Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-18T13:20:47.842Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 August 2015

Zoran Stanić
Affiliation:
Univerzitet u Beogradu, Serbia
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Abreu, N.Algebraic connectivity for subclasses of caterpillars. Appl. Anal. Discr. Math., 4 (2010), 181–196.Google Scholar
[2] Abreu, N., Justel, C.M., Rojo, O., Trevisan, V.Ordering trees and graphs with few cycles by algebraic connectivity. Linear Algebra Appl., 458 (2014), 429–453.Google Scholar
[3] de Abreu, N.M.M.Old and new results on algebraic connectivity of graphs. Linear Algebra Appl., 423 (2007), 53–73.Google Scholar
[4] de Abreu, N.M.M., Nikiforov, V.Maxima of the Q–index: Graphs with bounded clique number. Electron. J. Linear Algebra, 24 (2013), 121–130.Google Scholar
[5] Aleksić, T., Gutman, I., Petrović, M.Estrada index of iterated line graphs. Bull. Cl. Sci. Math. Nat. Sci. Math., 134 (2007), 33–41.Google Scholar
[6] Alon, N.Eigenvalues and expanders. Combinatorica, 6 (1986), 83–96.Google Scholar
[7] Alon, N.Eigenvalues, geometric expanders sorting in rounds, and Ramsey theory. Combinatorica, 6 (1986), 207–219.Google Scholar
[8] Alon, N., Chung, F.R.K.Explicit constructions of linear sized tolerant networks. Discrete Math., 2 (1988), 15–19.Google Scholar
[9] Alon, N., Spencer, J.H.The Probabilistic Method (3rd edition). New York,Wiley, 2008.
[10] Alon, N., Milman, V.D.λ1, isoperimetric inequalities for graphs, and superconcentrators. J. Combin. Theory B, 38 (1985), 73–88.Google Scholar
[11] Alon, N., Sudakov, B.Bipartite subgraphs and the smallest eigenvalue. Combin. Probab. Comput., 9 (2000), 1–12.Google Scholar
[12] Aouchiche, M., Hansen, P.A survey of Nordhaus–Gadum type relations. Discrete Appl. Math., 161 (2013), 466–546.Google Scholar
[13] Aouchiche, M., Hansen, P.Two Laplacians for the distance matrix of a graph. Linear Algebra Appl., 439 (2013), 21–33.Google Scholar
[14] Aouchiche, M., Hansen, P., Lucas, C.On the extremal values of the second largest Q–eigenvalue. Linear Algebra Appl., 435 (2011), 2591–2606.Google Scholar
[15] Aouchiche, M., Hansen, P., Stevanović, D.A sharp upper bound on algebraic connectivity using domination number. Linear Algebra Appl., 432 (2010), 2879–2893.Google Scholar
[16] Anderson, W.N., Morley, T.D.Eigenvalues of the Laplacian of a graph. Linear Multilinear Algebra, 18 (1985), 11–15.Google Scholar
[17] An, C.Bounds on the second largest eigenvalue of a tree with perfect matchings. Linear Algebra Appl., 283 (1998), 247–255.Google Scholar
[18] Anđelić, M., da Fonseca, C.M., Koledin, T., Stanić, Z.Sharp spectral inequalities for connected bipartite graphs with maximal Q–index. Ars. Math. Contemp., 6 (2013), 171–185.Google Scholar
[19] Anđelić, M., da Fonseca, C.M., Simić, S.K., Tošić, D.V.Connected graphs of fixed order and size with maximal Q–index: Some spectral bounds. Discrete Appl. Math., 160 (2012), 448–459.Google Scholar
[20] Anđelić, M., da Fonseca, C.M., Simić, S.K., Tošić, D.V.On bounds for the index of double nested graphs. Linear Algebra Appl., 435 (2011), 2475–2490.Google Scholar
[21] Anđelić, M., Koledin, T., Stanić, Z.Nested graphs with bounded second largest (signless Laplacian) eigenvalue. Electron. J. Linear Algebra, 24 (2012), 181–201.Google Scholar
[22] Azarija, J.A short note on a short remark of Graham and Lovás. Discrete Math., 315–316 (2014), 65–68.Google Scholar
[23] Balaban, A. T., Ciubotariu, D., Medeleanu, M.. Topological indices and real number vertex invariants based on graph eigenvalues and eigenvectors. J. Chem. Inf. Comput. Sci., 31 (1991), 517–523.Google Scholar
[24] Bamdad, H., Ashraf, F., Gutman, I.Lower bounds for Estrada index and Laplacian Estrada index. Appl. Math. Lett., 23 (2010), 739–742.Google Scholar
[25] Bao, Y.–H., Tan, Y.Y., Fan, Y.–Z.The Laplacian spread of unicyclic graphs. Appl. Math. Lett., 22 (2009), 1011–1015.Google Scholar
[26] Bapat, R.B., Lal, A.K., Pati, S.On algebraic connectivity of graphs with at most two points of articulation in each block. Linear Multilinear Algebra, 60 (2012), 415–432.Google Scholar
[27] Behzad, M., Chartrand, G.No graph is perfect. Amer. Math. Monthly, 74 (1967), 962–963.Google Scholar
[28] Belardo, F., Li Marzi, E.M., Simić, S.K.Bidegreed trees with small index. MATCH Commun. Math. Comput. Chem., 61 (2009), 503–515.Google Scholar
[29] Belardo, F., Li Marzi, E.M., Simić, S.K.Ordering graphs with index in the interval. Discrete Appl. Math., 156(2008), 1670–1682Google Scholar
[30] Belardo, F., Li Marzi, E.M., Simić, S.K.Path–like graphs ordered by the index. Internat. J. Algebra, 1(3) (2007), 113–128.Google Scholar
[31] Belardo, F., Li Marzi, E.M., Simić, S.K.Some notes on graphs whose index is close to 2. Linear Algebra Appl., 423 (2007), 81–89.Google Scholar
[32] Belardo, F., Li Marzi, E.M., Simić, S.K.Trees with minimal index and diameter at most four. Discrete Math., 310 (2010), 1708–1714.Google Scholar
[33] Belardo, F., Li Marzi, E.M., Simić, S.K.,Wang, J.Graphs whose signless Laplacian spectral radius does not exceed the Hoffman limit value. Linear Algebra Appl., 435 (2011), 2913–2920.Google Scholar
[34] Belhaiza, S., de Abreu, N.M.M., Hansen, P., Oliveira, C. S.Variable neighborhood search for extremal graphs. XI. Bounds for algebraic connectivity. In Avis, D., Hertz, A., Macotte, O. (eds.), Graph Theory and Optimization. Heidelberg, Springer 2005, pp. 1–16.
