Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-06T02:15:49.197Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 November 2015

Jan Zaanen
Affiliation:
Universiteit Leiden
Yan Liu
Affiliation:
Universidad Autónoma de Madrid
Ya-Wen Sun
Affiliation:
Universidad Autónoma de Madrid
Koenraad Schalm
Affiliation:
Universiteit Leiden
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] J. M., Maldacena, “The large N limit of super-conformal field theories and supergravity,Adv. Theor. Math. Phys. 2, 231 (1998) [republished Int. J. Theor. Phys. 38, 1113 (1999)] [arXiv:9711200 [hep-th]].Google Scholar
[2] S. S., Gubser, I. R., Klebanov and A. M., Polyakov, “Gauge theory correlators from noncritical string theory,Phys. Lett. B 428, 105 (1998) [arXiv:9802109 [hep-th]].Google Scholar
[3] E., Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253 (1998) [arXiv:9802150 [hep-th]].Google Scholar
[4] Y., Nakayama, “A lecture note on scale invariance vs conformal invariance” [arXiv:1302.0884 [hep-th]].
[5] J., McGreevy, “Holographic duality with a view toward many-body physics,” Adv.High Energy Phys. 2010, 723105 (2010) [arXiv:0909.0518 [hep-th]].Google Scholar
[6] P., Breitenlohner and D. Z., Freedman, “Positive energy in anti-de Sitter backgrounds and gauged extended supergravity,” Phys. Lett. B 115, 197 (1982).Google Scholar
[7] O., Aharony, S. S., Gubser, J. M., Maldacena, H., Ooguri and Y., Oz, “Large N field theories, string theory and gravity,” Phys. Rep. 323, 183 (2000) [arXiv:9905111 [hep-th]].Google Scholar
[8] J., Erdmenger and H., Osborn, “Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions,” Nucl. Phys. B 483, 431 (1997) [arXiv:9605009 [hep-th]].Google Scholar
[9] M., Ammon and J., Erdmenger, Gauge/Gravity Duality: Foundations and Applications, Cambridge University Press, 2014.
[10] M., Natsuume, “AdS/CFT duality user guide” [arXiv:1409.3575 [hep-th]].
[11] J., Casalderrey-Solana, H., Liu, D., Mateos, K., Rajagopal and U. A., Wiedemann, “Gauge/string duality, hot QCD and heavy ion collisions” [arXiv:1101.0618 [hepth]] (preliminary version of [12]).
[12] J., Casalderrey-Solana, H., Liu, D., Mateos, K., Rajagopal and U. A., Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, Cambridge University Press, 2014.
[13] J. M., Maldacena, “TASI 2003 lectures on AdS/CFT,” in TASI 2003 Proceedings, World Scientific, 2004 [arXiv:0309246 [hep-th]].Google Scholar
[14] G. T., Horowitz and J., Polchinski, “Gauge/gravity duality,” in D., Oriti (ed.), Approaches to Quantum Gravity: Toward a New Understanding of Space, Time and Matter, Cambridge University Press, 2009, pp. 169–186 [arXiv:0602037 [gr-qc]].
[15] J., Polchinski, “Introduction to gauge/gravity duality,” in TASI 2010 Proceedings, World Scientific, 2012 [arXiv:1010.6134 [hep-th]].Google Scholar
[16] J., Maldacena, “The gauge/gravity duality” [arXiv:1106.6073 [hep-th]].
[17] S. A., Hartnoll, “Lectures on holographic methods for condensed matter physics,” Class. Quant. Grav. 26, 224002 (2009) [arXiv:0903.3246 [hep-th]].Google Scholar
[18] C. P., Herzog, “Lectures on holographic superfluidity and superconductivity,” J. Phys. A 42, 343001 (2009) [arXiv:0904.1975 [hep-th]].Google Scholar
[19] G. T., Horowitz, Introduction to Holographic Superconductors, Springer, p. 313 (2011) [arXiv:1002.1722 [hep-th]].
[20] S. A., Hartnoll, “Horizons, holography and condensed matter,” in Black Holes in Higher Dimensions, Cambridge University Press, 2011 [arXiv:1106.4324 [hep-th]].
[21] S., Sachdev, “What can gauge–gravity duality teach us about condensed matter physics?Ann. Rev. Condensed Matter Phys. 3, 9 (2012) [arXiv:1108.1197 [cond-mat.str-el]].Google Scholar
[22] N., Iqbal, H., Liu and M., Mezei, “Lectures on holographic non-Fermi liquids and quantum phase transitions,” in TASI 2010 Proceedings, World Scientific, 2012 [arXiv:1110.3814 [hep-th]].Google Scholar
[23] P. M., Chesler and L. G., Yaffe, “Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes,” JHEP 1407, 086 (2014) [arXiv:1309.1439 [hep-th]].Google Scholar
[24] C. P., Herzog, P., Kovtun, S., Sachdev and D. T., Son, “Quantum critical transport, duality, and M-theory,” Phys. Rev. D 75, 085020 (2007) [arXiv:0701036 [hep-th]].Google Scholar
[25] S., Sachdev, Quantum Phase Transitions, 2nd edn, Cambridge University Press, 2011.
[26] I., Herbut, A Modern Approach to Critical Phenomena, Cambridge University Press, 2007.
[27] M., Endres, T., Fukuhara, D., Pekker, M., Cheneau, P., Schauss, C., Gross, E., Demler, S., Kuhr and I., Bloch, “The ‘Higgs’ amplitude mode at the two-dimensional superfluid–Mott insulator transition,” Nature 487, 454 (2012) [arXiv:1204.5183 [cond-mat.quant-gas]].Google Scholar
[28] I. F., Herbut, V., Juričić and O., Vafek, “Relativistic Mott criticality in graphene,” Phys. Rev. B 80, 075432 (2009) [arXiv:0904.1019 [cond-mat.str-el]].Google Scholar
[29] P. H., Ginsparg, “Applied conformal field theory” [ar Xiv:9108028 [hep-th]].
[30] P. Di, Francesco, P., Mathieu and D., Senechal, Conformal Field Theory, Springer, 1997.
[31] M. R., Gaberdiel, “An Introduction to conformal field theory,” Rep. Prog. Phys. 63, 607 (2000) [arXiv:9910156 [hep-th]].Google Scholar
[32] A. B., Zamolodchikov, “‘Irreversibility’ of the flux of the renormalization group in a 2-D field theory,” JETP Lett. 43, 730 (1986).Google Scholar
[33] D. L., Jafferis, I. R., Klebanov, S. S., Pufu and B. R., Safdi, “Towards the Ftheorem: N = 2 field theories on the three-sphere,” JHEP 1106, 102 (2011) [arXiv:1103.1181 [hep-th]].Google Scholar
[34] Z., Komargodski and A., Schwimmer, “On renormalization group flows in four dimensions,” JHEP 1112, 099 (2011) [arXiv:1107.3987 [hep-th]].Google Scholar
[35] H., Elvang, D. Z., Freedman, L.-Y., Hung, M., Kiermaier, R. C., Myers and S., Theisen, “On renormalization group flows and the a-theorem in 6d,” JHEP 1210, 011 (2012) [arXiv:1205.3994 [hep-th]].Google Scholar
[36] A. J., Beekman, D., Sadri and J., Zaanen, “Condensing Nielsen–Olesen strings and the vortex–boson duality in 3+1 and higher dimensions,” New J. Phys. 13, 033004 (2011) [arXiv:1006.2267 [cond-mat.str-el]].Google Scholar
[37] A. J., Beekman and J., Zaanen, “Electrodynamics of Abrikosov vortices: the field theoretical formulation,” Frontiers Phys. 6, 357 (2011) [arXiv:1106.3946 [condmat. supr-con]].Google Scholar
[38] M., Edalati, R. G., Leigh and P. W., Phillips, “Dynamically generated Mott gap from holography,” Phys. Rev. Lett. 106, 091602 (2011) [arXiv:1010.3238 [hep-th]].Google Scholar
[39] S., Chakravarty, B. I., Halperin and D. R., Nelson, “Two-dimensional quantum Heisenberg antiferromagnet at low temperatures,” Phys. Rev. B 39, 2344 (1989).Google Scholar
[40] E., Fradkin, Field Theories of Condensed Matter Physics, Cambridge University Press, 2013.
[41] T., Senthil, A., Vishwanat, L., Balents, S., Sachdev and M. P. A., Fisher, “Deconfined quantum critical points,” Science 303, 1490 (2004) [arXiv:cond-mat/0311326 [cond-mat.str-el]].Google Scholar
[42] L., Zhu, M., Garst, A., Rosch and Q., Si, “Universally diverging Gruneisen parameter and the magnetocaloric effect close to quantum critical points,” Phys. Rev. Lett. 91, 066404 (2003) [arXiv:0212335 [cond-mat.str-el]].Google Scholar
[43] J., Zaanen and B., Hosseinkhani, “Thermodynamics and quantum criticality in cuprate superconductors,” Phys. Rev. B 70, 060509 (2004) [arXiv:0403345 [condmat.supr-con]].Google Scholar
[44] R., Küchler, N., Oeschler, P., Gegenwart, T., Cichorek, K., Neumaier, O., Tegus, C., Geibel, J. A., Mydosh, F., Steglich, L., Zhu and Q., Si, “Divergence of the Gruneisen ratio at quantum critical points in heavy fermion metals,” Phys. Rev. Lett. 91, 066405 (2003).Google Scholar
[45] J., Zaanen, “Superconductivity: why the temperature is high,” Nature 430, 512 (2004).Google Scholar
[46] G., Policastro, D. T., Son and A. O., Starinets, “The shear viscosity of strongly coupled N = 4 supersymmetric Yang–Mills plasma,” Phys. Rev. Lett. 87, 081601 (2001) [arXiv:0104066 [hep.th]].Google Scholar
[47] M. A., Nielsen and I. L., Chuang, Quantum Computation and Quantum Information, Cambridge University Press, 2000.
[48] X. G., Wen, Quantum Field Theory ofMany Body Systems: From the Origin of Sound to an Origin of Light and Electrons, Oxford University Press, 2004.
[49] T., Chakraborty and P., Pietiläinen, The Fractional Quantum Hall Effect: Properties of an Incompressible Quantum Fluid, Springer, 2012.
[50] J., Nissinen and C. A., Lütken, “The quantum Hall curve,” [arXiv:1207.4693 [condmat.str-el]].
[51] A., Achucarro and P., Townsend, “A Chern–Simons action for three-dimensional anti-de Sitter supergravity theories,” Phys. Lett. B 180, 89 (1986).Google Scholar
[52] E., Witten, “(2 + 1)-Dimensional gravity as an exactly soluble system,” Nucl. Phys. B 311, 46 (1988).Google Scholar
[53] J. de, Boer and J. I., Jottar, “Entanglement entropy and higher spin holography in AdS3,” JHEP 1404, 089 (2014) [arXiv:1306.4347 [hep-th]].Google Scholar
[54] B. de, Wit and H., Nicolai, “N = 8 supergravity,” Nucl. Phys. B 208, 323 (1982).Google Scholar
[55] M., Ammon, A., Castro and N., Iqbal, “Wilson lines and entanglement entropy in higher spin gravity,” JHEP 1310, 110 (2013) [arXiv:1306.4338 [hep-th]].Google Scholar
[56] C., Nayak, S. H., Simon, A., Stern, M., Freedman and S., Das Sarma, “Non-Abelian anyons and topological quantum computation,” Rev. Mod. Phys. 80, 1083 (2008) [arXiv:0707.1889 [cond-mat.str-el]].Google Scholar
[57] M. Z., Hasan and C. L., Kane, “Colloquium: topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).Google Scholar
[58] X.-L., Qi and S. C., Zhang, “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057 (2011) [arXiv:1008.2026 [cond-mat.mes-hall]].Google Scholar
[59] R. J., Slager, A., Mesaros, V., Juričić and J., Zaanen, “The space group classification of topological band insulators,” Nature Physics 9, 98 (2013) [arXiv:1209.2610 [condmat. mes-hall]].Google Scholar
[60] X. L., Qi, T. L., Hughes and S. C., Zhang, “Topological field theory of timereversal invariant insulators,” Phys. Rev. B 78, 195424 (2008) [arXiv:0802.3537 [cond-mat.mes-hall]].Google Scholar
[61] C. W. J., Beenakker, “Search for Majorana fermions in superconductors,” Ann. Rev. Condensed. Matter Phys. 4, 113 (2013) [arXiv:1112.1950 [cond-mat.mes-hall]].Google Scholar
[62] C., Wang, A. C., Potter and T., Senthil, “Classification of interacting electronic topological insulators in three dimensions,” Science 343, 6171 (2014) [arXiv:1306.3238 [cond-mat.str-el]].Google Scholar
[63] H., Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics and Financial Markets, World Scientific, 2009.
[64] J., Zaanen, F., Kruger, J.-H., She, D., Sadri and S. I., Mukhin, “Pacifying the Fermi-liquid: battling the devious fermion signs,” Iranian J. Phys. 8, 39 (2008) [arXiv:0802.2455 [cond-mat.other]].Google Scholar
[65] M., Troyer and U.-J., Wiese, “Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations,” Phys. Rev. Lett. 94, 170201 (2005) [arXiv:0408370 [cond-mat]].Google Scholar
[66] R., Shankar, “Renormalization group approach to interacting fermions,” Rev. Mod. Phys. 66, 129 (1994).Google Scholar
[67] J., Polchinski, “Effective field theory and the Fermi surface,” in TASI 1992 Proceedings, [arXiv:9210046 [hep-th]].
[68] G., Baym and C., Pethik, Landau Fermi Liquid Theory, Concepts and Applications, Wiley, 2004.
[69] W. R., Abel, A. C., Anderson and J. C., Wheatley, “Propagation of zero sound in liquid He3 at low temperatures,” Phys. Rev. Lett. 17, 74 (1966).Google Scholar
[70] P. R., Roach and J. B., Ketterson, “Observation of transverse zero sound in normal 3He,” Phys. Rev. Lett. 36, 736 (1976).Google Scholar
[71] J.-H., She and J., Zaanen, “BCS superconductivity in quantum critical metals,” Phys. Rev. B 80, 184518 (2009).Google Scholar
[72] J.-H., She, B. J., Overbosch, Y.-W., Sun, Y., Liu, K., Schalm, J. A., Mydosh and J., Zaanen, “Observing the origin of superconductivity in quantum critical metals,” Phys. Rev. B 84, 144527 (2011) [arXiv:1105.5377 [cond-mat.str-el]].Google Scholar
[73] A. A., Abrikosov, L. P., Gor'kov, and I. Ye., Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics, 2nd edn, Pergamon Press, 1965.
