of the Positive Mass Conjecture in General Relativity, Commun. Math. Phys. 65 (1979) 45.Google Scholar
[1108] J., Schon and M., Weidner, Gauged N = 4 Supergravities, JHEP 0605 (2006) 034.Google Scholar
[1109] E., Schrödinger, Die Energiekomponenten des Gravitationsfeldes, Phys. Z. 19 (1918) 4.Google Scholar
[1110] E., Schrödinger, Contributions to Born's New Theory of the Electromagnetic Field, Proc. Roy. Soc. London A150 (1935) 465.Google Scholar
[1111] E., Schrödinger, Proc. Roy Irish Acad. 51A (1947) 163.
[1112] E., Schrödinger, Space-Time Structure. Cambridge: Cambridge University Press (1954).Google Scholar
[1113] J.H., Schwarz, Superstring Theory, Phys. Rep. 89 (1982) 223.Google Scholar
[1114] J.H., Schwarz, Covariant Field Equations of Chiral N = 2, D =10 Supergravity, Nucl. Phys. B226 (1983) 269.Google Scholar
[1115] J. H., Schwarz, Dilaton-Axion Symmetry, in String Theory, Quantum Gravity and the Unification of the Fundamental Interactions, eds. M., Bianchi, F., Fucito, E., Marinari, and A., Sagnotti. River Edge, NJ: World Scientific (1993).Google Scholar
[1116] J.H., Schwarz, An SL(2,Z) Multiplet of Type IIB Superstrings, Phys. Lett. B360 (1995) 13–18. [Erratum ibid. B364 (1995) 252.]Google Scholar
[1117] J.H., SchwarzandP.C., West, Symmetries and Transformations of Chiral N = 2 D = 10 Supergravity, Phys. Lett. B126 (1983) 301.Google Scholar
[1118] K., Schwarzschild, Über das Gravitationsfled eines Massenpunktes nach der Einsteinschen Theorie, Sitzungsber. deutsch. Akad. Wiss. Berlin, Kl. Math. Phys. Technik (1916) 189–196. English translation by S., Antoci and A., Loinger, available at http://arXiv.org/pdf/physics/9905030.
[1119] J., Schwinger, On Gauge Invariance and Vacuum Polarization, Phys. Rev. 82 (1951) 664.Google Scholar
[1120] J., Schwinger, Magnetic Charge and Quantum Field Theory, Phys. Rev. 144 (1966) 1087.Google Scholar
[1121] J., Schwinger, Sources and Magnetic Charge, Phys. Rev. 173 (1968) 1536.Google Scholar
[1122] J., Schwinger, Particles, Sources and Fields, vol. 1. NewYork: Addison-Wesley (1970).Google Scholar
[1123] N., Seiberg, Observations on the Moduli Space of Super conformal Field Theories, Nucl. Phys. B303 (1988) 286.Google Scholar
[1124] A., Sen, Electric Magnetic Duality in String Theory, Nucl. Phys. B404 (1993) 109.Google Scholar
[1125] A., Sen, Quantization of Dyon Charge and Electric Magnetic Duality in String Theory, Phys. Lett. 303B (1993) 22.Google Scholar
[1126] A., Sen, Magnetic Monopoles, Bogomolny Bound and Sl(2,Z) Invariance in String Theory, Mod. Phys. Lett. A8 (1993) 2023.Google Scholar
[1127] A., Sen, Strong-Weak Coupling Duality in Four-Dimensional String Theory, Int. J. Mod. Phys. A9 (1994) 3707.Google Scholar
[1128] A., Sen, Extreme Black Holes and Elementary String States, Mod. Phys. Lett. A10 (1995) 2081.Google Scholar
[1129] A., Sen, Entropy Function for Heterotic Black Holes, JHEP 0603 (2006) 008.Google Scholar
[1130] J.-P., Serre, Cours d'arithmétique. Paris: Presses Universitaires deFrance (1970).Google Scholar
[1131] K., Sfetsos and K., Skenderis, Microscopic Derivation of the Bekenstein-Hawking Entropy Formula for Non-extremal Black Holes, Nucl. Phys. B517 (1998) 179.Google Scholar
[1132] A., Shapere, S., Trivedi, and F., Wilczek, Dual Dilaton Dyons, Mod. Phys. Lett. A6, (1991) 2677.Google Scholar
[1133] I. L., Shapiro, Physical Aspects of the Space-Time Torsion, Phys. Rep 357 (2001) 113.Google Scholar
[1134] M. M., Sheikh Jabbari, Classification of Different Branes at Angles, Phys. Lett. B420 (1998) 279.Google Scholar
[1135] K., Shiraishi, Multicentered Solution for Maximally Charged Dilaton Black Holes in Arbitrary Dimensions, J. Math. Phys. 34 (1993) 1480.Google Scholar
[1136] M., Shmakova, Calabi-Yau Black Holes, Phys. Rev. D56 (1997) 540.Google Scholar
[1137] Y. M., Shnir, Magnetic Monopoles. Berlin, Germany: Springer (2005).Google Scholar
[1138] W., Siegel, Hidden Local Supersymmetry in the Supersymmetric Particle Action, Phys. Lett. B128 (1983) 397.Google Scholar
[1139] T. P., Singh, Gravitational Collapse, Black Holes and Naked Singularities, gr-qc/9805066.
