Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-07-04T19:12:29.297Z Has data issue: false hasContentIssue false

Chapter 62 - Adoptive Cell Therapy for Cancer Using T-Cells Genetically Engineered to Express Chimeric Antigen Receptors

from Section 17 - Novel Cell Therapies and Manipulations: Ready for Prime-Time?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 591 - 601
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Sadelain, M, Brentjens, R, Riviere, I. The basic principles of chimeric antigen receptor design. Cancer Discovery. 2013;3(4):388–98. PubMed PMID: 23550147. Pubmed Central PMCID: PMC3667586.CrossRefGoogle ScholarPubMed
Dao, T, Yan, S, Veomett, N, Pankov, D, Zhou, L, Korontsvit, T, et al. Targeting the intracellular WT1 oncogene product with a therapeutic human antibody. Science Translational Medicine. 2013;5(176):176ra33. PubMed PMID: 23486779. Pubmed Central PMCID: PMC3963696.CrossRefGoogle ScholarPubMed
Hudecek, M, Lupo-Stanghellini, MT, Kosasih, PL, Sommermeyer, D, Jensen, MC, Rader, C, et al. Receptor affinity and extracellular domain modifications affect tumor recognition by ROR1-specific chimeric antigen receptor T cells. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2013;19(12):3153–64. PubMed PMID: 23620405. Pubmed Central PMCID: PMC3804130.CrossRefGoogle ScholarPubMed
Eshhar, Z, Waks, T, Gross, G, Schindler, DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(2):720–4. PubMed PMID: 8421711. Pubmed Central PMCID: PMC45737.Google ScholarPubMed
Brocker, T, Karjalainen, K. Signals through T cell receptor-zeta chain alone are insufficient to prime resting T lymphocytes. The Journal of Experimental Medicine. 1995;181(5):1653–9. PubMed PMID: 7722445. Pubmed Central PMCID: PMC2192006.CrossRefGoogle ScholarPubMed
Gong, MC, Latouche, JB, Krause, A, Heston, WD, Bander, NH, Sadelain, M. Cancer patient T cells genetically targeted to prostate-specific membrane antigen specifically lyse prostate cancer cells and release cytokines in response to prostate-specific membrane antigen. Neoplasia. 1999;1(2):123–7. PubMed PMID: 10933046. Pubmed Central PMCID: PMC1508130.CrossRefGoogle ScholarPubMed
Maher, J, Brentjens, RJ, Gunset, G, Riviere, I, Sadelain, M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nature Biotechnology. 2002;20(1):70–5. PubMed PMID: 11753365.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Latouche, JB, Santos, E, Marti, F, Gong, MC, Lyddane, C, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. Nature Medicine. 2003;9(3):279–86. PubMed PMID: 12579196.CrossRefGoogle Scholar
Kowolik, CM, Topp, MS, Gonzalez, S, Pfeiffer, T, Olivares, S, Gonzalez, N, et al. CD28 costimulation provided through a CD19-specific chimeric antigen receptor enhances in vivo persistence and antitumor efficacy of adoptively transferred T cells. Cancer Research. 2006;66(22):10995–1004. PubMed PMID: 17108138.CrossRefGoogle ScholarPubMed
Finney, HM, Akbar, AN, Lawson, AD. Activation of resting human primary T cells with chimeric receptors: costimulation from CD28, inducible costimulator, CD134, and CD137 in series with signals from the TCR zeta chain. Journal of Immunology. 2004;172(1):104–13. PubMed PMID: 14688315.CrossRefGoogle ScholarPubMed
Hombach, A, Sent, D, Schneider, C, Heuser, C, Koch, D, Pohl, C, et al. T-cell activation by recombinant receptors: CD28 costimulation is required for interleukin 2 secretion and receptor-mediated T-cell proliferation but does not affect receptor-mediated target cell lysis. Cancer Research. 2001;61(5):1976–82. PubMed PMID: 11280755.Google Scholar
Savoldo, B, Ramos, CA, Liu, E, Mims, MP, Keating, MJ, Carrum, G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients. The Journal of Clinical Investigation. 2011;121(5):1822–6. PubMed PMID: 21540550. Pubmed Central PMCID: PMC3083795.CrossRefGoogle ScholarPubMed
Carpenito, C, Milone, MC, Hassan, R, Simonet, JC, Lakhal, M, Suhoski, MM, et al. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proceedings of the National Academy of Sciences of the United States of America. 2009;106(9):3360–5. PubMed PMID: 19211796. Pubmed Central PMCID: PMC2651342.Google Scholar