[74] J. A., Hertz, “Quantum critical phenomena,” Phys. Rev. B 14, 1165 (1976).Google Scholar
[75] T., Moriya and A., Kawabate, “Effect of spin fluctuations on itinerant electron ferromagnetism,” J. Phys. Soc. Japan 34, 639 (1973).Google Scholar
[76] A. J., Millis, “Effect of a nonzero temperature on quantum critical points in itinerant fermion systems,” Phys. Rev. B 48, 7183 (1993).Google Scholar
[77] H. von, Löhneisen, A., Rosch, M., Vojta and P., Wölfle, “Fermi-liquid instabilities at magnetic quantum phase transitions,” Rev. Mod. Phys. 79, 1015 (2007).Google Scholar
[78] E.-G., Moon and A. V., Chubukov, “Quantum-critical pairing with varying exponents,” J. Low Temp. Phys. 161, 263 (2010) [arXiv:1005.0356 [cond-mat.suprcon]].Google Scholar
[79] S. A., Hartnoll, D. M., Hofman, M. A., Metlitski and S., Sachdev, “Quantum critical response at the onset of spin density wave order in two-dimensional metals,” Phys. Rev. B 84, 125115 (2011) [arXiv:1106.0001 [cond-mat.str-el]].Google Scholar
[80] S.-S., Lee, “Low energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions,” Phys. Rev. B 80, 165102 (2009) [arXiv:0905.4532 [condmat.str-el]].Google Scholar
[81] M. A., Metlitski and S. Sachdev, “Quantum phase transitions of metals in two spatial dimensions: II. Spin density wave order,” Phys. Rev. B 82, 075128 (2010) [arXiv:1005.1288 [cond-mat.str-el]].Google Scholar
[82] D., Dalidovich and S.-S., Lee, “Perturbati-ve non-Fermi liquids from dimensional regularization,” Phys. Rev. B 88, 245106 (2013) [arXiv:1307.3170 [cond-mat.strel]].Google Scholar
[83] A. L., Fitzpatrick, S., Kachru, J., Kaplan and S., Raghu, “Non-Fermi liquid fixed point in a Wilsonian theory of quantum critical metals,” Phys. Rev. B 88, 125116 (2013) [arXiv:1307.0004 [cond-mat.str-el]].Google Scholar
[84] T., Senthil and M. P. A., Fisher, “Z2 gauge theory of electron fractionalization in strongly correlated systems,” Phys. Rev. B 62, 7850 (2000) [arXiv:9910224 [condmat.str-el]].Google Scholar
[85] E., Berg, M. A., Metlitski and S., Sachdev, “Sign-problem-free quantum Monte Carlo of the onset of antiferromagnetism in metals,” Science 338, 1606 (2012) [arXiv:1206.0742 [cond-mat.str-el]].
[86] P. W., Anderson, The Theory of High-Tc Superconductivity, Princeton University Press, 1997.
[87] J., Zaanen, “A modern, but way too short history of the theory of superconductivity at a high temperature,” in H., Rogalla and P. H., Kes (eds), 100 Years of Superconductivity, CRC Press, 2012, pp. 92–114 [arXiv:1012.5461 [cond-mat.supr-con]].
[88] H., Liu, “From black holes to strange metals,” Physics Today 65, 68 (2012).Google Scholar
[89] S. V., Kravchenko and M. P., Sarachik, “Metal–insulator transition in twodimensional electron systems,” Rep. Prog. Phys. 67, 1 (2004).Google Scholar
[90] O., Gunnarsson and K., Schönhammer, “Electron spectroscopies for Ce compounds in the impurity model,” Phys. Rev. B 28, 4315 (1983).Google Scholar
[91] J. W., Allen, S. J., Oh, O., Gunnarsson, K., Schönhammer, M. B., Maple, M. S., Torikachvili and I., Lindau, “Electronic structure of cerium and light rare-earth intermetallics,” Adv. Phys. 35, 275 (1986).Google Scholar
[92] J., Zaanen, G. A., Sawatzky and J. W., Allen, “Band gaps and electronic structure of transition-metal compounds,” Phys. Rev. Lett. 55, 418 (1985).Google Scholar
[93] V. I., Anisimov, J., Zaanen and O. K., Andersen, “Band theory and Mott insulators: Hubbard U instead of Stoner I,” Phys. Rev. B 44, 943 (1991).Google Scholar
[94] J., Zaanen and A. M., Oles, “Canonical perturbation theory and the two band model for high-Tc superconductors,” Phys. Rev. B 37, 9423 (1988).Google Scholar
[95] A. C., Hewson, The Kondo Problem to Heavy Fermions, Cambridge University Press, 1993.
[96] P., Phillips, “Mottness: identifying the propagating charge modes in doped Mott insulators,” Rev. Mod. Phys. 82, 1719 (2010) [arXiv:1001.5270 [cond-mat.str-el]].Google Scholar
[97] Z.-Y., Weng, “Mott physics, sign structure, ground state wavefunction, and high-Tc superconductivity,” Frontiers Phys. 6, 370 (2011) [arXiv:1110.0546 [cond-mat.supr-con]].Google Scholar
[98] J., Zaanen and B. J., Overbosch, “Mottness collapse and statistical quantum criticalityPhil. Trans. R. Soc. A 369, 1599 (2011) [arXiv:0911.4070[cond-mat.str-el]].Google Scholar
[99] Z., Zhu, H.-C., Jiang, Y., Qi, C.-S., Tian and Z.-Y., Weng, “Strong correlation induced charge localization in antiferromagnets,” Sci. Rep. 3, 2586 (2013) [arXiv:1212.6634[cond-mat.str-el]].Google Scholar
[100] Z., Zhu, H.-C., Jiang, D.-N., Sheng and Z.-Y., Weng, “Hole binding in Mott antiferromagnets: a DMRG study” [arXiv:1312.6893 [cond-mat.str-el]].
[101] P. W., Anderson, “The resonating valence bond state in La2CuO4 and superconductivity,” Science 235, 1196 (1987).Google Scholar
[102] T. H., Hansson, V., Oganesyan and S. L., Sondhi, “Superconductors are topologically ordered,” Annals of Physics 313, 497 (2004) [arXiv:cond-mat/0404327 [cond-mat.supr-con]].Google Scholar
[103] J. B., Kogut, “An introduction to lattice gauge theory and spin systems,” Rev. Mod. Phys. 51, 659 (1979).Google Scholar
[104] M., Levin and X.-G., Wen, “String-net condensation: a physical mechanism for topological phases,” Phys. Rev. B 71, 045110 (2005) [arXiv:0404617 [cond-mat.str-el]].Google Scholar
[105] S., Sachdev, “The quantum phases of matter” [arXiv:1203.4565 [hep-th]].
[106] S. A., Kivelson, D. S., Rohksar and J. P., Sethna, “Topology of the resonating valencebond state: solitons and high-Tc superconductivity,” Phys. Rev. B 35, 8865 (1987).Google Scholar
[107] R., Moessner and S. L., Sondhi, “Resonating valence bond phase in the triangular lattice quantum dimer model,” Phys. Rev. Lett. 86, 1881 (2001).Google Scholar
[108] X. G., Wen, “Mean-field theory of spin-liquid states with finite energy gap and topological orders,” Phys. Rev. B 44, 2664 (1991).Google Scholar
[109] N., Read and S., Sachdev, “Large-N expansion for frustrated quantum antiferromagnets,” Phys. Rev. Lett. 66, 1773 (1991).Google Scholar
[110] A., Kitaev, “Anyons in an exactly solved model and beyond,” Annals of Physics, 321, 2 (2006) [arXiv:0506438 [cond-mat.mes-hall]].Google Scholar
[111] L., Balents, “Spin liquids in frustrated magnets,” Nature 464, 199 (2010).Google Scholar
[112] P. A., Lee, N., Nagoasa and X.-G., Wen, “Doping a Mott insulator: physics of high temperature superconductivity,” Rev. Mod. Phys. 78, 17 (2006) [arXiv:condmat/0410445 [cond-mat.str-el]].Google Scholar
[113] X.-G., Wen, “Quantum orders and symmetric spin liquids,” Phys. Rev. B 65, 165113 (2002) [arXiv:0107071 [cond-mat.str-el]].Google Scholar
[114] P., Coleman, “Heavy fermions: electrons at the edge of magnetism,” in H., Kronmuller and S., Parkin (eds.), Handbook of Magnetism and Advanced Magnetic Materials. Volume 1: Fundamentals and Theory, John Wiley and Sons, 2007, pp. 95–148 [arXiv:0612006 [cond-mat.str-el]].
[115] B., Keimer, S. A., Kivelson, M. R., Norman, S., Uchida and J., Zaanen, “From quantum matter to high temperature superconductivity in copper oxides,” Nature 518, 179 (2015).Google Scholar
[116] S., Raghu, S. A., Kivelson and D. J., Scalapino, “Superconductivity in the repulsive Hubbard model: an asymptotically exact weak-coupling solution,” Phys. Rev. B 81, 224505 (2010).Google Scholar
[117] D. J., Scalapino, “A common thread: the pairing interaction for the unconventional superconductors,” Rev. Mod. Phys. 84, 1383 (2012) [arXiv:1207.4093 [cond-mat.supr-con]].Google Scholar
[118] C. M., Varma, “Considerations on the mechanisms and transition temperatures of superconductors,” Rep. Prog. Phys. 75, 052501 (2012) [arXiv:1001.3618 [condmat.supr-con]].Google Scholar
[119] M. R., Norman, “The challenge of unconventional superconductivity,” Science 332, 196 (2011).Google Scholar
[120] N. F., Berk and J. R., Schrieffer, “Effect of ferromagnetic spin correlations on superconductivity,” Phys. Rev. Lett. 17, 433 (1966).Google Scholar
[121] C. N. A., van Duin and J., Zaanen, “Interplay of superconductivity and magnetism in strong coupling,” Phys. Rev. B 61, 3676 (2000).Google Scholar
[122] S. R., White, “Density matrix formulation for quantum renormalization groups,” Phys. Rev. Lett. 69, 2863 (1992).Google Scholar
[123] U., Schollwoeck, “The density-matrix renormalization group,” Rev. Mod. Phys. 77, 259 (2005) [arXiv:0409292 [cond-mat.str-el]].Google Scholar
[124] F., Verstraete, J. I., Cirac and V., Murg, “Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems,” Adv. Phys. 57, 143 (2008).Google Scholar
[125] P., Corboz, R., Orus, B., Bauer and G., Vidal, “Simulation of strongly correlated fermions in two spatial dimensions with fermionic projected entangled-pair states,” Phys. Rev. B 81, 165104 (2010) [arXiv:0912.0646 [cond-mat.str-el]].Google Scholar
[126] P., Corboz, T. M., Rice and M., Troyer, “Competing states in the t–J model: uniform d-wave state versus stripe state” [arXiv:1402.2859 [cond-mat.str-el]].
[127] S. R., White and D. J., Scalapino, “Density matrix renormalization group study of the striped phase in the 2D t–J Model,” Phys. Rev. Lett. 80, 1272 (1998).Google Scholar
[128] J., Zaanen and O., Gunnarsson, “Charged magnetic domain lines and the magnetism of the High-Tc superconducting oxides,” Phys. Rev. B 40, 7391 (1989).Google Scholar
[129] K., Machida, “Magnetism in La2CuO4 based compounds,” PhysicaC 158, 192 (1989).Google Scholar
[130] A. J., Heeger, S. A., Kivelson, J. R., Schrieffer and W.-P., Su, “Solitons in conducting polymers,” Rev. Mod. Phys. 60, 781 (1988).Google Scholar
[131] J. M., Tranquada, B. J., Sternlieb, J. D., Axe, Y., Nakamura and S., Uchida, “Evidence for stripe correlations of spins and holes in copper oxide superconductors,” Nature 375, 561 (1995).Google Scholar
[132] M., Vojta, “Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity,” Adv. Phys. 58, 699 (2009) [arXiv:0901.3145 [condmat. supr-con]].Google Scholar
[133] W., Metzner and D., Vollhardt, “Correlated lattice fermions in d = ∞dimensions,” Phys. Rev. Lett. 62, 324 (1989).Google Scholar
[134] A., Georges and G., Kotliar, “Hubbard model in infinite dimensions,” Phys. Rev. B 45, 6479 (1992).Google Scholar
[135] G., Kotliar and D., Vollhardt, “Strongly correlated materials: insights from dynamical mean-field theory,” Physics Today 57, 53 (2004).Google Scholar
[136] A., Georges, G., Kotliar, W., Krauth and M. J., Rozenberg, “Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions,” Rev. Mod. Phys. 68, 13 (1996).Google Scholar
[137] G., Kotliar, S., Savrasov, K., Haule, V., Oudovenko, O., Parcollet and C., Matianetti, “Electronic structure calculations with dynamical mean-field theory,” Rev. Mod. Phys. 78, 865 (2006).Google Scholar
[138] T., Maier, M., Jarrell, T., Pruschke and M. H., Hettler, “Quantum cluster theories,” Rev. Mod. Phys. 77, 1027 (2005).Google Scholar
[139] S.-X., Yang, H., Fotso, S.-Q., Su, D., Galanakis, E., Khatami, J.-H., She, J., Moreno, J., Zaanen and M., Jarrell, “Proximity of the superconducting dome and the quantum critical point in the two-dimensional Hubbard model,” Phys. Rev. Lett. 106, 047004 (2011).Google Scholar
[140] C., Pfleiderer, “Superconducting phases of f-electron compounds,” Rev. Mod. Phys. 81, 1551 (2009) [arXiv:0905.2625 [cond-mat.supr-con]].Google Scholar
[141] P., Gegenwart, Q., Si and F., Steglich, “Quantum criticality in heavy-fermion metals,” Nature Physics 4, 186 (2008).Google Scholar
[142] J., Zaanen, “Quantum critical electron systems: The uncharted sign worlds,” Science 319, 1205 (2008).Google Scholar
[143] A. R., Schmidt, M. H., Hamidian, P., Wahl, F., Meier, A. V., Balatsky, J. D., Garrett, T. J., Williams, G. M., Luke and J. C., Davis, “Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2,” Nature 465, 570 (2010).Google Scholar
[144] P., Aynajian, E. H. da Silva, Neto, A., Gyenis, R. E., Baumbach, J. D., Thompson, Z., Fisk, E. D., Bauer and A., Yazdani, “Visualizing heavy fermions emerging in a quantum critical Kondo lattice,” Nature 486, 201 (2012).Google Scholar
[145] A., Schröder, G., Aeppli, E., Bucher, R., Ramazashvili and P., Coleman, “Scaling of magnetic fluctuations near a quantum phase transition,” Phys. Rev. Lett. 80, 5623 (1998).Google Scholar
[146] A., Schröder, G., Aeppli, R., Coldea, M., Adams, O., Stockert, H. von, Löhneysen, E., Bucher, R., Ramazashvili and P., Coleman, “Onset of antiferromagnetism in heavyfermion metals,” Nature 407, 351 (2000).Google Scholar
[147] P., Coleman, A. J., Schofield and A. M., Tsvelik, “How should we interpret the two transport relaxation times in the cuprates?J. Phys.: Condensed Matter 8, 9985 (1996) [arXiv:9609009 [cond-mat]].