[1140] K., Skenderis, Black Holes and Branes in String Theory, Lect. Notes Phys. 541 (2000) 325.Google Scholar
[1141] K., Skenderis and P. K., Townsend, Hamilton-Jacobi Method for Curved Domain Walls and Cosmologies, Phys. Rev. D74 (2006) 125008.Google Scholar
[1142] R., Slansky, Group Theory For Unified Model Building, Phys. Rept. 79 (1981) 1.Google Scholar
[1143] L., Smarr, Mass Formula for Kerr Black Holes, Phys. Rev. Lett. 30 (1973) 71. [Erratum ibid. 30 (1973) 521.]Google Scholar
[1144] D. J., Smith, Intersecting Brane Solutions in String and M-Theory, hep-th/0210157.
[1145] W. L., Smith and R. B., Mann, Formation of Topological Black Holes from Gravitational Collapse, Phys. Rev. D56 (1997) 4942.Google Scholar
[1146] J. A., Smoller and A. G., Wasserman, Regular Solutions of the Einstein Yang-Mills Equations, J. Math. Phys. 36 (1995) 4301.Google Scholar
[1147] J. A., Smoller, A.G., Wasserman, S.-T., Yau, and J.B., McLeod, Smooth Static Solutions of the Einstein Yang-Mills Equations, Commun. Math. Phys. 143 (1991) 115.Google Scholar
[1148] R.D., Sorkin, Kaluza-Klein Monopole, Phys. Rev. Lett. 51 (1983) 87.Google Scholar
[1149] A. A., Starobinsky, Zh. Éksp. Teor. Fiz. 64 (1973) 48.
[1150] R., Steinbauer, On the Geometry of Impulsive Gravitational Waves, gr-qc/9809054.
[1151] K. S., Stelle, Lectures on Supergravity p-Branes, in Trieste 1996 Summer School in High Energy Physics and Cosmology, eds. E., Gava, A., Masiero, K. S., Narain, S., Randjbar-Daemi, and Q., Shafi. Singapore: World Scientific (1997), p. 287.Google Scholar
[1152] K. S., Stelle, BPS Branes in Supergravity, in Trieste 1997 Summer School in High Energy Physics and Cosmology, eds. E., Gava, A., Masiero, K. S., Narain et al. Singapore: World Scientific (1998), p. 29.Google Scholar
[1153] K., Stelle and P. C., West, Spontaneously Broken de Sitter Symmetry and the Gravitational Holonomy Group, Phys. Rev. D21 (1980) 1466.Google Scholar
[1154] C. R., Stephens, The Hawking Effect in Abelian Gauge Theories, Ann. Phys. 193 (1989) 255.Google Scholar
[1155] N., Straumann, Reflections on Gravity, astro-ph/0006423.
[1156] A., Strominger, Special Geometry, Commun. Math. Phys. 133 (1990) 163.Google Scholar
[1157] A., Strominger, Macroscopic Entropy of N = 2 Extremal Black Holes, Phys. Lett. B383 (1996) 39.Google Scholar
[1158] A., Strominger, Open p-Branes, Phys. Lett. B383 (1996) 44.Google Scholar
[1159] A., Strominger, Loop Corrections to the Universal Hypermultiplet, Phys. Lett. B421 (1998) 139.Google Scholar
[1160] A., Strominger and C., Vafa, Microscopic Origin of the Bekenstein-Hawking Entropy, Phys. Lett. B370 (1996) 99.Google Scholar
[1161] A., Strominger and E., Witten, New Manifolds for Superstring Compactification, Commun. Math. Phys. 101 (1985) 341.Google Scholar
[1162] E. C. G., Stückelberg, Helv. Phys. Acta 11 (1938) 225.
