Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-21T05:01:16.994Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  16 May 2024

Wolfgang Lay
Affiliation:
Universität Stuttgart
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Higher Special Functions
A Theory of the Central Two-Point Connection Problem Based on a Singularity Approach
, pp. 296 - 297
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M. and Stegun, I. (1970). Handbook of Mathematical Functions, 9th ed. Dover Publications.Google Scholar
Adams, R. (1928). On the irregular cases of the linear ordinary difference equation. Trans. Amer. Math. Soc., 30(3), 507541.CrossRefGoogle Scholar
Arscott, F. M., Taylor, P. J. and Zahar, R. V. M. (1983). On the numerical construction of ellipsoidal wave functions. Math. Comput., 40(161), 367380.CrossRefGoogle Scholar
Aulbach, B., Elaydi, S. and Ladas, G. (eds). (2004). Proceedings of the Sixth International Conference on Difference Equations: New Progress in Difference Equations. Chapman & Hall/CRC Press.Google Scholar
Bay, K., Lay, W. and Akopyan, A. M. (1997). Avoided crossings of the quartic ascillator. J. Phys. A: Math. Gen., 30, 30573067.CrossRefGoogle Scholar
Bay, K., Lay, W. and Slavyanov, S. Yu. (1998). Asymptotic and numeric study of eigenvalues of the double confluent Heun equation. J. Phys. A: Math. Gen., 31, 85218531.Google Scholar
Behnke, H. and Sommer, F. (1976). Theorie der analytischen Funktionen einer komplexen Veränderlichen. Springer.Google Scholar
Bieberbach, L. (1965). Theorie der gewöhnlichen Differentialgleichungen, 2nd ed. Springer.CrossRefGoogle Scholar
Birkhoff, G. D. and Trjitzinsky, W. J. (1933). Analytic theory of singular difference equations. Acta. Math., 60, 189.CrossRefGoogle Scholar
Bronstein, I. N., Semendjajew, K. D., Musiol, G. and Mühlig, H. (2001). Taschenbuch der Mathematik, 5. überarbeitete und erweiterte Auflage. Harri Deutsch.Google Scholar
Byrd, P. F. and Friedman, M. D. (1971). Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed. Springer.CrossRefGoogle Scholar
Coddington, E. A. and Levinson, N. (1955). Theory of Ordinary Differential Equations. McGraw-Hill. Reprinted 1984, Krieger.Google Scholar
Courant, R. and Hilbert, D. (1968). Methoden der Mathematischen Physik I, 3rd ed. Springer.CrossRefGoogle Scholar
deBruijn, N. G. (1961). Asymptotic Methods in Analysis, 2nd ed. North-Holland.Google Scholar
Erdélyi, A. (1956). Asymptotic Expansions. Dover.Google Scholar
Esslinger, J. (1990). Quanteneffekte bei der Diffusion von Kinken auf Versetzungen. Dissertation, Universität Stuttgart.Google Scholar
Fuchs, L. (1866). Zur Theorie der linearen Differentialgleichungen. J. Reine und Angew. Math., 66, 121160.Google Scholar
Gelfand, I. M. and Schilow, G. J. (1964). Verallgemeinerte Funktionen: Einige Fragen zur Theorie der Differentialgleichungen, Vol. III. Deutscher Verlag der Wissenschaften.Google Scholar
Gelfand, I. M. and Wilenkin, N. (1964). Verallgemeinerte Funktionen: Einige Anwendungen der Harmonischen Analyse: Gelfandsche Raumtripel, Vol. IV. Deutscher Verlag der Wissenschaften.Google Scholar
Gutzwiller, M. (1990). Chaos in Classical and Quantum Mechanics. Springer.CrossRefGoogle Scholar
Heun, K. (1889). Zur Theorie der Riemannschen Fuctionen zweiter Ordnung mit vier Verzweigungspunkten. Math. Ann., 33, 161179.CrossRefGoogle Scholar
Hille, E. (1997). Ordinary Differential Equations in the Complex Domain. Dover.Google Scholar
Hurwitz, A., Courant, R. and Röhrl, H. (1964). Allgemeine Funktionentheorie und Elliptische Funktionen. Springer.Google Scholar
Ince, E. L. (1956). Ordinary Differential Equations. Dover.Google Scholar