[148] J., Zaanen, “Holographic duality: stealing dimensions from metals,” Nature Physics 9, 609 (2013).Google Scholar
[149] D. van der, Marel, H. J. A., Molegraaf, J., Zaanen, Z., Nussinov, F., Carbone, A., Damascelli, H., Eisaki, M., Greven, P. H., Kes and M., Li, “Power-law optical conductivity with a constant phase angle in high Tc superconductors,” Nature 425, 271 (2003) [arXiv:0309172 [cond-mat.mes-hall]].Google Scholar
[150] K., Fujita, C. K., Kim, I., Lee, J., Lee, M. H., Hamidian, I. A., Firmo, S., Mukhopadhyay, H., Eisaki, S., Uchida, M. J., Lawler, E.-A., Kim and J. C., Davis, “Simultaneous transition in cuprate momentum-space topology and electronic symmetry breaking,” Science 344, 613 (2014) [arXiv:1403.7788 [cond-mat.supr-con]].Google Scholar
[151] U., Chatterjee, D., Ai, J., Zhao, S., Rosenkranz, A., Kaminski, H., Raffy, Z., Li, K., Kadowaki, M., Randeria, M. R., Norman and J. C., Campuzano, “Electronic phase diagram of high-temperature copper oxide superconductors,” PNAS 108, 9346 (2011).Google Scholar
[152] C. M., Varma, P. B., Littlewood, S., Schmitt-Rink, E., Abrahams and A. E., Ruckenstein, “Phenomenology of the normal state of Cu–O high-temperature superconductors,” Phys. Rev. Lett. 63, 1996 (1989).Google Scholar
[153] R. A., Cooper, Y., Wang, B., Vignolle, O. J., Lipscombe, S. M., Hayden, Y., Tanabe, T., Adachi, Y., Koike, M., Nohara, H., Takagi, C., Proust and N. E., Hussey, “Anomalous criticality in the electrical resistivity of La2−x SrxCuO4,” Science 323, 603 (2009).Google Scholar
[154] K., Fujita, M. H., Hamidian, S. D., Edkins, C. K., Kim, Y., Kohsaka, M., Azuma, M., Takano, H., Takagi, H., Eisaki, S., Uchida, A., Allais, M. J., Lawler, E.-A., Kim, S., Sachdev and J. C. Seamus, Davis, “Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates,” PNAS 111, E3026 (2014) [arXiv:1404.0362 [cond-mat.supr-con]].Google Scholar
[155] J., Zaanen, “High temperature superconductivity: the sound of the hidden order,” Nature 498, 41 (2013).Google Scholar
[156] I. M., Vishik, E. A., Nowadnick, W. S., Lee, Z. X., Shen, B., Moritz, T. P., Devereaux, K., Tanaka, T., Sasagawaand T., Fujii, “A momentum-dependent perspective on quasiparticle interference in Bi2Sr2CaCu2O8+δ,” Nature Physics 5, 718 (2009) [arXiv:0909.0762 [cond-mat.supr-con]].Google Scholar
[157] Y., He, Y., Yin,M., Zech, A., Soumyanarayanan, M. M., Yee, T., Williams,M. C., Boyer, K., Chatterjee,W. D., Wise, I., Zeljkovic, T., Kondo, T., Takeuchi, H., Ikuta, P., Mistark, R. S., Markiewicz, A., Bansil, S., Sachdev, E. W., Hudson and J. E., Hoffman, “Fermi surface and pseudogap evolution in a cuprate superconductor,” Science 344, 608 (2014).Google Scholar
[158] R., Comin, A., Frano, M. M., Yee, Y., Yoshida, H., Eisaki, E., Schierle, E., Weschke, R., Sutarto, F., He, A., Soumyanarayanan, Yang, He, M. Le, Tacon, I. S., Elfimov, J. E., Hoffman, G. A., Sawatzky, B., Keimerand A., Damascelli, “Charge order driven by Fermi-arc instability in Bi2Sr2xLaxCuO6+δ,Science 343, 390 (2014).Google Scholar
[159] N., Iqbal, H., Liu and M., Mezei, “Semi-local quantum liquids,” JHEP 1204, 086 (2012) [arXiv:1105.4621 [hep-th]].Google Scholar
[160] N., Iqbal, H., Liu and M., Mezei, “Quantum phase transitions in semi-local quantum liquids” [arXiv:1108.0425 [hep-th]]
[161] S. W., Hawking and G. F. R., Ellis, The Large Scale Structure of Space-time, Cambridge University Press, 1973.
[162] S., Hawking and R., Penrose, The Nature of Space and Time, Princeton University Press, 1996.
[163] C. W., Misner, K. S., Thorne and J. A., Wheeler, Gravitation, W. H. Freeman and Company, 1973.
[164] J. D., Bekenstein, “Black hole hair: 25 years after,” in Second International A. D. Sakharov Conference on Physics, 1996, pp. 216–219 [arXiv:9605059 [gr-qc]].Google Scholar
[165] J. M., Bardeen, B., Carter and S. W., Hawking, “The four laws of black hole mechanics,” Commun. Math. Phys. 31, 161 (1973).Google Scholar
[166] J. D., Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333 (1973).Google Scholar
[167] G. 't, Hooft, “Dimensional reduction in quantum gravity” [arXiv:9310026 [gr-qc]].
[168] L., Susskind, “The world as a hologram,” J. Math. Phys. 36, 6377 (1995)[arXiv:9409089 [hep-th]].Google Scholar
[169] A., Strominger and C., Vafa, “Microscopic origin of the Bekenstein–Hawking entropy,” Phys. Lett. B 379, 99 (1996) [arXiv:9601029 [hep-th]].Google Scholar
[170] M. B., Green, J. H., Schwarz and E., Witten, Superstring Theory. Volume 1: Introduction and Superstring Theory. Volume 2: Loop Amplitudes, Anomalies and Phenomenology, Cambridge University Press, 1987.
[171] J., Polchinski, String Theory. Volume 1: An Introduction to the Bosonic String, Cambridge University Press, 1998.
[172] J., Polchinski, String Theory. Volume 2: Superstring Theory and Beyond, Cambridge University Press, 1998.
[173] A. N., Schellekens, “Life at the interface of particle physics and string theory,” Rev. Mod. Phys. 85, 1491 (2013) [arXiv:1306.5083 [hep-ph]].Google Scholar
[174] N., Seiberg, “Emergent spacetime” [arXiv:0601234 [hep-th]].
[175] J., Polchinski, “Dirichlet branes and Ramond–Ramond charges,” Phys. Rev. Lett. 75, 4724 (1995) [arXiv:9510017 [hep-th]].Google Scholar
[176] N., Arkani-Hamed, S., Dimopoulos and G. R., Dvali, “The hierarchy problem and new dimensions at a millimeter,” Phys. Lett. B 429, 263 (1998) [arXiv:9803315 [hep-th]].Google Scholar
[177] G., Shiu and S. H. H., Tye, “TeV scale superstring and extra dimensions,” Phys. Rev. D 58, 106007 (1998) [arXiv:9805157 [hep-th]].Google Scholar
[178] R., Maartens and K., Koyama, “Brane-world gravity,” Living Rev. Rel. 13, 5 (2010) [arXiv:1004.3962 [hep-th]].Google Scholar
[179] N., Beisert and M., Staudacher, “The N=4 SYM integrable super spin chain,” Nucl. Phys. B 670, 439 (2003) [arXiv:0307042 [hep-th]].Google Scholar
[180] A., Cappelli and I. D., Rodriguez, “Matrix effective theories of the fractional quantum Hall effect,” J. Phys. A 42, 304006 (2009) [arXiv:0902.0765 [hep-th]].Google Scholar
[181] S.-S., Lee, “Low-energy effective theory of Fermi surface coupled with U(1) gauge field in 2+1 dimensions,” Phys. Rev. B 80, 165102 (2009) [arXiv:0905.4532 [condmat. str-el]].Google Scholar
[182] A. Liam, Fitzpatrick, S., Kachru, J., Kaplan and S., Raghu, “Non-Fermi liquid behavior of large NB quantum critical metals,” Phys. Rev. B 89, 165114 (2014) [arXiv:1312.3321 [cond-mat.str-el]].Google Scholar
[183] S., Coleman, Aspects of Symmetry, Cambridge University Press, 1985.
[184] J., Zinn-Justin, Quantum Field Theory and Critical Phenomena, 4th edn, Clarendon Press, 2002.
[185] M., Moshe and J., Zinn-Justin, “Quantum field theory in the large-N limit: a review,” Phys. Rep. 385, 69 (2003) [arXiv:0306133 [hep-th]].Google Scholar
[186] G. 't, Hooft, “A planar diagram theory for strong interactions,” Nucl. Phys. B 72, 461 (1974).Google Scholar
[187] A. V., Manohar, “Large N QCD” [arXiv:9802419 [hep-ph]].
[188] A. V., Ramallo, “Introduction to the AdS/CFT correspondence,” in C. Merino (ed.), Lectures on Particle Physics, Astrophysics and Cosmology, Proceedings of the Third IDPASC School, Santiago de Compostela, Springer, 2015, 411 [arXiv:1310.4319 [hep-th]].
[189] E., Witten, “The 1/N expansion in atomic and particle physics,” in G. 't Hooft (ed.), Recent Developments in Gauge Theories, Cargèse Lectures, Plenum, 1980, HUTP-79/A078.
[190] E., Brezin and S. R., Wadia, The Large N Expansion in Quantum Field Theory and Statistical Physics: From Spin Systems to Two-Dimensional Gravity, World Scientific, 1993.Google Scholar
[191] D. J., Gross and W., Taylor, “Two-dimensional QCD is a string theory,” Nucl. Phys. B 400, 181 (1993) [arXiv:9301068 [hep-th]].Google Scholar
[192] J., Polchinski, “Scale and conformal invariance in quantum field theory,” Nucl. Phys. B 303, 226 (1988).Google Scholar
[193] D., Dorigoni and V. S., Rychkov, “Scale invariance + unitarity => conformal invariance?” [arXiv:0910.1087 [hep-th]].
[194] M. A., Luty, J., Polchinski and R., Rattazzi, “The a-theorem and the asymptotics of 4D quantum field theory,” JHEP 1301, 152 (2013) [arXiv:1204.5221 [hep-th]].Google Scholar
[195] S., Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, John Wiley & Sons, 1972.
[196] R. M., Wald, General Relativity, Chicago University Press, 1984.
[197] S. M., Carroll, Spacetime and geometry: An Introduction to General Relativity, Addison-Wesley, 2004.
[198] V., Balasubramanian, P., Kraus and A. E., Lawrence, “Bulk versus boundary dynamics in anti-de Sitter space-time,” Phys. Rev. D 59, 046003 (1999) [arXiv:9805171 [hep-th]].Google Scholar
[199] J. L., Petersen, “Introduction to the Maldacena conjecture on AdS/CFT,” Int. J. Mod. Phys. A 14, 3597 (1999) [arXiv:9902131 [hep-th]].Google Scholar
[200] S. de, Haro, S. N., Solodukhin and K., Skenderis, “Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence,” Commun. Math. Phys. 217, 595 (2001) [arXiv:0002230 [hep-th]].Google Scholar
[201] D. T., Son and A. O., Starinets, “Minkowski space correlators in AdS/CFT correspondence: recipe and applications,” JHEP 0209, 042 (2002) [arXiv:0205051 [hep-th]].Google Scholar
[202] C. P., Herzog and D. T., Son, “Schwinger–Keldysh propagators from AdS/CFT correspondence,” JHEP 0303, 046 (2003) [arXiv:0212072 [hep-th]].Google Scholar
[203] D. Z., Freedman, S. D., Mathur, A., Matusis and L., Rastelli, “Correlation functions in the CFT(d)/AdS(d + 1) correspondence,” Nucl. Phys. B 546, 96 (1999) [arXiv:9804058 [hep-th]].Google Scholar
[204] K., Skenderis, “Lecture notes on holographic renormalization,” Class. Quant. Grav. 19, 5849 (2002) [arXiv:0209067 [hep-th]].Google Scholar
[205] E., D'Hoker and D. Z., Freedman, “Supersymmetric gauge theories and the AdS/CFT correspondence,” [arXiv:0201253 [hep-th]].
[206] M. J. G., Veltman, “Unitarity and causality in a renormalizable field theory with unstable particles,” Physica 29, 186 (1963).Google Scholar
[207] S, Minwalla, “Restrictions imposed by super-conformal invariance on quantum field theories,” Adv. Theor. Math. Phys. 2, 781 (1998) [arXiv:9712074 [hep-th]].Google Scholar
[208] J. de, Boer, E. P., Verlinde and H. L., Verlinde, “On the holographic renormalization group,” JHEP 0008, 003 (2000) [arXiv:9912012 [hep-th]].
[209] E., Witten, “Multitrace operators, boundary conditions, and AdS/CFT correspondence” [arXiv:0112258 [hep-th]].
[210] W., Mueck, “An improved correspondence formula for AdS/CFT with multitrace operators,” Phys. Lett. B 531, 301 (2002) [arXiv:0201100 [hep-th]].Google Scholar
[211] E., Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505 (1998) [arXiv:9803131 [hep-th]].Google Scholar
[212] G. W., Gibbons and S. W., Hawking (eds), Euclidean Quantum Gravity. World Scientific, 1993.
[213] E., Berti, V., Cardoso and A. O., Starinets, “Quasinormal modes of black holes and black branes,” Class. Quant. Grav. 26, 163001 (2009) [arXiv:0905.2975 [gr-qc]].Google Scholar
[214] D., Birmingham, “Topological black holes in anti-de Sitter space,” Class. Quant. Grav. 16, (1999) [arXiv:9808032 [hep-th]].Google Scholar
[215] S. S., Gubser, I. R., Klebanov and A. A., Tseytlin, “Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang–Mills theory,” Nucl. Phys. B 534, 202 (1998) [arXiv:9805156 [hep-th]].Google Scholar
[216] S. S., Gubser, I. R., Klebanov and A. W., Peet, “Entropy and temperature of black 3-branes,” Phys. Rev. D 54, 3915 (1996) [arXiv:9602135 [hep-th]].Google Scholar
[217] G. W., Gibbons and S. W., Hawking, “Action integrals and partition functions in quantum gravity,” Phys. Rev. D 15, 2752 (1977).Google Scholar
[218] J. W., York, “Role of conformal three-geometry in the dynamics of gravitation,” Phys. Rev. Lett. 28, 1082 (1972).Google Scholar
[219] V., Balasubramanian and P., Kraus, “A stress tensor for anti-de Sitter gravity,” Commun. Math. Phys. 208, 413 (1999) [arXiv:9902121 [hep-th]].Google Scholar
[220] I., Papadimitriou and K., Skenderis, “Thermodynamics of asymptotically locally AdS spacetimes,” JHEP 0508, 004 (2005) [arXiv:0505190 [hep-th]].Google Scholar
[221] S. W., Hawking and D. N., Page, “Thermodynamics of black holes in anti-de Sitter space,” Commun. Math. Phys. 87, 577 (1983).Google Scholar
[222] J. M., Maldacena, “Wilson loops in large-N field theories,” Phys. Rev. Lett. 80, 4859 (1998) [arXiv:9803002 [hep-th]].Google Scholar
[223] S. J., Rey and J. T., Yee, “strings as heavy quarks in large-N gauge theory and anti-de Sitter supergravity,” Eur. Phys. J. C 22, 379 (2001) [arXiv:9803001 [hep-th]].Google Scholar
[224] A., Brandhuber, N., Itzhaki, J., Sonnenschein and S., Yankielowicz, “Wilson loops, confinement, and phase transitions in large-N gauge theories from supergravity,” JHEP 9806, 001 (1998) [arXiv:9803263 [hep-th]].Google Scholar
[225] O., Jahn and O., Philipsen, “The Polyakov loop and its relation to static quark potentials and free energies,” Phys. Rev. D 70, 074504 (2004) [arXiv:0407042 [hep-th]].Google Scholar
[226] S.-J., Rey, S., Theisen and J.-T., Yee, “Wilson–Polyakov loop at finite temperature in large-N gauge theory and anti-de Sitter supergravity,” Nucl. Phys. B 527, 171 (1998) [arXiv:9803135 [hep-th]].Google Scholar
[227] A., Brandhuber, N., Itzhaki, J., Sonnenschein and S., Yankielowicz, “Wilson loops in the large-N limit at finite temperature,” Phys. Lett. B 434, 36 (1998) [arXiv:9803137 [hep-th]].Google Scholar
[228] J., Erlich, “Recent results in AdS/QCD,” PoS Confinement 8, 032 (2008) [arXiv:0812.4976 [hep-th]].Google Scholar
[229] J., Polchinski and M. J., Strassler, “The string dual of a confining four-dimensional gauge theory” [arXiv:0003136 [hep-th]].