Davila, ML, Riviere, I, Wang, X, Bartido, S, Park, J, Curran, K, et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Science Translational Medicine. 2014;6(224):224ra25. PubMed PMID: 24553386.CrossRefGoogle ScholarPubMed
Grupp, SA, Kalos, M, Barrett, D, Aplenc, R, Porter, DL, Rheingold, SR, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. The New England Journal of Medicine. 2013;368(16):1509–18. PubMed PMID: 23527958. Pubmed Central PMCID: PMC4058440.CrossRefGoogle ScholarPubMed
Jackson, HJ, Rafiq, S, Brentjens, RJ. Driving CAR T cells forward. Nature Reviews Clinical Oncology. 2016;13:370–83.CrossRefGoogle Scholar
Zhong, XS, Matsushita, M, Plotkin, J, Riviere, I, Sadelain, M. Chimeric antigen receptors combining 4-1BB and CD28 signaling domains augment PI3kinase/AKT/Bcl-XL activation and CD8+ T cell-mediated tumor eradication. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2010;18(2):413–20. PubMed PMID: 19773745. Pubmed Central PMCID: PMC2839303.CrossRefGoogle ScholarPubMed
Tammana, S, Huang, X, Wong, M, Milone, MC, Ma, L, Levine, BL, et al. 4-1BB and CD28 signaling plays a synergistic role in redirecting umbilical cord blood T cells against B-cell malignancies. Human Gene Therapy. 2010;21(1):7586. PubMed PMID: 19719389. Pubmed Central PMCID: PMC2861957.CrossRefGoogle Scholar
Wang, J, Jensen, M, Lin, Y, Sui, X, Chen, E, Lindgren, CG, et al. Optimizing adoptive polyclonal T cell immunotherapy of lymphomas, using a chimeric T cell receptor possessing CD28 and CD137 costimulatory domains. Human Gene Therapy. 2007;18(8):712–25. PubMed PMID: 17685852.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Riviere, I, Park, JH, Davila, ML, Wang, X, Stefanski, J, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118(18):4817–28. PubMed PMID: 21849486. Pubmed Central PMCID: PMC3208293.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Davila, ML, Riviere, I, Park, J, Wang, X, Cowell, LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Science Translational Medicine. 2013;5(177):177ra38. PubMed PMID: 23515080. Pubmed Central PMCID: PMC3742551.CrossRefGoogle ScholarPubMed
Lee, DW, Kochenderfer, JN, Stetler-Stevenson, M, Cui, YK, Delbrook, C, Feldman, SA, et al. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. 2015;385(9967): 517–28.CrossRefGoogle Scholar
Turtle, CJ, Hanafi, LA, Berger, C, Gooley, TA, Cherian, S, Hudecek, M, et al. CD19 CAR–T cells of defined CD4+ : CD8+ composition in adult B cell ALL patients. Journal of Clinical Investigation. 2016;126(6).CrossRefGoogle ScholarPubMed
Porter, DL, Levine, BL, Kalos, M, Bagg, A, June, CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. The New England Journal of Medicine. 2011;365(8):725–33. PubMed PMID: 21830940. Pubmed Central PMCID: PMC3387277.CrossRefGoogle ScholarPubMed
Porter, DL, Hwang, WT, Frey, NV, Lacey, SF, Shaw, PA, Loren, AW, et al. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Science Translational Medicine. 2015;7(303):303–39.CrossRefGoogle ScholarPubMed
Kochenderfer, JN, Wilson, WH, Janik, JE, Dudley, ME, Stetler-Stevenson, M, Feldman, SA, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T-cells genetically engineered to recognize CD19. Blood. 2010;116(20):4099–102. PubMed PMID: 20668228. Pubmed Central PMCID: PMC2993617.CrossRefGoogle Scholar
Kochenderfer, JN, Dudley, ME, Feldman, SA, Wilson, WH, Spaner, DE, Maric, I, et al. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood. 2012;119(12):2709–20. PubMed PMID: 22160384. Pubmed Central PMCID: PMC3327450.CrossRefGoogle Scholar
Kochenderfer, JN, Dudley, ME, Kassim, SH, Somerville, RP, Carpenter, RO, Stetler-Stevenson, M, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T-cells expressing an anti-CD19 chimeric antigen receptor. Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 2015;33(6): 540–9. PubMed PMID: 25154820.CrossRefGoogle ScholarPubMed
Turtle, , et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor–modified T cells. Science Translational Medicine. 2016;8(355).CrossRefGoogle ScholarPubMed