[35] Bell, F.K.On the maximal index of connected graphs. Linear Algebra Appl., 144 (1991), 135–151.Google Scholar
[36] Bell, F.A note on the irregularity of graphs. Linear Algebra Appl., 161 (1992>), 45–54.Google Scholar
[37] Bell, F., Cvetković, D., Rowlinson, P., Simić, S. K.Graphs for which the least eigenvalue is minimal, I. Linear Algebra Appl., 429 (2008), 234–241.Google Scholar
[38] Bell, F., Cvetković, D., Rowlinson, P., Simić, S. K.Graphs for which the least eigenvalue is minimal, II. Linear Algebra Appl., 429 (2008), 2168ndash;2179.Google Scholar
[39] Bell, F., Rowlinson, P.On the index of tricyclic Hamiltonian graphs. Proc. Edinburgh Math. Soc., 33 (1990), 233–240.Google Scholar
[40] Berman, A., Zhang, X.–D.On the spectral radius of graphs with cut vertices. J. Combin. Theory B, 83 (2001), 233–240.Google Scholar
[41] Bermond, J.C., Delorme, C., Farhi, G.Large graphs with given degree and diameter. II. J. Combin. Theory B, 36 (1984), 32–48.Google Scholar
[42] Bhattacharya, A., Friedland, S., Peled, U.N.On the first eigenvalue of bipartite graphs. Electron. J. Combin., 15 (2008), R144.Google Scholar
[43] Biggs, N.Algebraic Graph Theory. Cambridge, Cambridge University Press, 1974.
[44] Bıyıkoğlu, T., Leydold, J.Algebraic connectivity and degree sequences of trees. Linear Algebra Appl., 430 (2009), 811–817.Google Scholar
[45] Bıyıkoğlu, T., Leydold, J.Graphs of given order and size and minimum algebraic connectivity. Linear Algebra Appl. 436 (2012), 2067–2077.Google Scholar
[46] Bıyıkoğlu, T., Leydold, J.Semiregular trees with minimal Laplacian spectral radius. Linear Algebra Appl., 432 (2010), 2335–2341.Google Scholar
[47] Bıyıkoğlu, T., Simić, S. K., Stanić, Z.Some notes on spectra of cographs. Ars Combin., 100 (2011), 421–434.Google Scholar
[48] Bollobás, B., Nikiforov, V.Cliques and the spectral radius. J. Combin. Theory B, 97 (2007), 859–865.Google Scholar
[49] Bollobás, B., Nikiforov, V.Graphs and Hermitian matrices: eigenvalue interlacing. Discrete Math., 289 (2004), 119–127.Google Scholar
[50] Borovćanin, B.Line graphs with exactly two positive eigenvalues. Publ. Inst. Math. (Beograd), 72(86) (2002), 39–47.Google Scholar
[51] Borovćanin, B., Petrović, M.On the index of cactuses with n vertices. Publ. Inst. Math. (Beograd), 79(93) (2006), 13–18.Google Scholar
[52] Bose, S. S., Nath, M., Paul, S.Distance spectral radius of graphs with r pendant vertices. Linear Algebra Appl., 435 (2011), 2828–2836.Google Scholar
[53] Brand, C., Guidili, B., Imrich, W.Characterization of trivalent graphs with minimal eigenvalue gap. Croat. Chem. Acta, 80 (2007), 193–201.Google Scholar
[54] Branković, Lj.Usability of Secure Statistical Databases (Doctoral Thesis), University of Newcastle, 2007.
[55] Branković, Lj., Cvetković, D.The eigenspace of the eigenvalue –2 in generalized line graphs and a problem in security of statistical data bases. Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 14 (2003), 37–48.Google Scholar
[56] Brigham, R.C., Dutton, R.D.Bounds on graph spectra. J. Combin. Theory B, 37 (1984), 228–234.Google Scholar
[57] Brouwer, A. E., Haemers, W.H.A lower bound for the Laplacian eigenvalues of a graph – Proof of a conjecture by Guo. Linear Algebra Appl., 429 (2008), 2131–2135.Google Scholar
[58] Brouwer, A. E., Haemers, W. H.Spectra of Graphs. New York, Springer, 2012.
[59] Brouwer, A. E., Neumaier, A.The graphs with spectral radius between. Linear Algebra Appl., 114/115 (1989), 273–276.Google Scholar
[60] Brualdi, R., Hoffman, A. J.On the spectral radius of (0,1)–matrices. Linear Algebra Appl., 65 (1985), 133–146.Google Scholar
[61] Brualdi, R., Solheid, E. S.On the spectral radius of connected graphs. Publ. Inst. Math. (Beograd), 39(53) (1986), 45–54.Google Scholar
[62] Bussemaker, F. C., Čobeljić, S., Cvetković, D. M., Seidel, J. J.Cubic graphs on vertices. J. Combin. Theory B, 23 (1977), 234–235.Google Scholar
[63] Bussemaker, F. C., Cvetković, D.There are exactly 13 connected, cubic, integral graphs. Univ. Beograd, Publ. Elektrothehn. Fak. Ser. Mat. Fiz., 544–576 (1976), 43–48.Google Scholar
[64] Buset,, D.Maximal cubic graphs with diameter 4. Discrete Appl. Math., 101 (2000), 53–61.Google Scholar
[65] Butler, S.K.Eigenvalues and Structures of Graphs (Doctoral Thesis), University of California, 2008.