[230] I. R., Klebanov and M. J., Strassler, “Supergravity and a confining gauge theory: duality cascades and chi SB resolution of naked singularities,” JHEP 0008, 052 (2000) [arXiv:0007191 [hep-th]].Google Scholar
[231] M., Kruczenski, D., Mateos, R. C., Myers and D. J., Winters, “Towards a holographic dual of large N(c) QCD,” JHEP 0405, 041 (2004) [arXiv:0311270 [hep-th]].Google Scholar
[232] T., Sakai and S., Sugimoto, “Low energy hadron physics in holographic QCD,” Prog. Theor. Phys. 113, 843 (2005) [arXiv:0412141 [hep-th]].Google Scholar
[233] T., Sakai and S., Sugimoto, “More on a holographic dual of QCD,” Prog. Theor. Phys. 114, 1083 (2005) [arXiv:0507073 [hep-th]].Google Scholar
[234] J., Erlich, E., Katz, D. T., Son and M. A., Stephanov, “QCD and a holographic model of hadrons,” Phys. Rev. Lett. 95, 261602 (2005) [arXiv:0501128 [hep-th]].Google Scholar
[235] C. P., Herzog, “A holographic prediction of the deconfinement temperature,” Phys. Rev. Lett. 98, 091601 (2007) [arXiv:0608151 [hep-th]].Google Scholar
[236] L. Da, Rold and A., Pomarol, “Chiral symmetry breaking from five dimensional spaces,” Nucl. Phys. B 721, 79 (2005) [arXiv:0501218 [hep-ph]].Google Scholar
[237] S., Caron-Huot, P., Kovtun, G. D., Moore, A., Starinets and L. G., Yaffe, “Photon and dilepton production in supersymmetric Yang–Mills plasma,” JHEP 0612, 015 (2006) [arXiv:0607237 [hep-th]].Google Scholar
[238] A., Karch, E., Katz, D. T., Son and M. A., Stephanov, “Linear confinement and AdS/QCD,” Phys. Rev. D 74, 015005 (2006) [arXiv:0602229 [hep-th]].Google Scholar
[239] G. T., Horowitz and R. C., Myers, “The AdS/CFT correspondence and a new positive energy conjecture for general relativity,” Phys. Rev. D 59, 026005 (1999) [arXiv:9808079 [hep-th]].Google Scholar
[240] H., Boschi-Filho and N. R. F., Braga, “QCD/string holographic mapping and glueball mass spectrum,” Eur. Phys. J. C 32, 529 (2004) [arXiv:0209080 [hep-th]].Google Scholar
[241] D. K., Hong, T., Inami and H.-U., Yee, “Baryons in AdS/QCD,” Phys. Lett. B 646, 165 (2007) [arXiv:0609270 [hep-th]].Google Scholar
[242] S. S., Gubser, S. S., Pufu and F. D., Rocha, “Bulk viscosity of strongly coupled plasmas with holographic duals,” JHEP 0808, 085 (2008) [arXiv:0806.0407 [hep-th]].Google Scholar
[243] N., Iqbal and H., Liu, “Real-time response in AdS/CFT with application to spinors,” Fortsch. Phys. 57, 367 (2009) [arXiv:0903.2596 [hep-th]].Google Scholar
[244] W., Witczak-Krempa, E., Sorensen and S., Sachdev, “The dynamics of quantum criticality via quantum Monte Carlo and holography,” Nature Physics 10, 361 (2014) [arXiv:1309.2941 [cond-mat.str-el]].Google Scholar
[245] K., Skenderis and B. C. van, Rees, “Real-time gauge/gravity duality: prescription, renormalization and examples,” JHEP 0905, 085 (2009) [arXiv:0812.2909 [hepth]].Google Scholar
[246] G. C., Giecold, “Fermionic Schwinger–Keldysh propagators from AdS/CFT,” JHEP 0910, 057 (2009) [arXiv:0904.4869 [hep-th]].Google Scholar
[247] K., Damle and S., Sachdev, “Non-zero temperature transport near quantum critical points,” Phys. Rev. B 56, 8714 (1997) [arXiv:9705206 [cond-mat.str-el]].Google Scholar
[248] G., Policastro, D. T., Son and A. O., Starinets, “From AdS/CFT correspondence to hydrodynamics,” JHEP 0209, 043 (2002) [arXiv:0205052 [hep-th]].Google Scholar
[249] E., Shuryak, “Why does the quark–gluon plasma at RHIC behave as a nearly ideal fluid?Prog. Part. Nucl. Phys. 53, 273 (2004) [arXiv:0312227 [hep-th]].Google Scholar
[250] D., Teaney, “The effects of viscosity on spectra, elliptic flow, and HBT radii,” Phys. Rev. C 68, 034913 (2003) [arXiv:0301099 [nucl-th]].Google Scholar
[251] E. V., Shuryak, “What RHIC experiments and theory tell us about properties of quark–gluon plasma?,” Nucl. Phys. A 750, 64 (2005) [arXiv:0405066 [hep-th]].Google Scholar
[252] P., Kovtun, D. T., Son and A. O., Starinets, “Viscosity in strongly interacting quantum field theories from black hole physics,” Phys. Rev. Lett. 94, 111601 (2005) [arXiv:0405231 [hep-th]].Google Scholar
[253] S. A., Hartnoll, P. K., Kovtun, M., Muller and S., Sachdev, “Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes,” Phys. Rev. B 76, 144502 (2007) [arXiv:0706.3215 [cond-mat.str-el]].Google Scholar
[254] S., Bhattacharyya, V., Hubeny, S., Minwalla and M., Rangamani, “Nonlinear fluid dynamics from gravity,” JHEP 0802, 045 (2008) [arXiv:0712.2456 [hep-th]].Google Scholar
[255] D., Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions, Benjamin, 1975.
[256] L. D., Landau and E. M., Lifshitz, Fluid Mechanics, 2nd edn. Pergamon Press, 1987.
[257] R., Baier, P., Romatschke, D. T., Son, A. O., Starinets and M. A., Stephanov, “Relativistic viscous hydrodynamics, conformal invariance, and holography,” JHEP 0804, 100 (2008) [arXiv:0712.2451 [hep-th]].Google Scholar
[258] L. P, Kadanoff and P. C., Martin, “Hydrodynamic equations and correlation functions,” Annals of Physics 24, 419 (1963).Google Scholar
[259] N., Iqbal and H., Liu, “Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm,” Phys. Rev. D 79, 025023 (2009) [arXiv:0809.3808 [hep-th]].Google Scholar
[260] P., Kovtun, D. T., Son and A. O., Starinets, “Holography and hydrodynamics: diffusion on stretched horizons,” JHEP 0310, 064 (2003) [arXiv:0309213 [hep-th]].Google Scholar
[261] A., Buchel and J. T., Liu, “Universality of the shear viscosity in supergravity,” Phys. Rev. Lett. 93, 090602 (2004) [arXiv:0311175 [hep-th]].Google Scholar
[262] J., Mas, “Shear viscosity from R-charged AdS black holes,” JHEP 0603, 016 (2006) [arXiv:0601144 [hep-th]].Google Scholar
[263] D. T., Son and A. O., Starinets, “Hydrodynamics of R-charged black holes,” JHEP 0603, 052 (2006) [arXiv:0601157 [hep-th]].Google Scholar
[264] A., Buchel, J. T., Liu and A. O., Starinets, “Coupling constant dependence of the shear viscosity in N = 4 supersymmetric Yang–Mills theory,” Nucl. Phys. B 707, 56 (2005) [arXiv:0406264 [hep-th]].Google Scholar
[265] M., Brigante, H., Liu, R. C., Myers, S., Shenker and S., Yaida, “Viscosity bound violation in higher derivative gravity,” Phys. Rev. D 77, 126006 (2008) [arXiv:0712.0805 [hep-th]].Google Scholar
[266] J., Erdmenger, P., Kerner and H., Zeller, “Non-universal shear viscosity from Einstein gravity,” Phys. Lett. B 699, 301 (2011) [arXiv:1011.5912 [hep-th]].Google Scholar
[267] A., Rebhan and D., Steineder, “Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma,” Phys. Rev. Lett. 108, 021601 (2012) [arXiv:1110.6825 [hep-th]].Google Scholar
[268] J., Polchinski and E., Silverstein, “Large-density field theory, viscosity, and ‘2kF’ singularities from string duals,” Class. Quant. Grav. 29, 194008 (2012) [arXiv:1203.1015 [hep-th]].Google Scholar
[269] M., Brigante, H., Liu, R. C., Myers, S., Shenker and S., Yaida, “The viscosity bound and causality violation,” Phys. Rev. Lett. 100, 191601 (2008) [arXiv:0802.3318 [hep-th]].Google Scholar
[270] R. C., Myers, M. F., Paulos and A., Sinha, “Holographic studies of quasi-topological gravity,” JHEP 1008, 035 (2010) [arXiv:1004.2055 [hep-th]].Google Scholar
[271] S., Jeon and L. G., Yaffe, “From quantum field theory to hydrodynamics: transport coefficients and effective kinetic theory,” Phys. Rev. D 53, 5799 (1996) [arXiv:9512263 [hep-th]].Google Scholar
[272] S. C., Huot, S., Jeon and G. D., Moore, “Shear viscosity in weakly coupled N = 4 super Yang–Mills theory compared to QCD,” Phys. Rev. Lett. 98, 172303 (2007) [arXiv:0608062 [hep-th]].Google Scholar
[273] J., Erlich, “How well does AdS/QCD describe QCD?,” Int. J. Mod. Phys. A 25, 411 (2010) [arXiv:0908.0312 [hep-ph]].Google Scholar
[274] C., Cao, E., Elliott, J., Joseph, H., Wu, J., Petricka, T., Schafer and J. E., Thomas, “Universal quantum viscosity in a unitary Fermi gas,” Science 331, 58 (2010).Google Scholar
[275] T., Schaefer and D., Teaney, “Nearly perfect fluidity: from cold atomic gases to hot quark–gluon plasmas,” Rep. Prog. Phys. 72, 126001 (2009).Google Scholar
[276] P. K., Kovtun and A. O., Starinets, “Quasinormal modes and holography,” Phys. Rev. D 72, 086009 (2005) [arXiv:0506184 [hep-th]].Google Scholar
[277] D. T., Son and A. O., Starinets, “Viscosity, black holes, and quantum field theory,” Ann. Rev. Nucl. Part. Sci. 57, 95 (2007) [arXiv:0704.0240 [hep-th]].Google Scholar
[278] A. Nata, Atmaja and K., Schalm, “Photon and dilepton production in soft wall AdS/QCD,” JHEP 1008, 124 (2010) [arXiv:0802.1460 [hep-th]].Google Scholar
[279] I., Bredberg, C., Keeler, V., Lysov and A., Strominger, “From Navier–Stokes to Einstein” [arXiv:1101.2451 [hep-th]].
[280] K. S., Thorne, R. H., Price and D. A., Macdonald, Black Holes: The Membrane Paradigm, Yale University Press, 1986.
[281] P., Kovtun, “Lectures on hydrodynamic fluctuations in relativistic theories,” J. Phys. A 45, 473001 (2012) [arXiv:1205.5040 [hep-th]].Google Scholar
[282] J., Bhattacharya, S., Bhattacharyya and S., Minwalla, “Dissipative superfluid dynamics from gravity,” JHEP 1104, 125 (2011) [arXiv:1101.3332 [hep-th]].Google Scholar
[283] C. P., Herzog, N., Lisker, P., Surowka and A., Yarom, “Transport in holographic superfluids,” JHEP 1108, 052 (2011) [arXiv:1101.3330 [hep-th]].Google Scholar
[284] J., Bhattacharya, S., Bhattacharyya, S., Minwalla and A., Yarom, “A theory of first order dissipative superfluid dynamics,” JHEP 1405, 147 (2014) [arXiv:1105.3733 [hep-th]].Google Scholar
[285] K., Jensen, M., Kaminski, P., Kovtun, R., Meyer, A., Ritz and A., Yarom, “Parity-violating hydrodynamics in 2 + 1 dimensions,” JHEP 1205, 102 (2012) [arXiv:1112.4498 [hep-th]].Google Scholar
[286] D. T., Son and P., Surowka, “Hydrodynamics with triangle anomalies,” Phys. Rev. Lett. 103, 191601 (2009) [arXiv:0906.5044 [hep-th]].Google Scholar
[287] P. M., Chesler and L. G., Yaffe, “Horizon formation and far-from-equilibrium isotropization in supersymmetric Yang–Mills plasma,” Phys. Rev. Lett. 102, 211601 (2009) [arXiv:0812.2053 [hep-th]].Google Scholar
[288] A., Adams, P. M., Chesler and H., Liu, “Holographic turbulence,” Phys. Rev. Lett. 112, 151602 (2014) [arXiv:1307.7267 [hep-th]].Google Scholar
[289] S., Bhattacharyya, S., Minwalla and S. R., Wadia, “The incompressible nonrelativistic Navier–Stokes equation from gravity,” JHEP 0908, 059 (2009) [arXiv:0810.1545 [hep-th]].Google Scholar
[290] M., Rangamani, “Gravity and hydrodynamics: lectures on the fluid–gravity correspondence,” Class. Quant. Grav. 26, 224003 (2009) [arXiv:0905.4352 [hep-th]].Google Scholar
[291] V. E., Hubeny, S., Minwalla and M., Rangamani, “The fluid/gravity correspondence,” [arXiv:1107.5780 [hep-th]].