[1163] D., Sudarsky and T., Zannias, Spherical Black Holes Cannot Support Scalar Hair, Phys. Rev. D58 (1998) 087502.Google Scholar
[1164] S., Sugimoto, Anomaly Cancellations in Type I D9 – D9 System and the USp(32) String Theory, Prog. Theor. Phys. 102 (1999) 685.Google Scholar
[1165] S., Surya and D., Marolf, Localized Branes and Black Holes, Phys. Rev. D58 (1998) 124013.Google Scholar
[1166] L., Susskind, Some Speculations About Black Hole Entropy in String Theory, hep-th/9309145.
[1167] G., Szekeres, On the Singularities of a Riemannian Manifold, Pbl. Mat. Debrecen 7 (1960) 285.Google Scholar
[1168] F., Tangherlini, Nuovo Cim. 77 (1963) 636.
[1169] Y., Tanii, Introduction to Supergravities in Diverse Dimensions, hep-th/9802138.
[1170] A.H., Taub, Empty Space-Times Admitting a Three-Parameter Group of Motions, Ann. Math. 53 (1951) 472.Google Scholar
[1171] C., Teitelboim, Nonmeasurability of the Quantum Numbers of a Black Hole, Phys. Rev. D5 (1972) 2941.Google Scholar
[1172] C., Teitelboim, Gauge Invariance for Extended Objects, Phys. Lett. 167B (1986) 63.Google Scholar
[1173] C., Teitelboim, Monopoles of Higher Rank, Phys. Lett. 167B (1986) 69.Google Scholar
[1174] C., Teitelboim, Action and Entropy of Extreme and Non-Extreme Black Holes, Phys. Rev. D51 (1995) 4315. Erratum ibid.. D52 (1995) 6201.]Google Scholar
[1175] C., Teitelboim, D., Villarroel, and Ch. G., van Weert, Classical Electrodynamics of Retarded Fields and Point Particles, Riv. Nuovo Cim. 3, N. 9 (1980) 1.Google Scholar
[1176] W. E., Thirring, Acta Phys. Austriaca Suppl. 9 (1972)256.
[1177] W.E., Thirring, An Alternative Approach to the Theory of Gravitation, Ann. Phys. 16 (1964) 96.Google Scholar
[1178] Y., Thiry, The Equations of Kaluza's Unified Theory, Acad. Sci. Paris 226 (1948) 216.Google Scholar
[1179] G., 't Hooft, An Algorithm for the Poles at Dimension Four in the Dimensional Regularization Procedure, Nucl. Phys. B62 (1973) 444.Google Scholar
[1180] G., 't Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B79 (1974) 276.Google Scholar
[1181] G., 't Hooft and M., Veltman, One-Loop Divergencies in the Theory of Gravitation, Ann. Inst. Henri Poincaré 20 (1974) 69.Google Scholar
[1182] K. S., Thorne, Black Holes & Time Warps. New York: W. W.|Norton and Co. (1994).Google Scholar
[1183] K. P., Tod, All Metrics Admitting Supercovariantly Constant Spinors, Phys. Lett. 121B, (1981) 241.Google Scholar
[1184] K. P., Tod, More on Supercovariantly Constant Spinors, Classical Quant. Grav. 12 (1995) 1801.Google Scholar
[1185] M. A., Tonnelat, La théorie du champ unifié d'Einstein. Paris: Gauthier-Villars (1955).Google Scholar
[1186] P.K., Townsend, Cosmological Constant In Supergravity, Phys. Rev. D15 (1977) 2802.Google Scholar
[1187] P.K., Townsend, Worldsheet Electromagnetism and the Superstring Tension, Phys. Lett. B277 (1992) 285.Google Scholar
[1188] P.K., Townsend, The Eleven-Dimensional Supermembrane Revisited, Phys. Lett. B350 (1995) 184.Google Scholar
[1189] P. K., Townsend, P-Brane Democracy, in PASCOS/Johns Hopkins 1995, eds. J. A., Bagger, G. K., Domokos, A. F., Falk, and S., Kövesi-Domokos. Singapore: World Scientific (1996), p. 271.Google Scholar
[1190] P. K., Townsend, D-branes from M-branes, Phys. Lett. B373 (1996) 68.Google Scholar
[1191] P. K., Townsend, Brane Surgery, Nucl. Phys. Proc. Suppl. B475 (1996).Google Scholar
[1192] P. K., Townsend, Four Lectures on M Theory, in Trieste 1996 Summer School in High Energy Physics and Cosmology, eds. E., Gava, A., Masiero, K. S., Narain, S., Randjbar-Daemi, and Q., Shaft. Singapore: World Scientific (1997), p. 385.Google Scholar
[1193] P. K., Townsend, Membrane Tension and Manifest IIB S Duality, Phys. Lett. B409 (1997) 131.Google Scholar
[1194] P.K., Townsend, BlackHoles,gr-qc/9707012.
