Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-23T22:51:19.081Z Has data issue: false hasContentIssue false

Chapter 67 - Gene Therapy in Hematopoietic Cell Transplants

from Section 17 - Novel Cell Therapies and Manipulations: Ready for Prime-Time?

Published online by Cambridge University Press:  24 May 2017

Hillard M. Lazarus
Affiliation:
Case Western Reserve University, Ohio
Robert Peter Gale
Affiliation:
Imperial College London
Armand Keating
Affiliation:
University of Toronto
Andrea Bacigalupo
Affiliation:
Ospedale San Martino, Genoa
Reinhold Munker
Affiliation:
Louisiana State University, Shreveport
Kerry Atkinson
Affiliation:
University of Queensland
Syed Ali Abutalib
Affiliation:
Midwestern Regional Medical Center, Cancer Treatment Centers of America, Chicago
Get access
Type
Chapter
Information
Hematopoietic Cell Transplants
Concepts, Controversies and Future Directions
, pp. 649 - 656
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hacein-Bey-Abina, S, Hauer, J, Lim, A, Picard, C, Wang, GP, Berry, CC, et al. Efficacy of gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2010;363(4):355–64.CrossRefGoogle ScholarPubMed
Zhang, L, Thrasher, AJ, Gaspar, HB. Current progress on gene therapy for primary immunodeficiencies. Gene Ther. 2013;20(10):963–9.CrossRefGoogle ScholarPubMed
Candotti, F, Shaw, KL, Muul, L, Carbonaro, D, Sokolic, R, Choi, C, et al. Gene therapy for adenosine deaminase-deficient severe combined immune deficiency: clinical comparison of retroviral vectors and treatment plans. Blood. 2012;120(18):3635–46.CrossRefGoogle ScholarPubMed
Vollweiler, JL, Zielske, SP, Reese, JS, Gerson, SL. Hematopoietic stem cell gene therapy: progress toward therapeutic targets. Bone Marrow Transplant. 2003;32(1):17.CrossRefGoogle ScholarPubMed
Howe, SJ, Mansour, MR, Schwarzwaelder, K, Bartholomae, C, Hubank, M, Kempski, H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest. 2008;118(9):3143–50.CrossRefGoogle ScholarPubMed
Aiuti, A, Biasco, L, Scaramuzza, S, Ferrua, F, Cicalese, MP, Baricordi, C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341(6148):1233151.CrossRefGoogle ScholarPubMed
Biffi, A, Montini, E, Lorioli, L, Cesani, M, Fumagalli, F, Plati, T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341(6148):1233158.CrossRefGoogle ScholarPubMed
Grez, M, Reichenbach, J, Schwable, J, Seger, R, Dinauer, MC, Thrasher, AJ. Gene therapy of chronic granulomatous disease: the engraftment dilemma. Mol Ther. 2011;19(1):2835.CrossRefGoogle ScholarPubMed
Cartier, N, Hacein-Bey-Abina, S, Bartholomae, CC, Veres, G, Schmidt, M, Kutschera, I, et al. Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science. 2009;326(5954):818–23.CrossRefGoogle ScholarPubMed
Gattinoni, L, Restifo, NP. Moving T memory stem cells to the clinic. Blood. 2013;121(4):567–8.CrossRefGoogle ScholarPubMed
Porter, DL, Levine, BL, Kalos, M, Bagg, A, June, CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011;365(8):725–33.CrossRefGoogle ScholarPubMed
Kalos, M, Levine, BL, Porter, DL, Katz, S, Grupp, SA, Bagg, A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.CrossRefGoogle ScholarPubMed
Cooray, S, Howe, SJ, Thrasher, AJ. Retrovirus and lentivirus vector design and methods of cell conditioning. Methods Enzymol. 2012;507:2957.CrossRefGoogle ScholarPubMed
Naldini, L, Blomer, U, Gage, FH, Trono, D, Verma, IM. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A. 1996;93(21):11382–8.CrossRefGoogle ScholarPubMed
Cattoglio, C, Pellin, D, Rizzi, E, Maruggi, G, Corti, G, Miselli, F, et al. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood. 2010;116(25):5507–17.CrossRefGoogle ScholarPubMed