[292] J. D., Brown and J.W., York, “Quasilocal energy and conserved charges derived from the gravitational action,” Phys. Rev. D 47, 1407 (1993).Google Scholar
[293] M., Henningson and K., Skenderis, “The holographic Weyl anomaly,” JHEP 9807, 023 (1998) [arXiv:9806087].Google Scholar
[294] V., Juričić, O., Vafek and I. F., Herbut, “Conductivity of interacting massless Dirac particles in graphene: collisionless regime,” Phys. Rev. B 82, 235402 (2010) [arXiv:1009.3269 [cond-mat.mes-hall]].Google Scholar
[295] R. C., Myers, S., Sachdev and A., Singh, “Holographic quantum critical transport without self-duality,” Phys. Rev. D 83, 066017 (2011) [arXiv:1010.0443 [hep-th]].Google Scholar
[296] K., Chen, L., Liu, Y., Deng, L., Pollet and N., Prokof'ev, “Universal conductivity in a two-dimensional superfluid-to-insulator quantum critical system,” Phys. Rev. Lett. 112, 030402 (2013) [arXiv:1309.5635 [cond-mat.str-el]].Google Scholar
[297] D., Chowdhury, S., Raju, S., Sachdev, A., Singh and P, Strack, “Multipoint correlators of conformal field theories: implications for quantum critical transport,” Phys. Rev. B 87, 085138 (2013) [arXiv:1210.5247 [cond-mat.str-el]].Google Scholar
[298] S., Weinberg, The Quantum Theory of Fields. Volume II: Modern Applications, Cambridge University Press, 2001.
[299] D. E., Kharzeev, L. D., McLerran and H. J., Warringa, “The effects of topological charge change in heavy ion collisions: ‘event by event P and CP violation’,” Nucl. Phys. A 803, 227 (2008) [arXiv:0711.0950 [hep-ph]].Google Scholar
[300] K., Fukushima, D. E., Kharzeev and H. J., Warringa, “The chiral magnetic effect,” Phys. Rev. D 78, 074033 (2008) [arXiv:0808.3382 [hep-ph]].Google Scholar
[301] D. E., Kharzeev, “The chiral magnetic effect and anomaly-induced transport,” Prog. Part. Nucl. Phys. 75, 133 (2014) [arXiv:1312.3348 [hep-ph]].Google Scholar
[302] C.-X., Liu, P., Ye and X.-L., Qi, “Chiral gauge field and axial anomaly in a Weyl semi-metal,” Phys. Rev. B 87, 235306 (2013) [arXiv:1204.6551 [cond-mat.str-el]].Google Scholar
[303] D. T., Son and B. Z., Spivak, “Chiral anomaly and classical negative magnetoresistance of Weyl metals,” Phys. Rev. B 88, 104412 (2013), [arXiv:1206.1627 [cond-mat.mes-hall]].Google Scholar
[304] A. A., Zyuzin and A. A., Burkov, “Topological response in Weyl semimetals and the chiral anomaly,” Phys. Rev. B 86, 115133 (2012) [arXiv:1206.1868 [cond-mat. mes-hall]].Google Scholar
[305] K., Landsteiner, “Anomalous transport ofWeyl fermions inWeyl semimetals,” Phys. Rev. B 89, 075124 (2014) [arXiv:1306.4932 [hep-th]].Google Scholar
[306] A. V., Sadofyev and M. V., Isachenkov, “The chiral magnetic effect in hydrodynamical approach,” Phys. Lett. B 697, 404 (2011) [arXiv:1010.1550 [hep-th]].Google Scholar
[307] Y., Neiman and Y., Oz, “Relativistic hydrodynamics with general anomalous charges,” JHEP 1103, 023 (2011) [arXiv:1011.5107 [hep-th]].Google Scholar
[308] V. I., Zakharov, “Chiral magnetic effect in hydrodynamic approximation,” in D., Kharzeev, K., Landsteiner, A., Schmitt and H.-U., Yee (eds), Strongly Interacting Matter in Magnetic Fields, Springer, 2013, p. 295 [arXiv:1210.2186 [hep-ph]].
[309] J., Erdmenger, M., Haack, M., Kaminski and A., Yarom, “Fluid dynamics of Rcharged black holes,” JHEP 0901, 055 (2009) [arXiv:0809.2488 [hep-th]].Google Scholar
[310] N., Banerjee, J., Bhattacharya, S., Bhattacharyya, S., Dutta, R., Loganayagam and P., Surowka, “Hydrodynamics from charged black branes,” JHEP 1101, 094 (2011) [arXiv:0809.2596 [hep-th]].Google Scholar
[311] D. E., Kharzeev, K., Landsteiner, A., Schmitt and H.-U., Yee, “Strongly interacting matter in magnetic fields: an overview,” in D., Kharzeev, K., Landsteiner, A., Schmitt and H.-U., Yee (eds), Strongly Interacting Matter in Magnetic Fields, Springer, 2013, p. 1 [arXiv:1211.6245 [hep-ph]].
[312] O., Saremi and D. T., Son, “Hall viscosity from gauge/gravity duality,” JHEP 1204, 091 (2012) [arXiv:1103.4851 [hep-th]].Google Scholar
[313] D. T., Son and C., Wu, “Holographic spontaneous parity breaking and emergent Hall viscosity and angular momentum,” JHEP 1407, 076 (2014) [arXiv:1311.4882 [hep-th]].Google Scholar
[314] H., Liu, H., Ooguri, B., Stoica and N., Yunes, “Spontaneous generation of angular momentum in holographic theories,” Phys. Rev. Lett. 110, 211601 (2013) [arXiv:1212.3666 [hep-th]].Google Scholar
[315] H., Liu, H., Ooguri and B., Stoica, “Angular momentum generation by parity violation,” Phys. Rev. D 89, 106007 (2014) [arXiv:1311.5879 [hep-th]].Google Scholar
[316] A., Gynther, K., Landsteiner, F., Pena-Benitez and A., Rebhan, “Holographic anomalous conductivities and the chiral magnetic effect,” JHEP 1102, 110 (2011) [arXiv:1005.2587 [hep-th]].Google Scholar
[317] K., Landsteiner, E., Megias and F., Pena-Benitez, “Anomalous transport from Kubo formulae,” in Strongly InteractingMatter inMagnetic Fields, Springer, 2013, p. 433 [arXiv:1207.5808 [hep-th]].
[318] K., Landsteiner, E., Megias and F., Pena-Benitez, “Gravitational anomaly and transport,” Phys. Rev. Lett. 107, 021601 (2011) [arXiv:1103.5006 [hep-ph]].Google Scholar
[319] M., Greiner, O., Mandel, T., Esslinger, T. W., Hänsch and I., Bloch, “Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms,” Nature 415, 39 (2002).Google Scholar
[320] T., Faulkner, H., Liu, J., McGreevy and D., Vegh, “Emergent quantum criticality, Fermi surfaces, and AdS2,” Phys. Rev. D 83, 125002 (2011) [arXiv:0907.2694 [hep-th]].Google Scholar
[321] S. S., Gubser and F. D., Rocha, “Peculiar properties of a charged dilatonic black hole in AdS5,” Phys. Rev. D 81, 046001 (2010) [arXiv:0911.2898 [hep-th]].Google Scholar
[322] K., Goldstein, S., Kachru, S., Prakash and S. P., Trivedi, “Holography of charged dilaton black holes,” JHEP 1008, 078 (2010) [arXiv:0911.3586 [hep-th]].Google Scholar
[323] C., Charmousis, B., Gouteraux, B. S., Kim, E., Kiritsis and R., Meyer, “Effective holographic theories for low-temperature condensed matter systems,” JHEP 1011, 151 (2010) [arXiv:1005.4690 [hep-th]].Google Scholar
[324] B., Gouteraux and E., Kiritsis, “Generalized holographic quantum criticality at finite density,” JHEP 1112, 036 (2011) [arXiv:1107.2116 [hep-th]].Google Scholar
[325] M., Edalati, J. I., Jottar and R. G., Leigh, “Holography and the sound of criticality,” JHEP 1010, 058 (2010) [arXiv:1005.4075 [hep-th]].Google Scholar
[326] M., Edalati, J. I., Jottar and R. G., Leigh, “Shear modes, criticality and extremal black holes,” JHEP 1004, 075 (2010) [arXiv:1001.0779 [hep-th]].Google Scholar
[327] R. A., Davison and N. K., Kaplis, “Bosonic excitations of the AdS4 Reissner– Nordström black hole,” JHEP 1112, 037 (2011) [arXiv:1111.0660 [hep-th]].Google Scholar
[328] R. A., Davison and A., Parnachev, “Hydrodynamics of cold holographic matter,” JHEP 1306, 100 (2013) [arXiv:1303.6334 [hep-th]].Google Scholar
[329] C. P., Herzog, “The hydrodynamics of M theory,” JHEP 0212, 026 (2002) [arXiv:0210126 [hep-th]].Google Scholar
[330] C. P., Herzog, “The sound of M theory,” Phys. Rev. D 68, 024013 (2003) [arXiv:0302086 [hep-th]].Google Scholar
[331] L. D., Landau, “Oscillations in a Fermi liquid,” Zh. Éksp. Teor. Fiz. 32, 59 (1957) [Soviet Phys. – JETP 5, 101 (1959)].Google Scholar
[332] M., Edalati, J. I., Jottar and R. G., Leigh, “Transport coefficients at zero temperature from extremal black holes,” JHEP 1001, 018 (2010) [arXiv:0910.0645 [hep-th]].Google Scholar
[333] M., Kaminski, K., Landsteiner, J., Mas, J. P., Shock and J., Tarrio, “Holographic operator mixing and quasinormal modes on the brane,” JHEP 1002, 021 (2010) [arXiv:0911.3610 [hep-th]].Google Scholar
[334] X., Dong, S., Harrison, S., Kachru, G., Torroba and H., Wang, “Aspects of holography for theories with hyperscaling violation,” JHEP 1206, 041 (2012) [arXiv:1201.1905 [hep-th]].Google Scholar
[335] S., Kachru, X., Liu and M., Mulligan, “Gravity duals of Lifshitz-like fixed points,” Phys. Rev. D 78, 106005 (2008) [arXiv:0808.1725 [hep-th]].Google Scholar
[336] L., Huijse, S., Sachdev and B., Swingle, “Hidden Fermi surfaces in compressible states of gauge–gravity duality,” Phys. Rev. B 85, 035121 (2012) [arXiv:1112.0573 [cond-mat.str-el]].Google Scholar
[337] S. S., Gubser and J., Ren, “Analytic fermionic Green's functions from holography,” Phys. Rev. D 86, 046004 (2012) [arXiv:1204.6315 [hep-th]].Google Scholar
[338] M., Spradlin and A., Strominger, “Vacuum states for AdS2 black holes,” JHEP 9911, 021 (1999) [arXiv:9904143 [hep-th]].Google Scholar
[339] A., Almheiri and J., Polchinski, “Models of AdS2 backreaction and holography” [arXiv:1402.6334 [hep-th]].
[340] K., Copsey and R., Mann, “Pathologies in asymptotically Lifshitz spacetimes,” JHEP 1103, 039 (2011) [arXiv:1011.3502 [hep-th]].Google Scholar
[341] G. T., Horowitz and B., Way, “Lifshitz singularities,” Phys. Rev. D 85, 046008 (2012) [arXiv:1111.1243 [hep-th]].Google Scholar
[342] S., Harrison, S., Kachru and H., Wang, “Resolving Lifshitz horizons,” JHEP 1402, 085 (2014) [arXiv:1202.6635 [hep-th]].Google Scholar
[343] N., Bao, X., Dong, S., Harrison and E., Silverstein, “The benefits of stress: resolution of the Lifshitz singularity,” Phys. Rev. D 86, 106008 (2012) [arXiv:1207.0171 [hep-th]].Google Scholar
[344] E., Shaghoulian, “Holographic entanglement entropy and Fermi surfaces,” JHEP 1205, 065 (2012) [arXiv:1112.2702 [hep-th]].Google Scholar
[345] J., Bhattacharya, S., Cremonini and A., Sinkovics, “On the IR completion of geometries with hyperscaling violation,” JHEP 1302, 147 (2013) [arXiv:1208.1752 [hep-th]].Google Scholar
[346] S. A., Hartnoll and E., Shaghoulian, “Spectral weight in holographic scaling geometries,” JHEP 1207, 078 (2012) [arXiv:1203.4236 [hep-th]].Google Scholar
[347] S. S., Gubser, “Breaking an Abelian gauge symmetry near a black hole horizon,” Phys. Rev. D 78, 065034 (2008) [arXiv:0801.2977 [hep-th]].Google Scholar
[348] S. A., Hartnoll, C. P., Herzog and G. T., Horowitz, “Building a holographic superconductor,” Phys. Rev. Lett. 101, 031601 (2008) [arXiv:0803.3295 [hep-th]].Google Scholar
[349] H., Liu, J., McGreevy and D., Vegh, “Non-Fermi liquids from holography,” Phys. Rev. D 83, 065029 (2011) [arXiv:0903.2477 [hep-th]].Google Scholar
[350] M., Cubrovic, J., Zaanen and K., Schalm, “String theory, quantum phase transitions and the emergent Fermi-liquid,” Science 325, 439 (2009) [arXiv:0904.1993 [hep-th]].
[351] S.-S., Lee, “A non-Fermi liquid from a charged black hole: a critical Fermi ball,” Phys. Rev. D 79, 086006 (2009) [arXiv:0809.3402 [hep-th]].Google Scholar
[352] S.-J., Rey, “String theory on thin semiconductors: holographic realization of Fermi points and surfaces,” Prog. Theor. Phys. Suppl. 177, 128 (2009) [arXiv:0911.5295 [hep-th]].Google Scholar
[353] V., Juričić;, I. F., Herbut and G. W., Semenoff, “Coulomb interaction at the metal–insulator critical point in graphene,” Phys. Rev. B 80, 081405 (2009) [arXiv:0906.3513 [cond-mat.str-el]].Google Scholar
[354] R., Contino and A., Pomarol, “Holography for fermions,” JHEP 0411, 058 (2004) [arXiv:0406257 [hep-th]].Google Scholar
[355] J. P., Gauntlett, J., Sonner and D., Waldram, “Universal fermionic spectral functions from string theory,” Phys. Rev. Lett. 107, 241601 (2011) [arXiv:1106.4694 [hep-th]].Google Scholar
[356] T., Faulkner, N., Iqbal, H., Liu, J., McGreevy and D., Vegh, “Holographic non-Fermi liquid fixed points,” Phil. Trans. Roy. Soc. A 369, 1640 (2011) [arXiv:1101.0597 [hep-th]].Google Scholar
[357] M., Cubrovic, Y., Liu, K., Schalm, Y.-W., Sun and J., Zaanen, “Spectral probes of the holographic Fermi groundstate: dialing between the electron star and AdS Dirac hair,” Phys. Rev. D 84, 086002 (2011) [arXiv:1106.1798 [hep-th]].Google Scholar
[358] B., Pioline and J., Troost, “Schwinger pair production in AdS2,” JHEP 0503, 043 (2005) [arXiv:0501169 [hep-th]].Google Scholar
[359] Y., Liu, K., Schalm, Y. W., Sun and J., Zaanen, “Lattice potentials and fermions in holographic non Fermi-liquids: hybridizing local quantum criticality,” JHEP 1210, 036 (2012) [arXiv:1205.5227 [hep-th]].Google Scholar
[360] T., Hartman and S. A., Hartnoll, “Cooper pairing near charged black holes,” JHEP 1006, 005 (2010) [arXiv:1003.1918 [hep-th]].Google Scholar
[361] T., Faulkner, N., Iqbal, H., Liu, J., McGreevy and D., Vegh, “Strange metal transport realized by gauge/gravity duality,” Science 329, 1043 (2010).Google Scholar
[362] O., DeWolfe, S. S., Gubser and C., Rosen, “Fermi surfaces in maximal gauged supergravity,” Phys. Rev. Lett. 108, 251601 (2012) [arXiv:1112.3036 [hep-th]].Google Scholar
[363] O., DeWolfe, S. S., Gubser and C., Rosen, “Fermi surfaces in N = 4 super-Yang– Mills theory,” Phys. Rev. D 86, 106002 (2012) [arXiv:1207.3352 [hep-th]].Google Scholar
[364] T., Faulkner, N., Iqbal, H., Liu, J., McGreevy and D., Vegh, “From black holes to strange metals” [arXiv:1003.1728 [hep-th]].