[1195] P.K., Townsend, M-Branes at Angles, Nucl. Phys. Proc. Suppl. 67 (1998) 88.Google Scholar
[1196] P.K., Townsend, M Theory from its Superalgebra, in Strings, Branes and Dualities, eds. L., Baulieu, P., Di Francesco, M., Douglas, V., Kazakov, M., Picco, and P., Windey. Dordrecht: Kluwer (1999), p. 141.Google Scholar
[1197] P. K., Townsend, Killing Spinors, Supersymmetries and Rotating Intersecting Branes, hep-th/9901102.
[1198] P. K., Townsend, Hamilton-Jacobi Mechanics from Pseudo-supersymmetry, Classical Quant. Grav. 25 (2008) 045017.Google Scholar
[1199] J., Traschen, An Introduction to Black Hole Evaporation, in Mathematical Methods of Physics, eds. A., Bytsenko and F., Williams. Singapore: World Scientific (2000).Google Scholar
[1200] A., Trautman, Solutions of the Maxwell and Yang-Mills Equations Associated with Hopf Fibrings, Int. J. Theor. Phys. 16 (1977) 561.Google Scholar
[1201] M., Trigiante, Dual Gauged Supergravities, hep-th/0701218.
[1202] P. K., Tripathy and S. P., Trivedi, Non-Supersymmetric Attractors in String Theory, JHEP 0603 (2006) 022.Google Scholar
[1203] A.A., Tseytlin, Harmonic Superpositions of M Branes, Nucl. Phys. B475 (1996) 149.Google Scholar
[1204] A. A., Tseytlin, Born-Infeld Action, Supersymmetry and String Theory, in The Many Faces of the Superworld, ed. M. A., Shifman. Singapore: World Scientific (2000), p. 417.Google Scholar
[1205] W.G., Unruh, Second Quantization in the Kerr Metric, Phys. Rev. D10 (1974) 3194.Google Scholar
[1206] W. G., Unruh, A Unimodular Theory Of Canonical Quantum Gravity, Phys. Rev. D40 (1989) 1048.Google Scholar
[1207] R., Utiyama, Invariant Theoretical Interpretation of Interaction, Phys. Rev. 101 (1956) 1597.Google Scholar
[1208] A., Van Proeyen, Tools for Supersymmetry, in Spring School on Quantum Field Theory: Supersymmetry and Superstrings, hep-th/9910030.
[1209] A., Van Proeyen, N = 2 Supergravity in d = 4, 5, 6 and its Matter Couplings, Lectures given at the Institut Henri Poincaré, Paris, November 2000.
[1210] A., Van Proeyen, Structure of Supergravity Theories, hep-th/0301005.
[1211] S., Vandoren, Lectures on Riemannian Geometry, PartII: Complex Manifolds.