Till, BG, Jensen, MC, Wang, J, Chen, EY, Wood, BL, Greisman, HA, et al. Adoptive immunotherapy for indolent non-Hodgkin lymphoma and mantle cell lymphoma using genetically modified autologous CD20-specific T-cells. Blood. 2008;112(6):2261–71. PubMed PMID: 18509084. Pubmed Central PMCID: PMC2532803.CrossRefGoogle ScholarPubMed
Till, BG, Jensen, MC, Wang, J, Qian, X, Gopal, AK, Maloney, DG, et al. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012;119(17):3940–50. PubMed PMID: 22308288. Pubmed Central PMCID: PMC3350361.CrossRefGoogle ScholarPubMed
Burger, JA, Ghia, P, Rosenwald, A, Caligaris-Cappio, F. The microenvironment in mature B-cell malignancies: a target for new treatment strategies. Blood. 2009;114(16):3367–75. PubMed PMID: 19636060.CrossRefGoogle ScholarPubMed
Herishanu, Y, Perez-Galan, P, Liu, D, Biancotto, A, Pittaluga, S, Vire, B, et al. The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood. 2011;117(2):563–74. PubMed PMID: 20940416. Pubmed Central PMCID: PMC3031480.CrossRefGoogle ScholarPubMed
Christopoulos, P, Pfeifer, D, Bartholome, K, Follo, M, Timmer, J, Fisch, P, et al. Definition and characterization of the systemic T-cell dysregulation in untreated indolent B-cell lymphoma and very early CLL. Blood. 2011;117(14):3836–46. PubMed PMID: 21270444.CrossRefGoogle ScholarPubMed
Riches, JC, Davies, JK, McClanahan, F, Fatah, R, Iqbal, S, Agrawal, S, et al. T-cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9):1612–21. PubMed PMID: 23247726. Pubmed Central PMCID: PMC3587324.CrossRefGoogle ScholarPubMed
Davila, ML, Bouhassira, DC, Park, JH, Curran, KJ, Smith, EL, Pegram, HJ, et al. Chimeric antigen receptors for the adoptive T cell therapy of hematologic malignancies. International Journal of Hematology. 2014;99(4):361–71. PubMed PMID: 24311149.CrossRefGoogle ScholarPubMed
Neeson, P, Shin, A, Tainton, KM, Guru, P, Prince, HM, Harrison, SJ, et al. Ex vivo culture of chimeric antigen receptor T cells generates functional CD8+ T-cells with effector and central memory-like phenotype. Gene Therapy. 2010;17(9):1105–16. PubMed PMID: 20428216.CrossRefGoogle ScholarPubMed
Ali, SA, Shi, V, Maric, I, Wang, M, Stroncek, DF, Rose, JJ, et al. T cells expressing an anti–B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood. 2016;128:1688–700.CrossRefGoogle ScholarPubMed
Ritchie, DS, Neeson, PJ, Khot, A, Peinert, S, Tai, T, Tainton, K, et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2013;21(11):2122–9. PubMed PMID: 23831595. Pubmed Central PMCID: PMC3831035.CrossRefGoogle Scholar
Gajewski, TF, Schreiber, H, Fu, YX. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology. 2013;14(10):1014–22. PubMed PMID: 24048123. Pubmed Central PMCID: PMC4118725.CrossRefGoogle ScholarPubMed
Lee, JC, Hayman, E, Pegram, HJ, Santos, E, Heller, G, Sadelain, M, et al. In vivo inhibition of human CD19-targeted effector T-cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Research. 2011;71(8):2871–81. PubMed PMID: 21487038. Pubmed Central PMCID: PMC3094720.Google Scholar
Kershaw, MH, Westwood, JA, Parker, LL, Wang, G, Eshhar, Z, Mavroukakis, SA, et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 2006;12(20 Pt 1):6106–15. PubMed PMID: 17062687. Pubmed Central PMCID: PMC2154351.CrossRefGoogle ScholarPubMed
Louis, CU, Savoldo, B, Dotti, G, Pule, M, Yvon, E, Myers, GD, et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T-cells in patients with neuroblastoma. Blood. 2011;118(23):6050–6. PubMed PMID: 21984804. Pubmed Central PMCID: PMC3234664.CrossRefGoogle ScholarPubMed
Maus, MV, Haas, AR, Beatty, GL, Albelda, SM, Levine, BL, Liu, X, et al. T-cells expressing chimeric antigen receptors can cause anaphylaxis in humans. Cancer Immunology Research. 2013;1(1):2631. PubMed PMID: 24777247.CrossRefGoogle ScholarPubMed
Hegde, M, Corder, A, Chow, KK, Mukherjee, M, Ashoori, A, Kew, Y, et al. Combinational targeting offsets antigen escape and enhances effector functions of adoptively transferred T cells in glioblastoma. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2013;21(11):2087–101. PubMed PMID: 23939024. Pubmed Central PMCID: PMC3831041.CrossRefGoogle ScholarPubMed