[365] J., Polchinski, “Low energy dynamics of the spinon–gauge system,” Nucl. Phys. B 422, 617 (1994). [arXiv:9303037 [cond-mat]].Google Scholar
[366] T., Faulkner and J., Polchinski, “Semi-holographic Fermi liquids,” JHEP 1106, 012 (2011) [arXiv:1001.5049 [hep-th]].Google Scholar
[367] S. A., Hartnoll, C. P., Herzog and G. T., Horowitz, “Holographic superconductors,” JHEP 0812, 015 (2008) [arXiv:0810.1563 [hep-th]].Google Scholar
[368] R., Ruffini and J. A., Wheeler, “Introducing the black hole,” Physics Today 24, 30 (1971).Google Scholar
[369] D., Anninos, S. A., Hartnoll and N., Iqbal, “Holography and the Coleman–Mermin– Wagner theorem,” Phys. Rev. D 82, 066008 (2010) [arXiv:1005.1973 [hep-th]].Google Scholar
[370] M., Ammon, J., Erdmenger, M., Kaminski and P., Kerner, “Superconductivity from gauge/gravity duality with flavor,” Phys. Lett. B 680, 516 (2009) [arXiv:0810.2316 [hep-th]].Google Scholar
[371] T., Albash and C. V., Johnson, “Vortex and droplet engineering in holographic superconductors,” Phys. Rev. D 80, 126009 (2009) [arXiv:0906.1795 [hep-th]].Google Scholar
[372] M., Montull, A., Pomarol and P. J., Silva, “The holographic superconductor vortex,” Phys. Rev. Lett. 103, 091601 (2009) [arXiv:0906.2396 [hep-th]].Google Scholar
[373] K., Maeda, M., Natsuume and T., Okamura, “Vortex lattice for a holographic superconductor,” Phys. Rev. D 81, 026002 (2010) [arXiv:0910.4475 [hep-th]].Google Scholar
[374] V., Keranen, E., Keski-Vakkuri, S., Nowling and K. P., Yogendran, “Inhomogeneous structures in holographic superfluids: I. Dark solitons,” Phys. Rev. D 81, 126011 (2010) [arXiv:0911.1866 [hep-th]].Google Scholar
[375] A., Adams, P. M., Chesler and H., Liu, “Holographic vortex liquids and superfluid turbulence,” Science 341, 368 (2013) [arXiv:1212.0281 [hep-th]].Google Scholar
[376] L. D., Landau, “Theory of the superfluidity of helium II,” Phys. Rev. 60, 356 (1941).Google Scholar
[377] L., Tisza, “The theory of liquid helium,” Phys. Rev. 72, 838 (1947).
[378] W., Israel, “Covariant superfluid mechanics,” Phys. Lett. A 86, 79 (1981).
[379] I., M.|Khalatnikov and V. V., Lebedev, “Second sound in liquid helium II,” Phys. Lett. A 91, 70 (1982).Google Scholar
[380] W., Israel, “Equivalence of two theories of relativistic superfluid mechanics,” Phys. Lett. A 92, 77 (1982).Google Scholar
[381] D., T. Son, “Hydrodynamics of relativistic systems with broken continuous symmetries,” Int. J. Mod. Phys. A 16 (suppl. 01C), 1284 (2001) [arXiv:0011246 [hep-th]].Google Scholar
[382] J., Sonner and B., Withers, “A gravity derivation of the Tisza–Landau model in AdS/CFT,” Phys. Rev. D 82, 026001 (2010) [arXiv:1004.2707 [hep-th]].
[383] G., T. Horowitz, J. E., Santos and B., Way, “A holographic Josephson junction,” Phys. Rev. Lett. 106, 221601 (2011) [arXiv:1101.3326 [hep-th]].Google Scholar
[384] E., Kiritsis and V., Niarchos, “Josephson junctions and AdS/CFT networks,” JHEP 1107, 112 (2011) [Erratum ibid. 1110, 095 (2011)] [arXiv:1105.6100 [hep-th]].Google Scholar
[385] T., Faulkner, G. T., Horowitz, J., McGreevy, M. M., Roberts and D., Vegh, “Photoemission ‘experiments’ on holographic superconductors,” JHEP 1003, 121 (2010) [arXiv:0911.3402 [hep-th]].Google Scholar
[386] J.-W., Chen, Y.-J., Kao and W.-Y., Wen, “Peak–dip–hump from holographic superconductivity,” Phys. Rev. D 82, 026007 (2010) [arXiv:0911.2821 [hep-th]].Google Scholar
[387] S. S., Gubser and S. S., Pufu, “The gravity dual of a p-wave superconductor,” JHEP 0811, 033 (2008) [arXiv:0805.2960 [hep-th]].Google Scholar
[388] M. M., Roberts and S. A., Hartnoll, “Pseudogap and time reversal breaking in a holographic superconductor,” JHEP 0808, 035 (2008) [arXiv:0805.3898 [hep-th]].Google Scholar
[389] F., Benini, C. P., Herzog and A., Yarom, “Holographic Fermi arcs and a d-wave gap,” Phys. Lett. B 701, 626 (2011) [arXiv:1006.0731 [hep-th]].Google Scholar
[390] F., Benini, C. P., Herzog, R., Rahman and A., Yarom, “Gauge gravity duality for d-wave superconductors: prospects and challenges,” JHEP 1011, 137 (2010) [arXiv:1007.1981 [hep-th]].Google Scholar
[391] K., Y. Kim and M., Taylor, “Holographic d-wave superconductors,” JHEP 1308, 112 (2013) [arXiv:1304.6729 [hep-th]].Google Scholar
[392] M., Ammon, J., Erdmenger, V., Grass, P., Kerner and A., O'Bannon, “On holographic p-wave superfluids with back-reaction,” Phys. Lett. B 686, 192 (2010) [arXiv:0912.3515 [hep-th]].Google Scholar
[393] S., S. Gubser, F. D., Rocha and A., Yarom, “Fermion correlators in non-Abelian holographic superconductors,” JHEP 1011, 085 (2010) [arXiv:1002.4416 [hep-th]].Google Scholar
[394] J., Erdmenger, D., Fernandez and H., Zeller, “New transport properties of anisotropic holographic superfluids,” JHEP 1304, 049 (2013) [arXiv:1212.4838 [hep-th]].Google Scholar
[395] R. A., Ferrell, “Fluctuations and the superconducting phase transition: II. Onset of Josephson tunneling and paraconductivity of a junction,” J. Low Temp. Phys. 1, 423 (1969).Google Scholar
[396] D. J., Scalapino, “Pair tunneling as a probe of fluctuations in superconductors,” Phys. Rev. Lett. 24, 1052 (1970).Google Scholar
[397] J. T., Anderson and A. M., Goldman, “Experimental determination of the pair susceptibility of a superconductor,” Phys. Rev. Lett. 25, 743 (1970).Google Scholar
[398] A. M., Goldman, “The order parameter susceptibility and collective modes of superconductors,” J. Supercond. Nov. Magn. 19, 317 (2006).Google Scholar
[399] A. V., Chubukov, D., Pines and J., Schmalian, “Spin fluctuation model for d-wave superconductivity,” in K. H., Bennemann and J. B., Ketterson(eds), The Physics of Superconductors, Vol. 1, Springer, 2004, pp. 495–590.
[400] K., Jensen, “Semi-holographic quantum criticality,” Phys. Rev. Lett. 107, 231601 (2011) [arXiv:1108.0421 [hep-th]].Google Scholar
[401] D. B., Kaplan, J.-W., Lee, D. T., Son and M. A., Stephanov, “Conformality lost,” Phys. Rev. D 80, 125005 (2009) [arXiv:0905.4752 [hep-th]].Google Scholar
[402] T., Nishioka, S., Ryu and T., Takayanagi, “Holographic superconductor/insulator transition at zero temperature,” JHEP 1003, 131 (2010) [arXiv:0911.0962 [hep-th]].Google Scholar
[403] G. T., Horowitz and B., Way, “Complete phase diagrams for a holographic superconductor/insulator system,” JHEP 1011, 011 (2010) [arXiv:1007.3714 [hep-th]].Google Scholar
[404] S. S., Gubser and A., Nellore, “Ground states of holographic superconductors,” Phys. Rev. D 80, 105007 (2009) [arXiv:0908.1972 [hep-th]].Google Scholar
[405] G. T., Horowitz and M. M., Roberts, “Zero temperature limit of holographic superconductors,” JHEP 0911, 015 (2009) [arXiv:0908.3677 [hep-th]].Google Scholar
[406] N., Iqbal, H., Liu, M., Mezei and Q., Si, “Quantum phase transitions in holographic models of magnetism and superconductors,” Phys. Rev. D 82, 045002 (2010) [arXiv:1003.0010 [hep-th]].Google Scholar
[407] P. W., Anderson, “In praise of unstable fixed points: the way things actually work,” Physica B: Condensed Matter 318, 28 (2002) [arXiv:0201431 [cond-mat]].Google Scholar
[408] P. C., W. Davies, “Thermodynamics of black holes,” Rep. Prog. Phys. 41, 1313 (1978).Google Scholar
[409] M. V., Medvedyeva, E., Gubankova, M., Cubrovic, K., Schalm and J., Zaanen, “Quantum corrected phase diagram of holographic fermions,” JHEP 1312, 025 (2013) [arXiv:1302.5149 [hep-th]].Google Scholar
[410] S. A., Hartnoll and P., Petrov, “Electron star birth: a continuous phase transition at nonzero density,” Phys. Rev. Lett. 106, 121601 (2011) [arXiv:1011.6469 [hep-th]].Google Scholar
[411] V. G., M. Puletti, S., Nowling, L., Thorlacius and T., Zingg, “Holographic metals at finite temperature,” JHEP 1101, 117 (2011) [arXiv:1011.6261 [hep-th]].Google Scholar
[412] A., Allais, J., McGreevy and S. J., Suh, “A quantum electron star,” Phys. Rev. Lett. 108, 231602 (2012) [arXiv:1202.5308 [hep-th]].Google Scholar
[413] A., Allais and J., McGreevy, “How to construct a gravitating quantum electron star,” Phys. Rev. D 88, 066006 (2013) [arXiv:1306.6075 [hep-th]].Google Scholar
[414] S., Sachdev, “A model of a Fermi liquid using gauge–gravity duality,” Phys. Rev. D 84, 066009 (2011) [arXiv:1107.5321 [hep-th]].Google Scholar
[415] E., Witten, “Baryons in the 1/N expansion,” Nucl. Phys. B 160, 57 (1979).Google Scholar
[416] E., Witten, “Baryons and branes in anti-de Sitter space,” JHEP 9807, 006 (1998) [arXir:9805112 [hep-th]].Google Scholar
[417] C. P., Herzog and J., Ren, “The spin of holographic electrons at nonzero density and temperature,” JHEP 1206, 078 (2012) [arXiv:1204.0518 [hep-th]].Google Scholar
[418] S. A., Hartnoll and A., Tavanfar, “Electron stars for holographic metallic criticality,” Phys. Rev. D 83, 046003 (2011) [arXiv:1008.2828 [hep-th]].Google Scholar
[419] N., Iizuka, N., Kundu, P., Narayan and S. P., Trivedi, “Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity,” JHEP 1201, 094 (2012) [arXiv:1105.1162 [hep-th]].Google Scholar
[420] S., A. Hartnoll, D. M., Hofman and D., Vegh, “Stellar spectroscopy: fermions and holographic Lifshitz criticality,” JHEP 1108, 096 (2011) [arXiv:1105.3197 [hep-th]].Google Scholar
[421] N., Iqbal and H., Liu, “Luttinger's theorem, superfluid vortices, and holography,” Class. Quant. Grav. 29, 194004 (2012) [arXiv:1112.3671 [hep-th]].Google Scholar
[422] S., A. Hartnoll and L., Huijse, “Fractionalization of holographic Fermi surfaces,” Class. Quant. Grav. 29, 194001 (2012) [arXiv:1111.2606 [hep-th]].Google Scholar
[423] M., Cubrovic, K., Schalm and J., Zaanen, “The quantum phase transition from an AdS Reissner–Nordström black hole to an AdS electron star” (to be published).
[424] D., J. Gross and E., Witten, “Possible third order phase transition in the large-N lattice gauge theory,” Phys. Rev. D 21, 446 (1980).Google Scholar
[425] A., Bagrov, B., Meszena and K., Schalm, “Pairing induced superconductivity in holography,” JHEP 1409, 106 (2014) [arXiv:1403.3699 [hep-th]].Google Scholar
[426] Y., Liu, K., Schalm, Y. W., Sun and J., Zaanen, “BCS instabilities of electron stars to holographic superconductors,” JHEP 1405, 122 (2014) [arXiv:1404.0571 [hep-th]].Google Scholar
[427] J., de Boer, K., Papadodimas and E., Verlinde, “Holographic neutron stars,” JHEP 1010, 020 (2010) [arXiv:0907.2695 [hep-th]].Google Scholar
[428] X., Arsiwalla, J. de, Boer, K., Papadodimas and E., Verlinde, “Degenerate stars and gravitational collapse in AdS/CFT,” JHEP 1101, 144 (2011) [arXiv:1010.5784 [hep-th]].Google Scholar
[429] J. M., Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, Oxford University Press, 1960.