[66] Cai, G. X., Fan, Y.–Z.The signless Laplacian spectral radius of graphs with given chromatic number. Math. Appl. (Wuhan), 22 (2009), 161–167.Google Scholar
[67] Cameron, P. J., Goethals, J. M., Seidel, J. J., Shult, E.E.Line graphs, root systems, and elliptic geometry. J. Algebra, 43 (1976), 305–327.Google Scholar
[68] Caporossi, G., Hansen, P.Variable neighborhood search for extremal graphs. I. The AutoGraphiX system. Discrete Math., 212 (2000), 29–44.Google Scholar
[69] Cao, D.Bounds on eigenvalues and chromatic number. Linear Algebra Appl., 270(1998), 1–13.Google Scholar
[70] Cao, D., Hong, Y.Graphs characterized by the second eigenvalue. J. Graph Theory, 17 (1993), 325–331.Google Scholar
[71] Cardoso, D. M., Cvetović, D., Rowlinson, P., Simić, S.K.A sharp lower bound for the least eigenvalue of the signless Laplacian of a non–bipartite graph. Linear Algebra Appl., 429 (2008), 2770–2780.Google Scholar
[72] Cavers, M. S.The Normalized Laplacian Matrix and General Randi– Index of Graphs (Doctoral Thesis), University of Regina, 2010.
[73] Chen, Y. F., Fu, H.–L., Kim, I.–J., Stehr, E., Watts, B.On the largest eigenvalues of bipartite graphs which are nearly complete. Linear Algebra Appl., 432 (2010), 606–614.Google Scholar
[74] Chang, A.On the largest eigenvalue of a tree with perfect matchings. Discrete Math. 269 (2003), 45–63.Google Scholar
[75] Chang, A., Tian, F.On the spectral radius of unicyclic graphs with perfect matchings. Linear Algebra Appl., 370 (2003), 237–250.Google Scholar
[76] Chang, A., Tian, F., Yu, A.On the index of bicyclic graphs with perfect matchings. Discrete Math., 283(2004), 51–59.Google Scholar
[77] Chang, T.–J., Tam, B.–S.Graphs with maximal signless Laplacian spectral radius. Linear Algebra Appl., 432 (2010), 1708–1733.Google Scholar
[78] Chen, C. T.Linear System Theory and Design, Oxford, Oxford University Press, 1984.
[79] Chen, Y., Lin, H., Shu, J.Sharp upper bounds on the distance spectral radius of a graph. Linear Algebra Appl., 439 (2013), 2659–2666.Google Scholar
[80] Chen, Y., Wang, L.Sharp bounds for the largest eigenvalue of the signless Laplacian of a graph. Linear Algebra Appl., 433 (2010), 908–913.Google Scholar
[81] Chung, F., Lu, L.Graphs and Networks. Providence, RI, American Mathematical Society, 2006.
[82] Chung, F.R.K.Diameters and eigenvalues. J. Amer. Math. Soc., 2 (1989), 187–196.Google Scholar
[83] Chung, F.R.K.Spectral Graph Theory. Providence, RI, American Mathematical Society, 1997.
[84] Chung, F.R.K., Faber, V., Manteuffel, T.A.An upper bound on the diameter of a graph from eigenvalues associated with its Laplacian. SIAM J. Discrete Math, 7 (1994), 443–457.Google Scholar
[85] Cioabă, S.The spectral radius and the maximum degree of irregular graphs. Electron J. Combin, 14(2007), R38.Google Scholar
[86] Cioabă, S., van Dam, E.R., Koolen, J.H., Lee, J.–H.A lower bound for the spectral radius of graphs with fixed diameter. European J. Combin., 31 (2010), 1560–1566.Google Scholar
[87] Cioabă, S., van Dam, E. R., Koolen, J.H., Lee, J.–H.Asymptotic results on the spectral radius and the diameter of graphs. Linear Algebra Appl., 432 (2010), 722–737.Google Scholar
[88] Cioabă, S., Gregory, D.A., Nikiforov, V.Note: Extreme eigenvalues of nonregular graphs. J. Combin. Theory B, 97 (2007), 483–486.Google Scholar
[89] Collatz, L., Sinogowitz, U.Spectren endlicher Grafen. Abh. Math. Sem. Univ. Hamburg, 21 (1957), 63–77.Google Scholar
[90] Constantine, G.Lower bounds on the spectra of symmetric matrices with non–negative entries. Linear Algebra Appl., 65 (1965), 171–178.Google Scholar
[91] Csikvári, P.On a conjecture of V. Nikiforov. Discrete Math., 309 (2009), 4522–4526.Google Scholar
[92] Cui, S.–Y., Tian, G.–X., Guo, J.–J.A sharp upper bound on the signless Laplacian spectral radius of graphs. Linear Algebra Appl., 439 (2013), 2442–2447.Google Scholar
[93] Cvetković, D.Chromatic number and the spectrum of a graph. Publ. Inst. Math. (Beograd), 14(28) (1972), 25–38.Google Scholar
[94] Cvetković, D.On graphs whose second largest eigenvalue does not exceed 1. Publ. Inst. Math. (Beograd), 31(45) (1982), 15–20.Google Scholar
[95] Cvetković, D.Some possible directions in further investigations of graph spectra. In Lovás, L., Sós, V.T. (eds.) Algebraic Methods in Graph Theory. Amsterdam, North–Holland, 1981, pp. 47–67.
[96] Cvetković, D., Čangalović, M., Kovaĉević–Vujiĉić, V.Optimization and highly informative graph invariants. In Stanković, B. (ed.), Two Topics in Mathematics, Belgrade, Mathematical Institute of SANU, 2004, pp. 5–39.
[97] Cvetković, D., Doob, M., Gutman, I.On graphs whose spectral radius does not exceed. Ars Combin., 14 (1982), 225–239.Google Scholar
[98] Cvetković, D., Doob, M., Sachs, H.Spectra of Graphs (3rd edition). Heidelberg, Johann Ambrosius Barth, 1995.