[1212] M. A., Vandyck, On the Problem of Space-Time Symmetries in the Theory of Supergravity, Gen. Relativ. Gravit. 20 (1988) 261.Google Scholar
[1213] M. A., Vandyck, On the Problem of Space-Time Symmetries in the Theory of Supergravity. 2: N = 2 Supergravity and Spinorial Lie Derivatives, Gen. Relativ. Gravit. 20 (1988) 905.Google Scholar
[1214] L., Vanzo, Black Holes with Unusual Topology, Phys. Rev. D56 (1997) 6475.Google Scholar
[1215] H. J., de Vega, M., Ramón Medrano, and N., Sáinchez, Superstring Propagation Through Supergravitational Shock Waves, Nucl. Phys. B374 (1992) 425.Google Scholar
[1216] M. A. G., Veltman, in Methods in Field Theory, eds. R., Balian and J., Zinn-Justin. Amsterdam: North-Holland (1976), p. 265.Google Scholar
[1217] M. A.G., Veltman, Gammatrica, Nucl. Phys. B319 (1989) 253.Google Scholar
[1218] A. E.M., van de Ven, Two Loop Quantum Gravity, Nucl. Phys. B378 (1992) 309.Google Scholar
[1219] E. P., Verlinde and H. L., Verlinde, RG Flow, Gravity and the Cosmological Constant, JHEP 0005 (2000) 034.Google Scholar
[1220] H., Vermeil, Nachr. Ges. Wiss. Göttingen (1917) 334.
[1221] M. S., Volkov and D. V., Gal'tsov, NonAbelian Einstein Yang-Mills Black Holes, JETP Lett. 50 (1989) 346. [Pisma Zh. Eksp. Teor. Fiz. 50 (1989) 312.]Google Scholar
[1222] M.S., Volkov and D.V., Gal'tsov, Gravitating Non-Abelian Solitons and Black Holes with Yang-Mills Fields, Phys. Rept. 319 (1999) 1.Google Scholar
[1223] A., Volovich, Three-Block p-Branes in Various Dimensions, Nucl. Phys. B492 (1997) 235.Google Scholar
[1224] M., de Vroome and B., de Wit, Lagrangians with Electric and Magnetic Charges of N = 2 Supersymmetric Gauge Theories, JHEP 0708 (2007) 064.Google Scholar
[1225] S., Wadia, Status of Microscopic Modeling of Black Holes by D1-D5 System, hep-th/0011286.
[1226] R.M., Wald, Final States of Gravitational Collapse, Phys. Rev. Lett. 26 (1971) 1653.Google Scholar
[1227] R. M., Wald, Electromagnetic Fields and Massive Bodies, Phys. Rev. D6 (1972) 1476.Google Scholar
[1228] R. M., Wald, Gedankenexperiments to Destroy a Black Hole, Ann. Phys. 83 (1974) 548.Google Scholar
[1229] R. M., Wald, General Relativity. Chicago, IL: University of Chicago Press (1984).Google Scholar
[1230] R. M., Wald, Spin-Two Fields and General Covariance, Phys. Rev. D33 (1986) 3613.Google Scholar
[1231] R.M., Wald, A New Type of Gauge Invariance for a Collection of Massless Spin-2 Fields. 2. Geometrical Interpretation, Classical Quant. Grav. 4 (1987) 1279.Google Scholar
[1232] R. M., Wald, The First Law of Black Hole Mechanics, in College Park 1993, Directions in General Relativity, vol. 1, eds. B. L., Hu, M. P., Ryan Jr. C.V., Vishveshwara, and T. A., Jacobson. Cambridge: Cambridge University Press (1993), p. 358.Google Scholar
[1233] R.M., Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago, IL: University of Chicago Press (1994).Google Scholar
[1234] R. M., Wald, Gravitational Collapse and Cosmic Censorship, in Black Holes, Gravitational Radiation and the Universe, eds. B. R., Iyer, B., Bhawal, and C. V., Vishveshwara. Dordrecht: Kluwer (1998), p. 69.Google Scholar
[1235] R. M., Wald, The Thermodynamics of Black Holes, Living Rev. Rel. 4 (2001) 6.Google Scholar
[1236] M. Y., Wang, A Solution of Coupled Einstein SO(3) Gauge Field Equations, Phys. Rev. D12 (1975) 3069.Google Scholar
[1237] M., Weidner, Gauged Supergravities in Various Spacetime Dimensions, Fortsch. Phys. 55 (2007) 843.Google Scholar
[1238] S., Weinberg, Derivation of Gauge Invariance and the Equivalence Principle from Lorentz Invariance in the S Matrix, Phys. Lett. 9 (1964) 357.Google Scholar
[1239] S., Weinberg, Photons and Gravitons in S Matrix Theory: Derivation of Charge Conservation and Equality of Gravitational and Inertial Mass, Phys. Rev. 135 (1964) B1049.Google Scholar
[1240] S., Weinberg, Photons and Gravitons in Perturbation Theory: Derivation of Maxwell's and Einstein's Equations, Phys. Rev. 138 (1965) B988.Google Scholar
[1241] S., Weinberg, Gravitation and Cosmology. New York: Wiley (1972).Google Scholar
[1242] S., Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1.Google Scholar
[1243] R., Weitzenböck, Invariantentheorie. Groningen: Noordhoff (1923).Google Scholar
[1244] R., Weitzenbock, Sitzungsber. Konigl. Preuβ. Akad. Wiss., phys.-math. Kl. (1928) 466.