[430] W. E., Lawrence and J. W., Wilkins, “Electron–electron scattering in the transport coefficients of simple metals,” Phys. Rev. B 7, 2317 (1973).Google Scholar
[431] W., Götze and P., Wölfle, “Homogeneous dynamical conductivity of simple metals,” Phys. Rev. B 6, 1226 (1972).Google Scholar
[432] A., Rosch and N., Andrei, “Conductivity of a clean one-dimensional wire,” Phys. Rev. Lett. 85, 1092 (2000).Google Scholar
[433] S., A. Hartnoll and D. M., Hofman, “Locally critical resistivities from umklapp scattering,” Phys. Rev. Lett. 108, 241601 (2012) [arXiv:1201.3917 [hep-th]].Google Scholar
[434] R., Mahajan, M., Barkeshli and S. A., Hartnoll, “Non-Fermi liquids and the Wiedemann–Franz law,” Phys. Rev. B 88, 125107 (2013) [arXiv:1304.4249 [condmat. str-el]].Google Scholar
[435] A., V. Andreev, S. A., Kivelson and B., Spivak, “Hydrodynamic description of transport in strongly correlated electron systems,” Phys. Rev. Lett. 106, 256804 (2011).Google Scholar
[436] M., Blake, D., Tong and D., Vegh, “Holographic lattices give the graviton a mass,” Phys. Rev. Lett. 112, 071602 (2014) [arXiv:1310.3832 [hep-th]].Google Scholar
[437] R., Flauger, E., Pajer and S., Papanikolaou, “A striped holographic superconductor,” Phys. Rev. D 83, 064009 (2011) [arXiv:1010.1775 [hep-th]].Google Scholar
[438] G. T., Horowitz, J. E., Santos and D., Tong, “Optical conductivity with holographic lattices,” JHEP 1207, 168 (2012) [arXiv:1204.0519 [hep-th]].Google Scholar
[439] G. T., Horowitz, J. E., Santos and D., Tong, “Further evidence for lattice-induced scaling,” JHEP 1211, 102 (2012) [arXiv:1209.1098 [hep-th]].Google Scholar
[440] G. T., Horowitz and J. E., Santos, “General relativity and the cuprates,” JHEP 1306, 087 (2013) [arXiv:1302.6586 [hep-th]].Google Scholar
[441] D., van der Marel, H. J. A., Molegraaf, J., Zaanen, Z., Nussinov, F., Carbone, A., Damascelli, H., Eisaki, M., Greven, P. H., Kes and M., Li, “Quantum critical behaviour in a high-Tc superconductor,” Nature 425, 271 (2003) [arXiv:0309172 [cond-mat.str-el]].Google Scholar
[442] D., Dalidovich and P., Phillips, “Nonlinear transport near a quantum phase transition in two dimensions,” Phys. Rev. Lett. 93, 27004 (2004) [arXiv:0310129 [cond-mat.supr-con]].Google Scholar
[443] D. A., Bonn, R., Liang, T. M., Riseman, D. J., Baar, D. C., Morgan, K., Zhang, P., Dosanjh, T. L., Duty, A., MacFarlane, G. D., Morris, J. H., Brewer, W. N., Hardy, C., Kallin and A. J., Berlinsky, “Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95,” Phys. Rev. B 47, 11314 (1993).Google Scholar
[444] J., Orenstein, “Optical conductivity and spatial inhomogeneity in cuprate superconductors,” in Handbook of High-Temperature Superconductivity. Theory and Experiment, Springer, 2007.
[445] M., P. Ryan and L. C., Shepley, Homogeneous Relativistic Cosmologies, Princeton University Press, 1975.
[446] N., Iizuka, S., Kachru, N., Kundu, P., Narayan, N., Sircar and S. P., Trivedi, “Bianchi attractors: a classification of extremal black brane geometries,” JHEP 1207, 193 (2012) [arXiv:1201.4861 [hep-th]].Google Scholar
[447] A., Donos and S. A., Hartnoll, “Interaction-driven localization in holography,” Nature Physics 9, 649 (2013) [arXiv:1212.2998].Google Scholar
[448] E., D'Hoker and P., Kraus, “Charge expulsion from black brane horizons, and holographic quantum criticality in the plane,” JHEP 1209, 105 (2012) [arXiv:1202.2085 [hep-th]].Google Scholar
[449] J., Zaanen, “High-temperature superconductivity: the secret of the hourglass,” Nature 471, 314 (2011).Google Scholar
[450] V. J., Emery, E., Fradkin, S. A., Kivelson and T. C., Lubensky, “Quantum theory of the smectic metal state in stripe phases,” Phys. Rev. Lett. 85, 2160 (2000) [arXiv:condmat/ 0001077 [cond-mat.str-el]].Google Scholar
[451] G. T., Horowitz and M. M., Roberts, “Holographic superconductors with various condensates,” Phys. Rev. D 78, 126008 (2008) [arXiv:0810.1077 [hep-th]].Google Scholar
[452] M., Taylor, “More on counterterms in the gravitational action and anomalies” [arXiv:0002125 [hep-th]].
[453] A., Donos and J. P., Gauntlett, “Holographic Q-lattices,” JHEP 1404, 040 (2014) [arXiv:1311.3292 [hep-th]].Google Scholar
[454] A., Donos and J. P., Gauntlett, “Novel metals and insulators from holography,” JHEP 1406, 007 (2014) [arXiv:1401.5077 [hep-th]].Google Scholar
[455] T., Andrade and B., Withers, “A simple holographic model of momentum relaxation,” JHEP 1405, 101 (2014) [arXiv:1311.5157 [hep-th]].Google Scholar
[456] B., Gouteraux, “Charge transport in holography with momentum dissipation,” JHEP 1404, 181 (2014) [arXiv:1401.5436 [hep-th]].Google Scholar
[457] K., Hinterbichler, “Theoretical aspects of massive gravity,” Rev. Mod. Phys. 84, 671 (2012) [arXiv:1105.3735 [hep-th]].Google Scholar
[458] C., de Rham, “Massive gravity,” Living Rev. Rel. 17, 7 (2014) [arXiv:1401.4173 [hep-th]].Google Scholar
[459] C., de Rham, G., Gabadadze and A. J., Tolley, “Resummation of massive gravity,” Phys. Rev. Lett. 106, 231101 (2011) [arXiv:1011.1232 [hep-th]].Google Scholar
[460] H., Kleinert, Gauge Fields in Condensed Matter. Volume 2: Stresses and Defects. Differential Geometry, Crystal Melting, World Scientific, 1989.Google Scholar
[461] H., Kleinert, Multivalued Fields in Condensed Matter, Electromagnetism, and Gravitation, World Scientific, 2008.Google Scholar
[462] L., Giomi and M., Bowick, “Two-dimensional matter: order, curvature and defects,” Adv. Phys. 58, 449 (2009) [arXiv:0812.3064 [cond-mat.soft]].Google Scholar
[463] A. J., Beekman, K., Wu, V., Cvetkovic and J., Zaanen, “Deconfining the rotational Goldstone mode: the superconducting nematic liquid crystal in 2 +1D,” Phys. Rev. B 88, 024121 (2013) [arXiv:1301.7329 [cond-mat.str-el]].Google Scholar
[464] J., Zaanen and A. J., Beekman, “The emergence of gauge invariance: the stayat- home gauge versus local-global duality,” Annals of Physics 327, 1146 (2012) [arXiv:1108.2791 [cond-mat.str-el]].Google Scholar
[465] D., Vegh, “Holography without translational symmetry” [arXiv:1301.0537 [hep-th]].
[466] M., Blake and D., Tong, “Universal resistivity from holographic massive gravity,” Phys. Rev. D 88, 106004 (2013) [arXiv:1308.4970 [hep-th]].Google Scholar
[467] R. A., Davison, “Momentum relaxation in holographic massive gravity,” Phys. Rev. D 88, 086003 (2013) [arXiv:1306.5792 [hep-th]].Google Scholar
[468] R. A., Davison, K., Schalm and J., Zaanen, “Holographic duality and the resistivity of strange metals,” Phys. Rev. B 89, 245116 (2014) [arXiv:1311.2451 [hep-th]].Google Scholar
[469] J. A., N. Bruin, H., Sakai, R. S., Perry and A. P., Mackenzie, “Similarity of scattering rates in metals showing T -linear resistivity,” Science 339, 804 (2013).Google Scholar
[470] A., Lucas, S., Sachdev and K., Schalm, “Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder,” Phys. Rev. D 89, 066018 (2014) [arXiv:1401.7993 [hep-th]].Google Scholar
[471] B., Bradlyn, M., Goldstein and N., Read, “Kubo formulas for viscosity: Hall viscosity, Ward identities, and the relation with conductivity,” Phys. Rev. B 86, 245309 (2012) [arXiv:1207.7021 [cond-mat.stat-mech]].Google Scholar
[472] S., Sachdev and J.W., Ye, “Universal quantum critical dynamics of two-dimensional antiferromagnets,” Phys. Rev. Lett. 69, 2411 (1992) [arXiv:9204001 [cond-mat]].Google Scholar
[473] S., Sachdev, “Universal relaxational dynamics near two-dimensional quantum critical points,” Phys. Rev. B 59, 14054 (1999) [arXiv:9810399 [cond-mat.str-el]].Google Scholar
[474] S., A. Hartnoll, R., Mahajan, M., Punk and S., Sachdev, “Transport near the Isingnematic quantum critical point of metals in two dimensions,” Phys. Rev. B 89, 155130 (2014) [arXiv:1401.7012 [cond-mat.str-el]].Google Scholar
[475] S., Nakamura, H., Ooguri and C.-S., Park, “Gravity dual of spatially modulated phase,” Phys. Rev. D 81, 044018 (2010) [arXiv:0911.0679 [hep-th]].Google Scholar
[476] H., Ooguri and C.-S., Park, “Holographic end-point of spatially modulated phase transition,” Phys. Rev. D 82, 126001 (2010) [arXiv:1007.3737 [hep-th]].Google Scholar
[477] A., Donos and J. P., Gauntlett, “Holographic striped phases,” JHEP 1108, 140 (2011) [arXiv:1106.2004 [hep-th]].Google Scholar
[478] O., Bergman, N., Jokela, G., Lifschytz and M., Lippert, “Striped instability of a holographic Fermi-like liquid,” JHEP 1110, 034 (2011) [arXiv:1106.3883 [hep-th]].Google Scholar
[479] S., Chakravarty, R. B., Laughlin, D. K., Morr and C., Nayak, “Hidden order in the cuprates,” Phys. Rev. B 63, 094503 (2001).Google Scholar
[480] P. A., Lee, N., Nagaosa and X.-G., Wen, “Doping a Mott insulator: physics of hightemperature superconductivity,” Rev. Mod. Phys. 78, 17 (2006).Google Scholar
[481] A., Shekhter and C. M., Varma, “Considerations on the symmetry of loop order in cuprates,” Phys. Rev. B 80, 214501 (2009) [arXiv:0905.1987 [cond-mat.supr-con]].Google Scholar
[482] A., Allais, J., Bauer and S., Sachdev, “Bond order instabilities in a correlated two-dimensional metal,” Phys. Rev. B 90, 155114 (2014) [arXiv:1402.4807 [condmat. str-el]].Google Scholar
[483] A., Donos and J. P., Gauntlett, “Holographic charge density waves,” Phys. Rev. D 87, 126008 (2013) [arXiv:1303.4398 [hep-th]].Google Scholar
[484] A., Donos and J. P., Gauntlett, “Black holes dual to helical current phases,” Phys. Rev. D 86, 064010 (2012) [arXiv:1204.1734 [hep-th]].Google Scholar
[485] J., P. Gauntlett, S., Kim, O., Varela and D., Waldram, “Consistent supersymmetric Kaluza–Klein truncations with massive modes,” JHEP 0904, 102 (2009) [arXiv:0901.0676 [hep-th]].Google Scholar
[486] M., Rozali, D., Smyth, E., Sorkin and J. B., Stang, “Holographic stripes,” Phys. Rev. Lett. 110, 201603 (2013) [arXiv:1211.5600 [hep-th]].Google Scholar
[487] A., Donos, “Striped phases from holography,” JHEP 1305, 059 (2013) [arXiv:1303.7211 [hep-th]].Google Scholar
[488] B., Withers, “Black branes dual to striped phases,” Class. Quant. Grav. 30, 155025 (2013) [arXiv:1304.0129 [hep-th]].Google Scholar
[489] M., Rozali, D., Smyth, E., Sorkin and J. B., Stang, “Striped order in AdS/CFT correspondence,” Phys. Rev. D 87, 126007 (2013) [arXiv:1304.3130 [hep-th]].Google Scholar
[490] A., Karch and E., Katz, “Adding flavor to AdS/CFT,” JHEP 0206, 043 (2002) [arXiv:0205236 [hep-th]].Google Scholar
[491] L. E., Ibanez and A. M., Uranga, String Theory and Particle Physics: An Introduction to String Phenomenology, Cambridge University Press, 2012.
[492] P. S., Aspinwall, “Compactification, Geometry and Duality: N = 2,” TASI 1999 Lectures, report DUKE-CGTP-00-01 [arXiv:0001001 [hep-th]].
[493] F., Denef and S. A., Hartnoll, “Landscape of superconducting membranes,” Phys. Rev. D 79, 126008 (2009) [arXiv:0901.1160 [hep-th]].Google Scholar
[494] J. P., Gauntlett, J., Sonner and T., Wiseman, “Holographic superconductivity in Mtheory,” Phys. Rev. Lett. 103, 151601 (2009) [arXiv:0907.3796 [hep-th]].Google Scholar
[495] J. P., Gauntlett, J., Sonner and T., Wiseman, “Quantum criticality and holographic superconductors in M-theory,” JHEP 1002, 060 (2010) [arXiv:0912.0512 [hep-th]].Google Scholar
[496] M. J., Duff and J. T., Liu, “Anti-de Sitter black holes in gauged N = 8 supergravity,” Nucl. Phys. B 554, 237 (1999) [arXiv:9901149 [hep-th]].Google Scholar
[497] S. S., Gubser and I., Mitra, “The evolution of unstable black holes in anti-de Sitter space,” JHEP 0108, 018 (2001) [arXiv:0011127 [hep-th]].Google Scholar
[498] R. C., Myers, “Dielectric branes,” JHEP 9912, 022 (1999) [arXiv:9910053 [hep-th]].Google Scholar
[499] M., Born and L., Infeld, “Foundations of the new field theory,” Proc. R. Soc. Lond. A 144, 425 (1934).Google Scholar
[500] P. A. M., Dirac, “A reformulation of the Born–Infeld electrodynamics,” Proc. R. Soc. A 257, 32 (1960).Google Scholar
[501] R. G., Leigh, “Dirac–Born–Infeld action from Dirichlet sigma model,” Mod. Phys. Lett. A 4, 2767 (1989).Google Scholar
[502] A. A., Tseytlin, “On non-Abelian generalization of Born–Infeld action in string theory,” Nucl. Phys. B 501, 41 (1997) [arXiv:9701125 [hep-th]].Google Scholar
[503] A. A., Tseytlin, “Born–Infeld action, supersymmetry and string theory,” in M. A., Shifman (ed.), The Many Faces of the Superworld, World Scientific, 2000, pp. 417–452 [arXiv:9908105 [hep-th]].