Duong, CP, Westwood, JA, Berry, LJ, Darcy, PK, Kershaw, MH. Enhancing the specificity of T-cell cultures for adoptive immunotherapy of cancer. Immunotherapy. 2011;3(1):3348. PubMed PMID: 21174556.CrossRefGoogle ScholarPubMed
Kloss, CC, Condomines, M, Cartellieri, M, Bachmann, M, Sadelain, M. Combinatorial antigen recognition with balanced signaling promotes selective tumor eradication by engineered T-cells. Nature Biotechnology. 2013;31(1):71–5. PubMed PMID: 23242161.CrossRefGoogle ScholarPubMed
Kakarla, S, Chow, K, Mata, M, Shaffer, DR, Song, XT, Wu, MF, et al. Antitumor effects of chimeric receptor engineered human T-cells directed to tumor stroma. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2013;21(8):1611–20. PubMed PMID: 23732988. Pubmed Central PMCID: PMC3734659.CrossRefGoogle ScholarPubMed
Chmielewski, M, Hombach, AA, Abken, H. Of CARs and TRUCKs: chimeric antigen receptor (CAR) T cells engineered with an inducible cytokine to modulate the tumor stroma. Immunological Reviews. 2014;257(1):8390. PubMed PMID: 24329791.CrossRefGoogle Scholar
Pegram, HJ, Lee, JC, Hayman, EG, Imperato, GH, Tedder, TF, Sadelain, M, et al. Tumor-targeted T-cells modified to secrete IL-12 eradicate systemic tumors without need for prior conditioning. Blood. 2012;119(18):4133–41. PubMed PMID: 22354001. Pubmed Central PMCID: PMC3359735.CrossRefGoogle ScholarPubMed
Leonard, JP, Sherman, ML, Fisher, GL, Buchanan, LJ, Larsen, G, Atkins, MB, et al. Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood. 1997;90(7):2541–8. PubMed PMID: 9326219.Google ScholarPubMed
Koneru, M, O’Cearbhaill, R, Pendharkar, S, Spriggs, DR, Brentjens, RJ. A phase I clinical trial of adoptive T cell therapy using IL-12 secreting MUC-16ecto directed chimeric antigen receptors for recurrent ovarian cancer. Journal of Translational Medicine. 2015;13:102.CrossRefGoogle ScholarPubMed
Stephan, MT, Ponomarev, V, Brentjens, RJ, Chang, AH, Dobrenkov, KV, Heller, G, et al. T cell-encoded CD80 and 4-1BBL induce auto- and transcostimulation, resulting in potent tumor rejection. Nature Medicine. 2007;13(12):1440–9. PubMed PMID: 18026115.CrossRefGoogle ScholarPubMed
Davila, ML, Kloss, CC, Gunset, G, Sadelain, M. CD19 CAR-targeted T-cells induce long-term remission and B Cell Aplasia in an immunocompetent mouse model of B cell acute lymphoblastic leukemia. PLoS one. 2013;8(4):e61338. PubMed PMID: 23585892. Pubmed Central PMCID: PMC3621858.CrossRefGoogle Scholar
Morgan, RA, Yang, JC, Kitano, M, Dudley, ME, Laurencot, CM, Rosenberg, SA. Case report of a serious adverse event following the administration of T-cells transduced with a chimeric antigen receptor recognizing ERBB2. Molecular Therapy: The Journal of the American Society of Gene Therapy. 2010;18(4):843–51. PubMed PMID: 20179677. Pubmed Central PMCID: PMC2862534.CrossRefGoogle ScholarPubMed
Di Stasi, A, Tey, SK, Dotti, G, Fujita, Y, Kennedy-Nasser, A, Martinez, C, et al. Inducible apoptosis as a safety switch for adoptive cell therapy. The New England Journal of Medicine. 2011;365(18):1673–83. PubMed PMID: 22047558. Pubmed Central PMCID: PMC3236370.CrossRefGoogle ScholarPubMed
Kalos, M, Levine, BL, Porter, DL, Katz, S, Grupp, SA, Bagg, A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Science Translational Medicine. 2011;3(95):95ra73. PubMed PMID: 21832238. Pubmed Central PMCID: PMC3393096.CrossRefGoogle ScholarPubMed
Teachey, DT, Lacey, SF, Shaw, PA, Melenhorst, J, Maude, SL, Frey, N, et al. Identification of predictive biomarkers for cytokine release syndrome after chimeric antigen receptor T-cell therapy for acute lymphoblastic leukemia. Cancer Discovery. 2016; 10.1158/2159–8290.CD-16-0040.Google Scholar
Bonifant, CL, Jackson, HJ, Brentjens, RJ, Curran, KJ. Toxicity and management in CAR T-cell therapy. Molecular Therapy: Oncolytics. 2016;3:16011; doi:10.1038/mto.2016.11.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×