[1245] J., Wess and J., Bagger, Supersymmetry and Supergravity. Princeton, NJ: Princeton University Press (1992).Google Scholar
[1246] P. C., West, An Introduction to Supersymmetry and Supergravity, extended 2nd ed., Singapore: World Scientific (1990).Google Scholar
[1247] P. C., West, Supergravity, Brane Dynamics and String Duality, in Duality and Supersymmetric Theories, eds. D. I., Olive and P. C., West. Cambridge: Cambridge University Press (1999), p. 147.Google Scholar
[1248] P., West, Introduction to Strings and Branes. Cambridge: Cambridge University Press (2012),Google Scholar
[1249] H., Weyl, Zur Gravitationstheorie, Ann. Phys. 54 (1917) 117.Google Scholar
[1250] H., Weyl, Zur Gravitationstheorie, Ann. Phys. 54 (1917) 185.Google Scholar
[1251] H., Weyl, Space-Time-Matter. New York: Dover (1922).Google Scholar
[1252] H., Weyl, Electron and Gravitation, Z. Phys. 56 (1929) 330. Translated in Ref. [1004].Google Scholar
[1253] H., Weyl, How Far can one get with a Linear Field Theory of Gravitation in Flat Space-Time?, Am. J. Math. 66 (1944) 591. (Reprinted in Ref. [1254].)Google Scholar
[1254] H., Weyl, Gesammelte Abhandlungen, 4 vol., Berlin: Springer-Verlag (1968).Google Scholar
[1255] F., Wilczek, Riemann-Einstein Structure from Volume and Gauge Symmetry, Phys. Rev. Lett. 80 (1998) 4851.Google Scholar
[1256] E., Winstanley, Classical Yang-Mills Black Hole Hair in Anti-de Sitter Space, Lect. Notes Phys. 769 (2009) 49.Google Scholar
[1257] B., de Wit, P. G., Lauwers, and A., Van Proeyen, Lagrangians of N = 2 Supergravity-Matter Systems, Nucl. Phys. B255 (1985) 569.Google Scholar
[1258] B., de Wit, H., Nicolai, and H., Samtleben, Gauged Supergravities, Tensor Hierarchies, and M-Theory, JHEP 0802 (2008) 044.Google Scholar
[1259] B., de Wit and H., Samtleben, Gauged Maximal Supergravities and Hierarchies of Nonabelian Vector-Tensor Systems, Fortsch. Phys. 53 (2005) 442.Google Scholar
[1260] B., de Wit, H., Samtleben, and M., Trigiante, On Lagrangians and Gaugings of Maximal Supergravities, Nucl. Phys. B655 (2003) 93.Google Scholar
[1261] B., de Wit, H., Samtleben, and M., Trigiante, Maximal Supergravity from IIB Flux Compactifications, Phys. Lett. B583 (2004) 338.Google Scholar
[1262] B., de Wit, H., Samtleben, and M., Trigiante, Magnetic Charges in Local Field Theory, JHEP 0509 (2005) 016.Google Scholar
[1263] B., de Wit, H., Samtleben, and M., Trigiante, The Maximal D = 5 Supergravities, Nucl. Phys. B716 (2005) 215.Google Scholar
[1264] B., de Wit, H., Samtleben, and M., Trigiante, The Maximal D = 4 Supergravities, JHEP 0706 (2007) 049.Google Scholar
[1265] B., de Wit and A., Van Proeyen, Potentials and Symmetries of General Gauged N = 2 Supergravity – Yang-Mills Models, Nucl. Phys. B 245 (1984) 89.Google Scholar
[1266] B., de Wit and A., Van Proeyen, Special Geometry, Cubic Polynomials and Homogeneous Quaternionic Spaces, Commun. Math. Phys. 149 (1992) 307.Google Scholar
[1267] B., de Wit, F., Vanderseypen, and A., Van Proeyen, Symmetry Structure of Special Geometries, Nucl. Phys. B400 (1993) 463.Google Scholar
[1268] B., de Wit and M., van Zalk, Supergravity and M-Theory, Gen. Relativ. Grav. 41 (2009) 757.Google Scholar