Gyurkocza, B, Sandmaier, BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014;124(3):344–53.CrossRefGoogle Scholar
Barrett, DM, Singh, N, Porter, DL, Grupp, SA, June, CH. Chimeric antigen receptor therapy for cancer. Annu Rev Med. 2014;65:333–47.CrossRefGoogle ScholarPubMed
Kenyon, J, Fu, P, Lingas, K, Thomas, E, Saurastri, A, Santos Guasch, G, et al. Humans accumulate microsatellite instability with acquired loss of MLH1 protein in hematopoietic stem and progenitor cells as a function of age. Blood. 2012;120(16):3229–36.CrossRefGoogle ScholarPubMed
Abkowitz, JL, Catlin, SN, McCallie, MT, Guttorp, P. Evidence that the number of hematopoietic stem cells per animal is conserved in mammals. Blood. 2002;100(7):2665–7.CrossRefGoogle ScholarPubMed
Hinrichs, CS, Borman, ZA, Cassard, L, Gattinoni, L, Spolski, R, Yu, Z, et al. Adoptively transferred effector cells derived from naive rather than central memory CD8+ T cells mediate superior antitumor immunity. Proc Natl Acad Sci U S A. 2009;106(41):17469–74.CrossRefGoogle ScholarPubMed
Berger, C, Jensen, MC, Lansdorp, PM, Gough, M, Elliott, C, Riddell, SR. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J Clin Invest. 2008;118(1):294305.CrossRefGoogle ScholarPubMed
Paulos, CM, Carpenito, C, Plesa, G, Suhoski, MM, Varela-Rohena, A, Golovina, TN, et al. The inducible costimulator (ICOS) is critical for the development of human T(H)17 cells. Sci Transl Med. 2010;2(55):55ra78.CrossRefGoogle Scholar
Gattinoni, L, Lugli, E, Ji, Y, Pos, Z, Paulos, CM, Quigley, MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.CrossRefGoogle ScholarPubMed
Lee, JC, Hayman, E, Pegram, HJ, Santos, E, Heller, G, Sadelain, M, et al. In vivo inhibition of human CD19-targeted effector T cells by natural T regulatory cells in a xenotransplant murine model of B cell malignancy. Cancer Res. 2011;71(8):2871–81.Google Scholar
Cavazzana-Calvo, M, Fischer, A, Hacein-Bey-Abina, S, Aiuti, A. Gene therapy for primary immunodeficiencies: Part 1. Curr Opin Immunol. 2012;24(5):580–4.CrossRefGoogle ScholarPubMed
Aiuti, A, Bacchetta, R, Seger, R, Villa, A, Cavazzana-Calvo, M. Gene therapy for primary immunodeficiencies: Part 2. Curr Opin Immunol. 2012;24(5):585–91.CrossRefGoogle ScholarPubMed
Kang, EM, Choi, U, Theobald, N, Linton, G, Long Priel, DA, Kuhns, D, et al. Retrovirus gene therapy for X-linked chronic granulomatous disease can achieve stable long-term correction of oxidase activity in peripheral blood neutrophils. Blood. 2010;115(4):783–91.CrossRefGoogle ScholarPubMed
Lattime, EC, Gerson, SL. Gene therapy of cancer: translational approaches from preclinical studies to clinical implementation. 3rd ed. San Diego, CA: Academic Press; 2014.Google Scholar
Ma, LL, Spurrell, JC, Wang, JF, Neely, GG, Epelman, S, Krensky, AM, et al. CD8 T cell-mediated killing of Cryptococcus neoformans requires granulysin and is dependent on CD4 T cells and IL-15. J Immunol. 2002;169(10):5787–95.CrossRefGoogle ScholarPubMed
Han, EQ, Li, XL, Wang, CR, Li, TF, Han, SY. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013;6:47.CrossRefGoogle ScholarPubMed
Brentjens, RJ, Davila, ML, Riviere, I, Park, J, Wang, X, Cowell, LG, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.CrossRefGoogle ScholarPubMed
Davila, ML, Riviere, I, Wang, X, Bartido, S, Park, J, Curran, K, et al. Efficacy and toxicity management of 19–28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med. 2014;6(224):224ra25.CrossRefGoogle ScholarPubMed
Adair, JE, Beard, BC, Trobridge, GD, Neff, T, Rockhill, JK, Silbergeld, DL, et al. Extended survival of glioblastoma patients after chemoprotective HSC gene therapy. Sci Transl Med. 2012;4(133):133ra57.CrossRefGoogle ScholarPubMed