[99] Cvetković, D., Jovanović, I.Network alignment using self–returning walks. Bull.Cl. Sci. Math. Nat. Sci. Math., 38 (2013), 43–61.Google Scholar
[100] Cvetković, D., Rowlinson, P.On connected graphs with maximal index. Publ. Inst. Math. (Beograd) 44(58) (1988), 29–34.Google Scholar
[101] Cvetković, D., Rowlinson, P.The largest eigenvalue of a graph: A survey. Linear Multilinear Algebra, 28 (1990), 3–33.Google Scholar
[102] Cvetković, D., Rowlinson, P., Simić, S. K.An Introduction to the Theory of Graph Spectra. Cambridge, Cambridge University Press, 2010.
[103] Cvetković, D., Rowlinson, P., Simić, S. K.Eigenspaces of Graphs. Cambridge, Cambridge University Press, 1997.
[104] Cvetković, D., Rowlinson, P., Simić, S. K.Eigenvalue bounds for the signless Laplacian. Publ. Inst. Math. (Beograd), 81(95) (2007), 11–27.Google Scholar
[105] Cvetković, D., Rowlinson, P., Simić, S. K.Graphs with least eigenvalue –2: the star complement technique. J. Algebr. Comb., 14 (2001), 5–16.Google Scholar
[106] Cvetković, D., Rowlinson, P., Simić, S. K.Signless Laplacians of finite graphs. Linear Algebra Appl., 423 (2007), 155–171.Google Scholar
[107] Cvetković, D., Rowlinson, P., Simić, S. K.Spectral Generalizations of Line Graphs: On Graphs with Least Eigenvalue –2. Cambridge, Cambridge University Press, 2004.
[108] Cvetković, D., Rowlinson, P., Stanić, Z., Yoon, M.–G.Controllable graphs. Bull. Cl. Sci. Math. Nat. Sci. Math. 36 (2011), 81–88.Google Scholar
[109] Cvetković, D., Rowlinson, P., Stanić, Z., Yoon, M.–G.Controllable graphs with least eigenvalue at least –2. Appl. Anal. Discr. Math., 5(2011), 165–175.Google Scholar
[110] Cvetković, D., Simić, S.K.Graph spectra in computer science. Linear Algebra Appl., 434(2011), 1545–1562.Google Scholar
[111] Cvetković, D., Simić, S.K.Graph theoretical results obtained by the support of the expert system ʹGraphʹ – An extended survey. In Fajtlowicz, S., Fowler, P.W., Hansen, P., Janovitz, M.F., Roberts, F.S. (eds.), Graphs and Discovery. Providence, RI, American Mathematical Society, 2005, pp. 39–70.
[112] Cvetković, D., Simić, S.K.On graphs whose second largest eigenvalue does not exceed. Discrete Math. 138 (1995), 213–227.Google Scholar
[113] Cvetković, D., Simić, S.K.The second largest eigenvalue of a graph (a survey). Filomat, 9 (1995), 449–472.Google Scholar
[114] Cvetković, D., Simić, S.K.Towards a spectral theory of graphs based on the signless Laplacian, I. Publ. Inst. Math. (Beograd), 85(99) (2009), 19–33.Google Scholar
[115] Cvetković, D., Simić, S.K.Towards a spectral theory of graphs based on the signless Laplacian, II. Appl. Anal. Discr. Math., 4 (2010), 156–166.Google Scholar
[116] Cvetković, D., Simić, S.K.Towards a spectral theory of graphs based on the signless Laplacian, III. Linear Algebra Appl., 432 (2010), 2257–2272.Google Scholar
[117] Cvetković, D., Simić, S.K., Caporossi, G., Hansen, P.Variable neighborhood search for extremal graphs. 3. On the largest eigenvalue of color–constrained trees. Linear Multilinear Algebra, 49 (2001), 143–160.Google Scholar
[118] Cvetković, D. M., Doob, M., Gutman, I., Torgašev, A.Recent Results in the Theory of Graph Spectra. New York, Elsevier, 1988.
[119] van Dam, E.R., Kooij, R. E.The minimal spectral radius of graphs with a given diameter. Linear Algebra Appl., 423 (2007), 408–419.Google Scholar
[120] van Dam, E.R.Graphs with given diameter maximizing the spectral radius. Linear Algebra Appl., 426 (2007), 454–457.Google Scholar
[121] van Dam, E.R., Omidi, G.R.Graphs whose normalized Laplacian has three eigenvalues. Linear Algebra Appl., 435 (2011), 2560–2569.Google Scholar
[122] Das, K.C.An improved upper bound for Laplacian graph eigenvalues. Linear Algebra Appl., 368 (2003), 269–278.Google Scholar
[123] Das, K.C.Conjectures on index and algebraic connectivity of graphs. Linear Algebra Appl., 433 (2010), 1666–1673.Google Scholar
[124] Das, K.C.Maximizing the sum of the squares of the degrees of a graph. Discrete Math., 285 (2004), 57–66.Google Scholar
[125] Das, K.C.On conjectures involving second largest signless Laplacian eigenvalue of graphs. Linear Algebra Appl., 432 (2010), 3018–3029.Google Scholar
[126] Das, K.C.On the largest eigenvalue of the distance matrix of a bipartite graph. MATCH Commun. Math. Comput. Chem., 62 (2009), 667–672.Google Scholar
[127] Das, K.C.The largest two Laplacian eigenvalues of a graph. Linear Multilinear Algebra, 52 (2004), 441–460.Google Scholar
[128] Das, K.C.,Kumar, P.Some new bounds on the spectral radius of graphs. Discrete Math., 281 (2004), 149–161.Google Scholar
[129] Das, K.C., Lee, S.G.On the Estrada index conjecture. Linear Algebra Appl., 431 (2009), 1351–1359.Google Scholar
[130] Delorme, C., Solé, P.Diameter, covering index, covering radius and eigenvalues. European J. Combin., 12 (1991), 95–108.
