Book contents
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Breaking points in subgroup lattices
Published online by Cambridge University Press: 11 January 2010
- Frontmatter
- Contents
- Contents of Volume 2
- Introduction
- Permutability and subnormality in finite groups
- (Pro)-finite and (topologically) locally finite groups with a CC-subgroup
- Table algebras generated by elements of small degrees
- Subgroups which are a union of a given number of conjugacy classes
- Some results on finite factorized groups
- On nilpotent-like Fitting formations
- Locally finite groups with min-p for all primes p
- Quasi-permutation representations of 2-groups of class 2 with cyclic centre
- Groups acting on bordered Klein surfaces with maximal symmetry
- Breaking points in subgroup lattices
- Group actions on graphs, maps and surfaces with maximum symmetry
- On dual pronormal subgroups and Fitting classes
- (p, q, r)-generations of the sporadic group O'N
- Computations with almost-crystallographic groups
- Random walks on groups: characters and geometry
- On distances of 2-groups and 3-groups
- Zeta functions of groups: the quest for order versus the flight from ennui
- Some factorizations involving hypercentrally embedded subgroups in finite soluble groups
- Elementary theory of groups
- Andrews-Curtis and Todd-Coxeter proof words
- Short balanced presentations of perfect groups
- Finite p-extensions of free pro-p groups
- Elements and groups of finite length
- Logged rewriting and identities among relators
- A characterization of F4(q) where q is an odd prime power
- On associated groups of rings
Summary
Abstract
The paper classifies those locally finite groups having a proper nontrivial subgroup which is comparable with any other element of the subgroup lattice.
Introduction
Let G be a group and let L(G) denote its subgroup lattice. The description of groups G with L(G) a chain is well-known. In a chain, every element is comparable with the others. This raises the natural question of seeing what can be said about groups G having a proper nontrivial subgroup H with the property that for every subgroup X of G one has either X ≤ H or H ≤ X. Such a subgroup H will be called a breaking point for the lattice L(G). For the sake of convenience, we shall call these groups BP-groups.
Of course, BP-groups cannot be decomposed as nontrivial direct products. Moreover, if G is a BP-group with breaking point H, then every subgroup K of G strictly containing H is itself a BP-group with breaking point H. These simple considerations are valuable in what follows and we shall use them without any further reference.
Standard results from abelian group theory dispose of the structure of abelian BP-groups: these are cyclic p-groups in the finite case and Prüfer p-groups Z(p∞) in the infinite case. This focuses the discussion on nonabelian BP-groups.
As more exotic examples, the so-called extended Tarski groups, see Ol'shanskii [3], p. 344 are also BP-groups.
- Type
- Chapter
- Information
- Groups St Andrews 2001 in Oxford , pp. 59 - 62Publisher: Cambridge University PressPrint publication year: 2003
- 1
- Cited by