Adair, JE, Johnston, SK, Mrugala, MM, Beard, BC, Guyman, LA, Baldock, AL, et al. Gene therapy enhances chemotherapy tolerance and efficacy in glioblastoma patients. J Clin Invest. 2014;124(9):4082–92.CrossRefGoogle ScholarPubMed
Neff, T, Beard, BC, Kiem, HP. Survival of the fittest: in vivo selection and stem cell gene therapy. Blood. 2006;107(5):1751–60.CrossRefGoogle ScholarPubMed
Zielske, SP, Gerson, SL. Lentiviral transduction of P140K MGMT into human CD34(+) hematopoietic progenitors at low multiplicity of infection confers significant resistance to BG/BCNU and allows selection in vitro. Mol Ther. 2002;5(4):381–7.CrossRefGoogle ScholarPubMed
Davis, BM, Roth, JC, Liu, L, Xu-Welliver, M, Pegg, AE, Gerson, SL. Characterization of the P140K, PVP(138–140)MLK, and G156A O6-methylguanine-DNA methyltransferase mutants: implications for drug resistance gene therapy. Hum Gene Ther. 1999;10(17):2769–78.CrossRefGoogle ScholarPubMed
Chung, J, Scherer, LJ, Gu, A, Gardner, AM, Torres-Coronado, M, Epps, EW, et al. Optimized lentiviral vectors for HIV gene therapy: multiplexed expression of small RNAs and inclusion of MGMT(P140K) drug resistance gene. Mol Ther. 2014;22(5):952–63.CrossRefGoogle ScholarPubMed
Knight, S, Zhang, F, Mueller-Kuller, U, Bokhoven, M, Gupta, A, Broughton, T, et al. Safer, silencing-resistant lentiviral vectors: optimization of the ubiquitous chromatin-opening element through elimination of aberrant splicing. J Virol. 2012;86(17):9088–95.CrossRefGoogle ScholarPubMed
Deichmann, A, Brugman, MH, Bartholomae, CC, Schwarzwaelder, K, Verstegen, MM, Howe, SJ, et al. Insertion sites in engrafted cells cluster within a limited repertoire of genomic areas after gammaretroviral vector gene therapy. Mol Ther. 2011;19(11):2031–9.CrossRefGoogle ScholarPubMed
Gaussin, A, Modlich, U, Bauche, C, Niederlander, NJ, Schambach, A, Duros, C, et al. CTF/NF1 transcription factors act as potent genetic insulators for integrating gene transfer vectors. Gene Ther. 2012;19(1):1524.CrossRefGoogle ScholarPubMed
Heckl, D, Schwarzer, A, Haemmerle, R, Steinemann, D, Rudolph, C, Skawran, B, et al. Lentiviral vector induced insertional haploinsufficiency of Ebf1 causes murine leukemia. Mol Ther. 2012;20(6):1187–95.CrossRefGoogle ScholarPubMed
Gaj, T, Gersbach, CA, Barbas, CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013 Jul;31(7):397405.CrossRefGoogle ScholarPubMed
Fung, H, Weinstock, DM. Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514.CrossRefGoogle ScholarPubMed
Smith, JR, Maguire, S, Davis, LA, Alexander, M, Yang, F, Chandran, S, et al. Robust, persistent transgene expression in human embryonic stem cells is achieved with AAVS1-targeted integration. Stem Cells. 2008;26(2):496504.CrossRefGoogle ScholarPubMed
DeKelver, RC, Choi, VM, Moehle, EA, Paschon, DE, Hockemeyer, D, Meijsing, SH, et al. Functional genomics, proteomics, and regulatory DNA analysis in isogenic settings using zinc finger nuclease-driven transgenesis into a safe harbor locus in the human genome. Genome Res. 2010;20(8):1133–42.CrossRefGoogle ScholarPubMed
Urnov, FD, Miller, JC, Lee, YL, Beausejour, CM, Rock, JM, Augustus, S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646–51.CrossRefGoogle ScholarPubMed
Reyon, D, Tsai, SQ, Khayter, C, Foden, JA, Sander, JD, Joung, JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol. 2012;30(5):460–5.CrossRefGoogle ScholarPubMed
Sander, JD, Joung, JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32(4):347–55.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×