Book contents
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- 62 Herpesvirus evasion of T-cell immunity
- 63 Subversion of innate and adaptive immunity: immune evasion from antibody and complement
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
62 - Herpesvirus evasion of T-cell immunity
from Part V - Subversion of adaptive immunity
Published online by Cambridge University Press: 24 December 2009
- Frontmatter
- Contents
- List of contributors
- Preface
- Part I Introduction: definition and classification of the human herpesviruses
- Part II Basic virology and viral gene effects on host cell functions: alphaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: betaherpesviruses
- Part II Basic virology and viral gene effects on host cell functions: gammaherpesviruses
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HSV-1 and HSV-2
- Part III Pathogenesis, clinical disease, host response, and epidemiology: VZU
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HCMV
- Part III Pathogenesis, clinical disease, host response, and epidemiology: HHV- 6A, 6B, and 7
- Part III Pathogenesis, clinical disease, host response, and epidemiology: gammaherpesviruses
- Part IV Non-human primate herpesviruses
- Part V Subversion of adaptive immunity
- 62 Herpesvirus evasion of T-cell immunity
- 63 Subversion of innate and adaptive immunity: immune evasion from antibody and complement
- Part VI Antiviral therapy
- Part VII Vaccines and immunothgerapy
- Part VIII Herpes as therapeutic agents
- Index
- Plate section
- References
Summary
The multiple layers of the human immune response present a challenge to viruses, which must survive and multiply within a host for a sufficient period of time to allow successful transmission to susceptible individuals. Given the large proteomes and comparatively low polymerase error rate of human herpesviruses, antiviral immunity at first glance appear to have the upper hand. Nonetheless, herpesviruses manage prolonged incubation periods following initial infection, with systemic dissemination and prolonged secretion, often from multiple sites. In contrast to the similarly large poxviruses, the ability to subsequently establish persistent infection is a hallmark of the human herpesviruses. To enable this lifestyle, the herpesviruses devote a significant proportion of their genome coding capacity to the expression of immuno-evasins, a collection of molecules that disrupt normal immune physiology. Each human herpesvirus studied has evolved elegant cell biological solutions to problems posed by the immune response.
Innate immunity, an evolutionarily conserved and relatively non-specific system of pattern recognition molecules hardwired in the genome, cytokines such as interferons, phagocytes and natural killer (NK) cells, represents the first line deployed against microbial invaders, including herpesviruses (Janeway and Medzhitov, 2002). The clonal expansion of B- and T- lymphocytes that bear antigen-specific receptors for viral epitopes underlies the adaptive antiviral immune response, laying the groundwork for a highly pathogen-specific defense. Such specificity comes at a price – lymphocyte proliferation requires time to unfold, and innate immunity, in particular NK-cell activity, limits the initial herpesvirus spread.
- Type
- Chapter
- Information
- Human HerpesvirusesBiology, Therapy, and Immunoprophylaxis, pp. 1117 - 1136Publisher: Cambridge University PressPrint publication year: 2007
References
- 4
- Cited by