[131] Deng, H.A proof of a conjecture on the Estrada index. MATCH Commun. Math. Comput. Chem., 62 (2009), 599–606.Google Scholar
[132] Deng, H., Balachandran, S., Ayyaswamy, S.K.On two conjectures of the Randić index and the largest signless Laplacian eigenvalue. J. Math. Anal. Appl., 411 (2014), 196–200.Google Scholar
[133] Desai, M., Rao, V.A characterization of the smallest eigenvalue of a graph. J. Graph Theory, 18 (1994), 181–194.Google Scholar
[134] Doob, M., A geometrical interpretation of the least eigenvalue of a line graph. In Proceedings of the Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications. Chapel Hill, University of North Carolina, 1970, pp. 126–135.
[135] Doob, M., Cvetković, D.On spectral characterizations and embedding of graphs. Linear Algebra Appl., 27 (1979), 17–26.Google Scholar
[136] Du, X.Shi, L.Graphs with small independence number minimizing the spectral radius. Discrete Math. Algorithms Appl., 5 (2013), N1350017.Google Scholar
[137] Dvořák, Z., Mohar, B.Spectral radius of finite and infinite planar graphs and of graphs with bounded genus. J. Combin. Theory B, 100 (2010), 729–739.Google Scholar
[138] Ebrahimi, J., Mohar, B., Nikiforov, V., Ahmady, A. S.On the sum of two largest eigenvalues of a symmetric matrix. Linear Algebra Appl., 429 (2008), 2781–2787.Google Scholar
[139] Edwards, C. S., Elphick, C.H.Lower bounds for the clique and chromatic numbers of graphs. Discrete Appl. Math., 5 (1983), 51–64.Google Scholar
[140] Erdős, P., Fajtlowits, S., Staton, W.Degree sequences in triangle–free graphs. Discrete Math., 92 (1991), 85–88.Google Scholar
[141] Erdős, P., Faudree, R., Pach, J., Spencer, J.How to make a graph bipartite. J. Combin. Theory B, 45 (1988), 86–98.Google Scholar
[142] Estrada, E.Characterization of 3D molecular structure. Chem. Phys. Lett., 319 (2000), 713–718.Google Scholar
[143] Estrada, E., Hatano, N.Statistical–mechanical approach to subgraph centrality in complex networks. Chem. Phys. Lett., 439 (2007), 247–251.Google Scholar
[144] Estrada, E., Rodriguez–Velázquez, J.A.Subgraph centrality in complex networks. Phys. Rev., (2005), E71.Google Scholar
[145] Estrada, E., Rodriguez–Velázquez, J.A., Randić, M.Atomic branching in molecules. Int. J. Quantum Chem., 106 (2006), 823–832.Google Scholar
[146] Fajtlowicz, S.On conjectures of Graffiti. Discrete Math., 72 (1988), 113–118.Google Scholar
[147] Fallat, S., Fan, Y.–Z.Bipartiteness and the least eigenvalue of signless Laplacian of graphs. Linear Algebra Appl., 436 (2012), 3254–3267.Google Scholar
[148] Fallat, S., Kirkland, S.Extremizing algebraic connectivity subject to graph theoretic constraints. Electron. J. Linear Algebra, 3 (1998), 48–71.Google Scholar
[149] Fan, Y.–Z., Fallat, S.Edge bipartiteness and signless Laplacian spread of graphs. Appl. Anal. Discr. Math., 6 (2012), 31–45.Google Scholar
[150] Fan, Y.–Z., Li, S.–D., Tan, Y.–Y.The Laplacian spread of unicyclic graphs. J. Math. Res. Exposition, 30 (2010), 17–28.Google Scholar
[151] Fan, Y.–Z., Tan, Y.–Y.The least eigenvalue of signless Laplacian of non–bipartite graphs with given domination number. Discrete Math., 334 (2014), 20–25.Google Scholar
[152] Fan, Y.–Z., Wang, Y., Gao, Y.–B.Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread. Linear Algebra Appl., 429 (2008), 577–588.Google Scholar
[153] Fan, Y.–Z., Wang, Y., Guo, H.The least eigenvalues of the signless Laplacian of non–bipartite graphs with pendant vertices. Discrete Math., 313 (2013), 903–909.Google Scholar
[154] Fan, Y.–Z., Xu, J., Wang, Y., Liang, D.The Laplacian spread of a tree. Discrete Math. Theoret. Comput. Sci., 10 (2008), 79–86.Google Scholar
[155] Fan, Y.–Z., Yu, G.–D.,Wang, Y., The chromatic number and the least eigenvalue of a graph. Electron. J. Combin., 19 (2012), P39.Google Scholar
[156] Fan, Y.–Z., Zhang, F.–F., Wang, Y.The least eigenvalue of the complements of trees. Linear Algebra Appl., 435 (2011), 2150–2155.Google Scholar
[157] Favaron, O., Mahéo, M., Saclé, J.–F.Some eigenvalue properties in graphs (conjectures from Graffiti. II). Discrete Math., 111 (1993), 197–220.Google Scholar
[158] Feng, L., Li, Q., Zhang, X.–D.Some sharp upper bounds on the spectral radius of graphs. Taiwanese J. Math., 11 (2007), 989–997.Google Scholar
[159] Feng, L., Yu, G., Ilić, A.The Laplacian spectral radius for unicyclic graphs with given independence number. Linear Algebra Appl., 433 (2010), 934–944.Google Scholar
[160] Fiedler, M.Algebraic connectivity of graphs. Czech. Math. J., 23 (1973), 298–305.Google Scholar
[161] Fiedler, M.A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory. Czech. Math. J., 25 (1975), 619–633.Google Scholar
[162] Fiedler, M.Some minimax problems for graphs. Discrete Math., 121 (1993), 65–74.Google Scholar
[163] Fiedler, M., Nikiforov, V.Spectral radius and Hamiltonicity of graphs. Linear Algebra Appl., 432 (2010), 2170–2173.Google Scholar
[164] Friedland, S.A proof of Alon's second eigenvalue conjecture. In Larmore, L. L., Goemans, M. X. (eds.), Proceedings of the 35th Annual ACM Symposium on Theory of Computing. New York, ACM, 2003, pp. 720–724.