[1269] B., de Wit and M., van Zalk, Electric and Magnetic Charges in N = 2 Conformal Supergravity Theories, JHEP 1110 (2011) 050.Google Scholar
[1270] E., Witten, Dyons of Chargee = θ/2π, Phys. Lett. 86B (1979) 283.Google Scholar
[1271] E., Witten, Search for a Realistic Kaluza-Klein Theory, Nucl. Phys. B186 (1981) 412.Google Scholar
[1272] E., Witten, A New Proof of the Positive Energy Theorem, Commun. Math. Phys. 80, (1981) 381.Google Scholar
[1273] E., Witten, Instability of the Kaluza-Klein Vacuum, Nucl. Phys. 195 (1982) 481.Google Scholar
[1274] E., Witten, Fermion Quantum Numbers in Kaluza-Klein Theory, in Shelter Island Conf. Quantum Field Theory and the Fundamental Problems of Physics II, eds. R., Jackiw, N. N., Khuri, S., Weinberg, and E., Witten. Cambridge, MA: MIT Press (1985), p. 227.Google Scholar
[1275] E., Witten, String Theory Dynamics in Various Dimensions, Nucl. Phys. B443 (1995) 85.Google Scholar
[1276] E., Witten and D., Olive, Supersymmetry Algebras that Include Topological Charges, Phys. Lett. 78B (1978) 97.Google Scholar
[1277] T. T., Wu and C.-N., Yang, Some Solutions of the Classical Isotopic Gauge Field Equations, in Properties of Matter under Unusual Conditions, eds. H., Mark and S., Fernbach. NewYork: Interscience (1969), p. 349.Google Scholar
[1278] T. T., Wu and C.-N., Yang, Some Remarks About Unquantized Nonabelian Gauge Fields, Phys. Rev. D12 (1975) 3843.Google Scholar
[1279] T. T., Wu and C. N., Yang, Concept of Non-integrable Phase Factors and Global Formulation of Gauge Fields, Phys. Rev. D12 (1975) 3845.Google Scholar
[1280] W., Wyss, Zur Unizität der Gravitationstheorie, Helv. Phys. Acta 38 (1965) 469.Google Scholar
[1281] P. B., Yasskin, Solutions for Gravity Coupled to Massless Gauge Fields, Phys. Rev. D12 (1975) 2212.Google Scholar
[1282] D., Youm, Black Holes and Solitons in String Theory, Phys. Rep. 316 (1999) 1.Google Scholar
[1283] D., Youm, Partially Localized Intersecting BPS Branes, Nucl. Phys. B556 (1999) 222.Google Scholar
[1284] A., Zee, Einstein Gravity in a Nutshell. Princeton, NJ: Princeton University Press (2013).Google Scholar
[1285] Ya. B., Zel'dovich, Pis'ma Zh. Éhkp. Teor. Fiz 14 (1970) 270.
[1286] B., Zumino, Ann. N.Y. Acad. Sci. 302 (1977) 545.
[1287] D., Zwanziger, Exactly Soluble Nonrelativistic Model of Particles with Both Electric and Magnetic Charges, Phys. Rev. 176 (1968) 1480.Google Scholar
[1288] D., Zwanziger, Quantum Field Theory of Particles with Both Electric and Magnetic Charges, Phys. Rev. 176 (1968) 1489.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tomás Ortín, Universidad Autónoma de Madrid
  • Book: Gravity and Strings
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139019750.045
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tomás Ortín, Universidad Autónoma de Madrid
  • Book: Gravity and Strings
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139019750.045
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tomás Ortín, Universidad Autónoma de Madrid
  • Book: Gravity and Strings
  • Online publication: 05 April 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139019750.045
Available formats
×