[504] S., Kobayashi, D., Mateos, S., Matsuura, R. C., Myers and R. M., Thomson, “Holographic phase transitions at finite baryon density,” JHEP 0702, 016 (2007) [arXiv:0611099 [hep-th]].Google Scholar
[505] A., Karch and A., O'Bannon, “Metallic AdS/CFT,” JHEP 0709, 024 (2007) [arXiv:0705.3870 [hep-th]].Google Scholar
[506] J., Erdmenger, N., Evans, I., Kirsch and E., Threlfall, “Mesons in gauge/gravity duals – a review,” Eur. Phys. J. A 35, 81 (2008) [arXiv:0711.4467 [hep-th]].Google Scholar
[507] A., O'Bannon, “Holographic thermodynamics and transport of flavor fields” [arXiv:0808.1115 [hep-th]].
[508] S. A., Hartnoll, J., Polchinski, E., Silverstein and D., Tong, “Towards strange metallic holography,” JHEP 1004, 120 (2010) [arXiv:0912.1061 [hep-th]].Google Scholar
[509] A., O'Bannon, “Hall conductivity of flavor fields from AdS/CFT,” Phys. Rev. D 76, 086007 (2007) [arXiv:0708.1994 [hep-th]].Google Scholar
[510] O., Bergman, J., Erdmenger and G., Lifschytz, “A review of magnetic phenomena in probe-brane holographic matter,” in D., Kharzeev, K., Landsteiner, A., Schmitt and H.-U., Yee (eds), Strongly Interacting Matter in Magnetic Fields, Springer, 2013, p. 591 [arXiv:1207.5953 [hep-th]].
[511] M., Ammon, J., Erdmenger, M., Kaminski and P., Kerner, “Flavor superconductivity from gauge/gravity duality,” JHEP 0910, 067 (2009) [arXiv:0903.1864 [hep-th]].Google Scholar
[512] S., Harrison, S., Kachru and G., Torroba, “A maximally supersymmetric Kondo model,” Class. Quant. Grav. 29, 194005 (2012) [arXiv:1110.5325 [hep-th]].Google Scholar
[513] J., Erdmenger, C., Hoyos, A., Obannon and J., Wu, “A holographic model of the Kondo effect,” JHEP 1312, 086 (2013) [arXiv:1310.3271 [hep-th]].Google Scholar
[514] A. W. W., Ludwig, “Field theory approach to critical quantum impurity problems and applications to the multichannel Kondo effect,” Int. J. Mod. Phys. B 8, 347 (1994).Google Scholar
[515] I., Affleck, “Conformal field theory approach to the Kondo effect,” Acta Phys. Polon. B 26, 1869 (1995) [arXiv:9512099 [cond-mat]].Google Scholar
[516] S., Kachru, A., Karch and S., Yaida, “Adventures in holographic dimer models,” New J. Phys. 13, 035004 (2011) [arXiv:1009.3268 [hep-th]].Google Scholar
[517] A., Kolezhuk, S., Sachdev, R. R., Biswas and P., Chen, “Theory of quantum impurities in spin liquids,” Phys. Rev. B 74, 165114 (2006) [arXiv:0606385 [cond-mat]].Google Scholar
[518] J., L. Davis, P., Kraus and A., Shah, “Gravity dual of a quantum Hall plateau transition,” JHEP 0811, 020 (2008) [arXiv:0809.1876 [hep-th]].Google Scholar
[519] M., Fujita, W., Li, S., Ryu and T., Takayanagi, “Fractional quantum Hall effect via holography: Chern–Simons, edge states, and hierarchy,” JHEP 0906, 066 (2009) [arXiv:0901.0924 [hep-th]].Google Scholar
[520] O., Bergman, N., Jokela, G., Lifschytz and M., Lippert, “Quantum Hall effect in a holographic model,” JHEP 1010, 063 (2010) [arXiv:1003.4965 [hep-th]].Google Scholar
[521] S., Kachru, A., Karch and S., Yaida, “Holographic lattices, dimers, and glasses,” Phys. Rev. D 81, 026007 (2010) [arXiv:0909.2639 [hep-th]].Google Scholar
[522] A., Karch, D. T., Son and A. O., Starinets, “Zero sound from holography,” Phys. Rev. Lett. 102, 051602 (2009) [arXiv:0806.3796 [hep-th]].Google Scholar
[523] M., Kulaxizi and A., Parnachev, “Comments on Fermi liquid from holography,” Phys. Rev. D 78, 086004 (2008) [arXiv:0808.3953 [hep-th]].Google Scholar
[524] R. A., Davison and A. O., Starinets, “Holographic zero sound at finite temperature,” Phys. Rev. D 85, 026004 (2012) [arXiv:1109.6343 [hep-th]].Google Scholar
[525] Y. Y., Bu, J., Erdmenger, J. P., Shock and M., Strydom, “Magnetic field induced lattice ground states from holography,” JHEP 1303, 165 (2013) [arXiv:1210.6669 [hep-th]].Google Scholar
[526] K., Jensen, A., Karch, D. T., Son and E. G., Thompson, “Holographic Berezinskii–Kosterlitz–Thouless transitions,” Phys. Rev. Lett. 105, 041601 (2010) [arXiv:1002.3159 [hep-th]].Google Scholar
[527] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from Dbranes,” Phys. Lett. B 693, 175 (2010) [arXiv:1001.0763 [hep-th]].Google Scholar
[528] S., Ryu and T., Takayanagi, “Topological insulators and superconductors from string theory,” Phys. Rev. D 82, 086014 (2010) [arXiv:1007.4234 [hep-th]].Google Scholar
[529] A., Karch, J., Maciejko and T., Takayanagi, “Holographic fractional topological insulators in 2 + 1 and 1 + 1 dimensions,” Phys. Rev. D 82, 126003 (2010) [arXiv:1009.2991 [hep-th]].Google Scholar
[530] S., Franco, A., Hanany, D., Martelli, J., Sparks, D., Vegh and B., Wecht, “Gauge theories from toric geometry and brane tilings,” JHEP 0601, 128 (2006) [arXiv:0505211 [hep-th]].Google Scholar
[531] H., Li and F. D. M., Haldane, “Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states,” Phys. Rev. Lett. 101, 010504 (2008) [arXiv:0805.0332 [cond-mat.mes-hall]].Google Scholar
[532] D. M., Greenberger,M. A., Horne and A., Zeilinger, “Going beyond Bell's theorem,” in Bell's Theorem, Quantum Theory, and Conceptions of the Universe, Kluwer, 1989.
[533] D., Bouwmeester, J. W., Pan, M., Daniell, H., Weinfurter and A., Zeilinger, “Observation of three-photon Greenberger–Horne–Zeilinger entanglement,” Phys. Rev. Lett. 82, 1345 (1999) [arXiv:9810035 [quant-ph]].Google Scholar
[534] M., Srednicki, “Entropy and area,” Phys. Rev. Lett. 71, 666 (1993) [arXiv:9303048 [hep-th]].Google Scholar
[535] C., Holzhey, F., Larsen and F., Wilczek, “Geometric and renormalized entropy in conformal field theory,” Nucl. Phys. B 424, 443 (1994) [arXiv:9403108 [hep-th]].Google Scholar
[536] H. W. J., Bloete, J. L., Cardy and M. P., Nightingale, “Conformal invariance, the central charge, and universal finite size amplitudes at criticality,” Phys. Rev. Lett. 56, 742 (1986).Google Scholar
[537] A., Kitaev and J., Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96, 110404 (2006) [arXiv:0510092 [hep-th]].Google Scholar
[538] M., Levin and X.-G., Wen, “Detecting topological order in a ground state wave function,” Phys. Rev. Lett. 96, 110405 (2006) [arXiv:0510613 [cond-mat.str-el]].Google Scholar
[539] L., Bombelli, R. K., Koul, J., Lee and R. D., Sorkin, “A quantum source of entropy for black holes,” Phys. Rev. D 34, 373 (1986).Google Scholar
[540] S., Ryu and T., Takayanagi, “Aspects of holographic entanglement entropy,” JHEP 0608, 045 (2006) [arXiv:0605073 [hep-th]].Google Scholar
[541] H., Liu and M., Mezei, “A refinement of entanglement entropy and the number of degrees of freedom,” JHEP 1304, 162 (2013) [arXiv:1202.2070 [hep-th]].Google Scholar
[542] R. C., Myers and A., Singh, “Comments on holographic entanglement entropy and RG flows,” JHEP 1204, 122 (2012) [arXiv:1202.2068 [hep-th]].Google Scholar
[543] T., Grover, “Entanglement monotonicity and the stability of gauge theories in three spacetime dimensions,” Phys. Rev. Lett. 112, 151601 (2014) [arXiv:1211.1392 [hep-th]].Google Scholar
[544] M., M. Wolf, “Violation of the entropic area law for fermions,” Phys. Rev. Lett. 96, 010404 (2006) [arXiv:0503219 [quant-ph]].Google Scholar
[545] A., Chandran, V., Khemani and S. L., Sondhi, “How universal is the entanglement spectrum?Phys. Rev. Lett. 113, 060501 (2014) [arXiv:1311.2946 [cond-mat. str-el]].Google Scholar
[546] S., Ryu and T., Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) [arXiv:0603001 [hep-th]].Google Scholar
[547] T., Nishioka, S., Ryu and T., Takayanagi, “Holographic entanglement entropy: an overview,” J. Phys. A 42, 504008 (2009) [arXiv:0905.0932 [hep-th]].Google Scholar
[548] T., Takayanagi, “Entanglement entropy from a holographic viewpoint,” Class. Quant. Grav. 29, 153001 (2012) [arXiv:1204.2450 [gr-qc]].Google Scholar
[549] T., Hartman, “Entanglement entropy at large central charge” [arXiv:1303.6955 [hepth]].
[550] T., Faulkner, “The entanglement Rényi entropies of disjoint intervals in AdS/CFT” [arXiv:1303.7221 [hep-th]].
[551] A., Lewkowycz and J., Maldacena, “Generalized gravitational entropy,” JHEP 1308, 090 (2013) [arXiv:1304.4926 [hep-th]].Google Scholar
[552] J. de, Boer, M., Kulaxizi and A., Parnachev, “Holographic entanglement entropy in Lovelock gravities,” JHEP 1107, 109 (2011) [arXiv:1101.5781 [hep-th]].Google Scholar
[553] L. Y., Hung, R. C., Myers and M., Smolkin, “On holographic entanglement entropy and higher curvature gravity,” JHEP 1104, 025 (2011) [arXiv:1101.5813 [hep-th]].Google Scholar
[554] X., Dong, “Holographic entanglement entropy for general higher derivative gravity,” JHEP 1401, 044 (2014) [arXiv:1310.5713 [hep-th]].Google Scholar
[555] J., Camps, “Generalized entropy and higher derivative gravity,” JHEP 1403, 070 (2014) [arXiv:1310.6659 [hep-th]].Google Scholar
[556] J. D., Brown and M., Henneaux, “Central charges in the canonical realization of asymptotic symmetries: an example from three dimensional gravity,” Comm. Math. Phys. 104, 207 (1986).Google Scholar
[557] A., Strominger, “Black hole entropy from near horizon microstates,” JHEP 9802, 009 (1998) [arXiv:9712251 [hep-th]].Google Scholar
[558] R. C., Myers and A., Sinha, “Holographic c-theorems in arbitrary dimensions,” JHEP 1101, 125 (2011) [arXiv:1011.5819 [hep-th]].Google Scholar
[559] D. L., Jafferis, I. R., Klebanov, S. S., Pufu and B. R., Safdi, “Towards the Ftheorem: N = 2 field theories on the three-sphere,” JHEP 1106, 102 (2011) [arXiv:1103.1181 [hep-th]].Google Scholar
[560] H., Casini, M., Huerta and R. C., Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 1105, 036 (2011) [arXiv:1102.0440 [hep-th]].Google Scholar
[561] N., Ogawa, T., Takayanagi and T., Ugajin, “Holographic Fermi surfaces and entanglement entropy,” JHEP 1201, 125 (2012) [arXiv:1111.1023 [hep-th]].Google Scholar
[562] B., Swingle, “Entanglement entropy and the Fermi surface,” Phys. Rev. Lett. 105, 050502 (2010) [arXiv:0908.1724 [cond-mat.str-el]].Google Scholar
[563] J., Bhattacharya, M., Nozaki, T., Takayanagi and T., Ugajin, “Thermodynamical property of entanglement entropy for excited states,” Phys. Rev. Lett. 110, 091602 (2013) [arXiv:1212.1164 [hep-th]].Google Scholar
[564] F., Kruger and J., Zaanen, “Fermionic quantum criticality and the fractal nodal surface,” Phys. Rev. B 78, 035104 (2008) [arXiv:0804.2161 [cond-mat.str-el]].Google Scholar
[565] D. M., Ceperley, “Fermion nodes,” J. Statist. Phys. 63, 1237 (1991).Google Scholar
[566] M., Van Raamsdonk, “Comments on quantum gravity and entanglement” [arXiv: 0907.2939 [hep-th]].
[567] M., Van Raamsdonk, “Building up spacetime with quantum entanglement,” Gen. Rel. Grav. 42, 2323 (2010) [republished Int. J. Mod. Phys. D 19, 2429 (2010)] [arXiv:1005.3035 [hep-th]].Google Scholar
[568] N., Lashkari, M. B., McDermott and M. Van, Raamsdonk, “Gravitational dynamics from entanglement ‘thermodynamics’,” JHEP 1404, 195 (2014) [arXiv:1308.3716 [hep-th]].Google Scholar
[569] T., Faulkner, M., Guica, T., Hartman, R. C., Myers and M. Van, Raamsdonk, “Gravitation from entanglement in holographic CFTs,” JHEP 1403, 051 (2014) [arXiv:1312.7856 [hep-th]].Google Scholar
[570] D. D., Blanco, H., Casini, L. Y., Hung and R. C., Myers, “Relative entropy and holography,” JHEP 1308, 060 (2013) [arXiv:1305.3182 [hep-th]].Google Scholar
[571] B., Czech, J. L., Karczmarek, F., Nogueira and M., Van Raamsdonk, “The gravity dual of a density matrix,” Class. Quant. Grav. 29, 155009 (2012) [arXiv:1204.1330 [hep-th]].Google Scholar
[572] B., Czech, J. L., Karczmarek, F., Nogueira and M., Van Raamsdonk, “Rindler quantum gravity,” Class. Quant. Grav. 29, 235025 (2012) [arXiv:1206.1323 [hep-th]].Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Jan Zaanen, Universiteit Leiden, Yan Liu, Universidad Autónoma de Madrid, Ya-Wen Sun, Universidad Autónoma de Madrid, Koenraad Schalm, Universiteit Leiden
  • Book: Holographic Duality in Condensed Matter Physics
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139942492.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Jan Zaanen, Universiteit Leiden, Yan Liu, Universidad Autónoma de Madrid, Ya-Wen Sun, Universidad Autónoma de Madrid, Koenraad Schalm, Universiteit Leiden
  • Book: Holographic Duality in Condensed Matter Physics
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139942492.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Jan Zaanen, Universiteit Leiden, Yan Liu, Universidad Autónoma de Madrid, Ya-Wen Sun, Universidad Autónoma de Madrid, Koenraad Schalm, Universiteit Leiden
  • Book: Holographic Duality in Condensed Matter Physics
  • Online publication: 05 November 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139942492.016
Available formats
×