[165] Friedland, S.The maximal eigenvalue of 0–1 matrices with prescribed number of ones. Linear Algebra Appl., 69 (1985), 33–69.Google Scholar
[166] Fowler, P.W., Caporossi, G., Hansen, P.Distance matrices, Wiener indices and related invariants of fullerenes. J. Phys. Chem. A, 105 (2000), 6232–6242.Google Scholar
[167] Gantmacher, F.R.Theory of Matrices (vol. II). New York, Chelsea, 1960.
[168] Geng, X.Shuchao, L., Simić, S. K.On the spectral radius of quasi–k–cyclic graphs. Linear Algebra Appl., 433(2010), 1561–1572.Google Scholar
[169] Godsil, C.D., Newman, M.W.Eigenvalue bounds for independent sets. J. Combin. Theory B, 98 (2008), 721–734.Google Scholar
[170] Godsil, C.D., Royle, G.Algebraic Graph Theory. New York, Springer, 2001.
[171] Goldberg, F., Kirkland, S.On the sign patterns of the smallest signless Laplacian eigenvector. Linear Algebra Appl., 443(2014), 66–85.Google Scholar
[172] Graham, R. L., Lovás, L.Distance matrix polynomials of trees. Adv. Math., 29 (1978), 60–88.Google Scholar
[173] Graham, R. L., Pollack, H.O.On the addressing problem for loop switching. Bell System Tech. J., 50 (1970), 2495–2519.Google Scholar
[174] Gregory, D.A., Hershkowitz, D., Kirkland, S. J.The spread of the spectrum of a graph. Linear Algebra Appl., 332–334 (2001), 23–35.Google Scholar
[175] Grone, R., Merris, R.Algebraic connectivity of trees. Czech. Math. J., 37 (1987), 660–670.Google Scholar
[176] Grone, R., Merris, R., Sunder, V. S.The Laplacian spectrum of a graph. SIAM J. Matrix Anal. Appl., 11 (1990), 218–238.Google Scholar
[177] Guo, J.–M.A new upper bound for the Laplacian spectral radius of graphs. Linear Algebra Appl., 400 (2005), 61–66.Google Scholar
[178] Guo, J.–M.On limit points of Laplacian spectral radii of graphs. Linear Algebra Appl., 429 (2008), 1705–1718.Google Scholar
[179] Guo, J.–M.On the Laplacian spectral radius of a tree. Linear Algebra Appl., 368 (2003), 379–385.Google Scholar
[180] Guo, J.–M.On the Laplacian spectral radius of trees with fixed diameter. Linear Algebra Appl., 419 (2006), 618–629.Google Scholar
[181] Guo, J.–M.On the second largest Laplacian eigenvalue of trees. Linear Algebra Appl., 404 (2005), 251–261.Google Scholar
[182] Guo, J.–M.On the third largest Laplacian eigenvalue of a graph. Linear Multilinear Algebra, 55 (2007), 93–102.Google Scholar
[183] Guo, J.–M.The algebraic connectivity of graphs under perturbation. Linear Algebra Appl., 433 (2010), 1148–1153.Google Scholar
[184] Guo, J.–M.The effect on the Laplacian spectral radius of a graph by adding or grafting edges. Linear Algebra Appl., 413 (2006), 59–71.Google Scholar
[185] Guo, J.–M., Li, J.,Shiu, W.C.A note on the upper bounds for the Laplacian spectral radius of graphs. Linear Algebra Appl., 439 (2013), 1657–1661.Google Scholar
[186] Guo, J.–M., Li, J., Shiu, W.C.The smallest Laplacian spectral radius of graphs with a given clique number. Linear Algebra Appl., 437 (2012), 1109–1122.Google Scholar
[187] Guo, J.–M., Shao, J.–Y.On the spectral radius of trees with fixed diameter. Linear Algebra Appl., 413 (2006), 131–147.Google Scholar
[188] Guo, S.–G.On the Eigenvalues of the Quasi–Laplacian Matrix of a Graph (Technical Report), Yancheng Teachers College, 2008.
[189] Guo, S.–G.Ordering trees with n vertices and matching number q by their largest Laplacian eigenvalues. Discrete Math., 308 (2008), 4608–4615.Google Scholar
[190] Guo, S.–G.The largest eigenvalues of Laplacian matrix of unicyclic graphs. Appl. Math. J. Chinese Univ. Ser. A, 16 (2001), 131–135.Google Scholar
[191] Guo, S.–G., Chen, Y.–G., Yu, G.A lower bound on the least signless Laplacian eigenvalue of a graph. Linear Algebra Appl., 448 (2014), 217–221.Google Scholar
[192] Guo, S.–G., Wang, Y.–F.Ordering cacti with n vertices and k cycles by their Laplacian spectral radii. Publ. Inst. Mat. (Beograd), 92 (2012), 117–125.Google Scholar
[193] Gutman, I.Acyclic systems with extremal Hükel π–electron energy. Theor. Chem. Acta, 45 (1977), 79–87.Google Scholar
[194] Gutman, I.Bounds for total π–electron energy. Chem. Phys. Lett., 24 (1974), 283–285.Google Scholar
[195] Gutman, I.Lower bounds for Estrada index. Publ. Inst. Mat. (Beograd), 83 (2008), 1–7.Google Scholar
[196] Gutman, I.The star is the tree with greatest Laplacian eigenvalue. Kragujevac J. Math., 24 (2002), 61–65.Google Scholar
[197] Gutman, I., Deng, H., Radenković, S. The Estrada index: An updated survey. In Cvetković, D., Gutman, I. (eds.). Selected Topics on Applications of Graph Spectra. Belgrade, Mathemtical Institute of SANU, 2011, pp. 155–174.
