Book contents
- Frontmatter
- Contents
- Preface
- 1 Perspective on heliophysics
- 2 Introduction to space storms and radiation
- 3 In-situ detection of energetic particles
- 4 Radiative signatures of energetic particles
- 5 Observations of solar and stellar eruptions, flares, and jets
- 6 Models of coronal mass ejections and flares
- 7 Shocks in heliophysics
- 8 Particle acceleration in shocks
- 9 Energetic particle transport
- 10 Energy conversion in planetary magnetospheres
- 11 Energization of trapped particles
- 12 Flares, coronal mass ejections, and atmospheric responses
- 13 Energetic particles and manned spaceflight
- 14 Energetic particles and technology
- Appendix I Authors and editors
- List of illustrations
- List of tables
- References
- Index
- Plate section
5 - Observations of solar and stellar eruptions, flares, and jets
Published online by Cambridge University Press: 05 April 2013
- Frontmatter
- Contents
- Preface
- 1 Perspective on heliophysics
- 2 Introduction to space storms and radiation
- 3 In-situ detection of energetic particles
- 4 Radiative signatures of energetic particles
- 5 Observations of solar and stellar eruptions, flares, and jets
- 6 Models of coronal mass ejections and flares
- 7 Shocks in heliophysics
- 8 Particle acceleration in shocks
- 9 Energetic particle transport
- 10 Energy conversion in planetary magnetospheres
- 11 Energization of trapped particles
- 12 Flares, coronal mass ejections, and atmospheric responses
- 13 Energetic particles and manned spaceflight
- 14 Energetic particles and technology
- Appendix I Authors and editors
- List of illustrations
- List of tables
- References
- Index
- Plate section
Summary
Introduction
A solar flare is narrowly defined as a sudden atmospheric brightening, traditionally in chromospheric Hα emission but more practically now as a coronal soft X-ray source. The physical processes resulting in a flare include restructurings of the magnetic field, non-thermal particle acceleration, and plasma flows. Flares have intimate relationships with other observable phenomena such as filament eruptions, jets, and coronal mass ejections (CMEs). Chapter 6 discusses our current theoretical understanding, and in this chapter we review the observational aspects of these phenomena.
The phenomena associated with the term “solar flare” dominate our thinking about energy conversion from magnetic storage to other forms in the solar corona on time scales below a few minutes. The distinction between a gas dominated by hydrodynamic forces and a magnetized plasma becomes obvious in the solar atmosphere and in the solar wind. At first glance we do not need plasma physics to explain the basic (interior) structure of a star; hydrodyamics, nuclear physics, and the theory of radiative transfer seem to do quite well. Nevertheless, this apparently simple medium drives the currents that result in the violent and beautiful phenomena we see so readily above its surface (see Vol. III). We need plasma physics to describe them.
Understanding the flaring solar atmosphere (photosphere, chromosphere, and corona; see Chapter 8 in Vol. I for descriptions of these regions), since it involves electrodynamics, requires a strong overlap with magnetospheric physics as well as with astronomical techniques useful for studying stellar atmospheres.
- Type
- Chapter
- Information
- Heliophysics: Space Storms and Radiation: Causes and Effects , pp. 123 - 158Publisher: Cambridge University PressPrint publication year: 2010
- 7
- Cited by