Jaffé, G. C. (1933). Zur Theorie des Wasserstoffmolekülions. Z. Phys., 87, 535544.CrossRefGoogle Scholar
Lay, W. (1997). The quartic oscillator. J. Math. Phys., 38(2), 639647.CrossRefGoogle Scholar
Olver, F. W. J. (1974). Asymptotics and Special Functions. Academic Press.Google Scholar
Olver, F. W. J., Lozier, D. W., Boisvert, R. F. and Clark, C. W. (eds.) (2010). NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
Nörlund, N. E. (1924). Vorlesungen über Differenzenrechnung. Springer.CrossRefGoogle Scholar
Perron, O. (1909). Über einen Satz des Herrn Poincaré. J. Reine Agnew. Math., 136, 1738.CrossRefGoogle Scholar
Perron, O. (1910). Über die Poincarésche lineare Differenzengleichung. J. Reine Agnew. Math., 137, 664.CrossRefGoogle Scholar
Perron, O. (1911). Über lineare Differenzengleichungen. Acta Math., 34, 109137.CrossRefGoogle Scholar
Perron, O. (1913). Die Lehre von den Kettenbrüchen. Teubner Verlag 3rd ed., 1954. Volume 1, Elementare Kettenbrüche; Volume 2, Analytische und funktionentheoretische Kettenbrüche.Google Scholar
Pincherle, S. (1894). Delle funzioni ipergeometriche e di varie questioni ad esse attinenti. Gion. Mat. Battaglini, 32, 209291.Google Scholar
Poincaré, H. (1885). Sur les équations linéaires aux différentielles ordinaires et aux différences finies. Amer. J. Math., 7, 203258. Reprinted in Oeuvres, 1, 226–289.CrossRefGoogle Scholar
Poincaré, H. (1886). Sur les intégrales irrégulières des équations linéaires. Acta Math., 8, 295344. Reprinted in Oeuvres, 1, 290–332.CrossRefGoogle Scholar
Ronveaux, A. (ed.) (1995). Heun’s Differential Equations. Oxford University Press.CrossRefGoogle Scholar
Rubinowicz, A. (1972). Sommerfeldsche Polynommethode. Springer.CrossRefGoogle Scholar
Schubert, M. and Weber, G. (1980). Quantentheorie – Grundlagen, Methoden, Anwendung Teil I. VEB Deutscher Verlag der Wissenschaften.Google Scholar
Seeger, A. and Lay, W. (eds.) (1990). Proceedings of the Centennial Workshop on Heun’s Equation – Theory and Applications. 3–8 September 1989, Schloß Ringberg (Rottach-Egern). Max-Planck-Institut für Metallforschung, Institut für Physik, Stuttgart.Google Scholar
Seeger, A. and Schiller, P. (1966). Kinks in dislocation lines and their effects on the internal friction in crystals. In Mason, W. P. (ed.), Physical Acoustics, Vol. III, pp. 361ff. Academic Press.Google Scholar
Slavyanov, S. Yu. (1996). Asymptotic Solutions of the One-Dimensional Schrödinger Equation. (Translations of Mathematical Monographs, 151). American Mathematical Society.CrossRefGoogle Scholar
Slavyanov, S. Yu. and Lay, W. (2000). Special Functions. A Unified Theory Based on Singularities. Oxford University Press.CrossRefGoogle Scholar
Slavyanov, S. Yu. and Veshev, N. A. (1997). Structure of avoided crossings for eigenvalues related to equations of Heun’s class. J. Phys. A: Math. Gen., 30, 673687.CrossRefGoogle Scholar
Whittaker, E. T. and Watson, G. N. (1927). A Course of Modern Analysis, 4th ed. Cambridge University Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Wolfgang Lay, Universität Stuttgart
  • Book: Higher Special Functions
  • Online publication: 16 May 2024
  • Chapter DOI: https://doi.org/10.1017/9781009128414.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Wolfgang Lay, Universität Stuttgart
  • Book: Higher Special Functions
  • Online publication: 16 May 2024
  • Chapter DOI: https://doi.org/10.1017/9781009128414.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Wolfgang Lay, Universität Stuttgart
  • Book: Higher Special Functions
  • Online publication: 16 May 2024
  • Chapter DOI: https://doi.org/10.1017/9781009128414.010
Available formats
×