[198] Gutman, I., Gineityte, V., Lepović, M., Petrović, M.The high–energy band in the photoelectron spectrum of alkanes and its dependence on molecular structure. J. Serb. Chem. Soc., 64 (1999), 673–680.Google Scholar
[199] Gutman, I., Medeleanu, M.On the structure–dependence of the largest eigenvalue of the distance matrix of alkane. Indian J. Chem. A, 37 (1998), 569–573.Google Scholar
[200] Haemers, W.H.Eigenvalue Techniques in Design and Graph Theory (Doctoral Thesis), University of Tilburg, 1979.
[201] Haemers, W.H.Interlacing eigenvalues and graphs. Linear Algebra Appl., 227–228 (1995), 593–616.Google Scholar
[202] Haemers, W.H., Omidi, G.R.Universal adjacency matrices with two eigenvalues. Linear Algebra Appl., 435 (2011), 2520–2529.Google Scholar
[203] Harant, J., Richter, S.A new eigenvalue bound for independent sets. Discrete Math., in press.
[204] He, B., Yin, Y.–L., Zhang, X.–D.Sharp bounds for the signless Laplacian spectral radius in terms of clique number. Linear Algebra Appl., 438 (2013), 3851–3861.Google Scholar
[205] He, C.–H., Liu, Y., Zhao, Z.–H.Some new sharp bounds on the distance spectral radius of graphs. MATCH Commun. Math. Comput. Chem., 63 (2010), 783–788.Google Scholar
[206] He, C.–H., Pan, H.The smallest signless Laplacian eigenvalue of graphs under perturbation. Electron. J. Linear Algebra, 23 (2012), 473–482.Google Scholar
[207] He, C.–X., Shao, J.Y., He, J.–L.On the Laplacian spectral radii of bicyclic graphs. Discrete Math., 308 (2008), 5981–5995.Google Scholar
[208] He, C.–H., Zhou, M.A sharp upper bound on the least signless Laplacian eigenvalue using domination number. Graph Combinator., 30 (2014), 1183–1192.Google Scholar
[209] Hoffman, A. J., On limit points of spectral radii of non–negative symmetric integral matrices. In Alavi, Y., Lick, D.R., White, A. T. (eds.), Graph Theory and Applications. Berlin, Springer, 1972, pp. 165–172.
[210] Hoffman, A. J.On limit points of the least eigenvalue of a graph. Ars Combin., 3 (1977), 3–14.Google Scholar
[211] Hoffman, A. J., Ray–Chaudhuri, D.K.On the line graph of a symmetric balanced incomplete block design. Trans. Amer. Math. Soc., 116 (1965), 238–252.Google Scholar
[212] Hoffman, A. J., Singleton, R.R.Moore graph with diameter 2 and 3. IBM J. Research Develop., 5 (1960), 497–504.Google Scholar
[213] Hoffman, A. J., Smith, J.H.On the spectral radii of topologically equivalent graphs. In Fiedler, M. (ed.), Recent Advances in Graph Theory. Prague, Academia Praha, 1975, pp. 273–281.
[214] Hofmeister, M.Spectral radius and degree sequence. Math. Nachr., 139 (1988), 37–44.Google Scholar
[215] Hong, W.,You, L. Some sharp bounds on the distance signless Laplacian spectral radius of graphs, in press.
[216] Hong, Y.Bound of eigenvalues of a graph. Acta Math. Appl.Sinica, 432(4) (1988), 165–168.Google Scholar
[217] Hong, Y.The Kth largest eigenvalue of a tree. Linear Algebra Appl., 73 (1986), 151–155.Google Scholar
[218] Hong, Y., Shu, J.–L.A sharp upper bound for the spectral radius of the Nordhaus–Gaddum type. Discrete Math., 211 (2000), 229–232.Google Scholar
[219] Hong, Y., Shu, J.–L.Sharp lower bounds of the least eigenvalue of planar graphs. Linear Algebra Appl., 296 (1999), 227–232.Google Scholar
[220] Hong, Y., Shu, J.–L., Fang, K.A sharp upper bound of the spectral radius of graphs. J. Combin. Theory B, 81 (2001), 177–183.Google Scholar
[221] Hong, Y., Zhang, X.–D.Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of trees. Discrete Math., 296 (2005), 187–197.Google Scholar
[222] Hoory, S., Linial, N., Widgerson, A.Expander graphs and their applications. Bull. Amer. Math. Soc., 43 (2006), 439–561.Google Scholar
[223] Horn, R., Johnson, C.Matrix Analysis. Cambridge, Cambridge University Press, 1985.
[224] Howes, L.On subdominantly bounded graphs – summary of results. In Capobianco, M., Frechen, J.B., Krolik, M. (eds.), Recent Trends in Graph Theory, Proceedings of the First New York City Graph Theory Conference. Berlin, Springer, 1971, pp. 181–183.
[225] Hu, S.A sharp lower bound on the spectral radius of simple graphs. Appl. Anal. Discr. Math., 3 (2009), 379–385.Google Scholar
[226] Hu, S.Sharp bounds on the eigenvalues of trees. Comp. Math. Appl., 56 (2008), 909–917.Google Scholar
[227] Huang, Y., Liu, B., Liu, Y.The signless Laplacian spectral radius of bicyclic graph with prescribed degree sequences. Discrete Math., 311 (2011), 504–511.Google Scholar
[228] Huang, Z., Deng, H., Simić, S. K.On the spectral radius of cactuses with perfect matching. Appl. Anal. Discr. Math., 5 (2011), 14–21.Google Scholar
[229] Ilić, A., Stevanović, D.The Estrada index of chemical trees. J. Math. Chem., 47 (2010), 305–314.Google Scholar
[230] Ilić, A.Distance spectral radius of trees with given matching number. Discrete Appl. Math., 158 (2010), 1799–1806.Google Scholar
[231] Indulal, G.Distance spectrum of graph compositions. Ars. Math. Contemp., 2 (2009), 93–100.Google Scholar
[232] Indulal, G.Sharp bounds on the distance spectral radius and the distance energy of graphs. Linear Algebra Appl., 430 (2009), 106–113.Google Scholar
[233] Indulal, G., Gutman, I.On the distance spectra of some graphs. Math. Commun., 13 (2008), 123–131.Google Scholar
[234] Jovanović, I., Stanić, Z.Spectral distances of graphs. Linear Algebra Appl., 436 (2012), 1425–1435.Google Scholar
[235] Jovović, I., Koledin, T., Stanić, Z.Non–bipartite graphs of fixed order and size that minimize the least eigenvalue. Linear Algebra Appl., 477 (2015), 148–164.Google Scholar
[236] Jin, G., Zuo, L.On further ordering bicyclic graphs with respect to the Laplacian spectral radius. WSEAS Transactions Math., 12 (2013), 979–991.Google Scholar
[237] Kelner, J.A., Lee, J.R., Price, G.N., Teng, S.–H.Higher eigenvalues of graphs. In Proceedings of the 50th Annual Symposium on Foundations of Computer Science. Los Alamitos, CA, Computer Society Press, 2009, pp. 735–744.
[238] Kirkland, S.Algebraic connectivity for vertex–deleted subgraphs, and a notion of vertex centrality. Discrete Math., 310 (2010), 911–921.Google Scholar
[239] Kirkland, S.An note on a distance bound using eigenvalues of the normalized Laplacian matrix. Electron. J. Linear Algebra, 16 (2007), 204–207.Google Scholar
[240] Kirkland, S.A note on limit points for algebraic connectivity. Linear Algebra Appl., 373 (2003), 5–11.Google Scholar
[241] Kirkland, S.An upper bound on the algebraic connectivity of graphs with many cutpoints. Electron. J. Linear Algebra, 8 (2001), 94–109.Google Scholar
[242] Kirkland, S.Limit points for normalized Laplacian eigenvalues. Electron. J. Linear Algebra, 15 (2006), 337–344.Google Scholar
[243] Koledin, T.Reflexive Graphs with a Small Number of Cycles (Master's Thesis, in Serbian), University of Belgrade, 2007.
[244] Koledin, T., Radosavljević, Z.Unicyclic reflexive graphs with seven loaded vertices of the cycle. Filomat, 23 (2009), 257–268.Google Scholar
[245] Koledin, T., Stanić, Z.Reflexive bipartite regular graphs. Linear Algebra Appl., 442 (2014), 145–155.Google Scholar
[246] Koledin, T., Stanić, Z.Regular graphs whose second largest eigenvalue is at most 1. Novi Sad J. Math., 43 (2013), 145–153.Google Scholar
[247] Koledin, T., Stanić, Z.Regular graphs with small second largest eigenvalue. Appl. Anal. Discr. Math., 7 (2013), 235–249.Google Scholar
[248] Koledin, T., Stanić, Z.Some spectral inequalities for triangle–free regular graphs. Filomat, 28 (2013), 1561–1567.Google Scholar
[249] Kolotilina, L.Y.Upper bounds for the second largest eigenvalue of symmetric nonnegative matrices. J.Math. Sci. (N. Y.), 191 (2013), 75–88.Google Scholar
[250] König, M. D., Battiston, S., Napoletano, M., Schweityer, F. The efficiency and evolution of R&D networks. CER–ETHEconomicsWorking Paper Series, (2008), N08/95.
[251] König, M.D., Battiston, S., Napoletano, M., Schweityer, F.On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogenous Media, 3 (2008), 201–219.Google Scholar
[252] Koolen, J.H., Moulton, V.Maximal energy bipartite graphs. Graph Combinator., 19 (2003), 131–135.Google Scholar
[253] Koolen, J.H., Moulton, V.Maximal energy graphs. Adv. Appl. Math., 26 (2001), 47–52.Google Scholar
[254] Kumar, R.Bounds for eigenvalues of a graph. J. Math. Inequal., 4 (2010), 399–404.Google Scholar
[255] Lal, A.K., Patra, K. L., Sahoo, B.K.Algebraic connectivity of connected graphs with fixed number of pendant vertices. Graph Combinator., 27 (2011), 215–229.Google Scholar
[256] Lan, J., Lu, L., Shi, L.Graphs with diameter n–e minimizing the spectral radius. Linear Algebra App., 43 (2012), 2823–2850.Google Scholar
[257] Li, J., Guo, J.–M., Shiu, W.C.On the second largest Laplacian eigenvalues of graphs. Linear Algebra Appl., 438 (2013), 2438–2446.Google Scholar
[258] Li, J., Guo, J.–M., Shiu, W.Ċ.. The ordering of bicyclic graphs and connected graphs by algebraic connectivity. Electron. J. Combin., 17 (2010), R162.Google Scholar
[259] Li, J., Guo, J.–M., Shiu, W.C.The smallest values of algebraic connectivity for unicyclic graphs. Discrete Appl. Math., 158 (2010), 1633–1643.Google Scholar
[260] Li, J., Shiu, W.C., Chan, W.H.Some results on the Laplacian eigenvalues of unicyclic graph. Linear Algebra Appl., 430 (2009), 2080–2093.Google Scholar
[261] Li, J., Shiu, W.C., Chan, W.H.The Laplacian spectral radius of some graphs. Linear Algebra Appl., 431 (2009), 99–103.Google Scholar
[262] Li, J., Shiu, W.C., Chan, W.H.Chang, A.On the spectral radius of graphs with connectivity at most k. J. Math. Chem., 46 (2009), 340–346.Google Scholar
[263] Li, J., Shiu, W.C., Chang, A.On the kth Laplacian eigenvalues of trees with perfect matchings. Linear Algebra Appl., 432 (2010), 1036–1041.Google Scholar
[264] Li, J.S., Pan, Y.L.A note on the second largest eigenvalue of the Laplacian matrix of a graph. Linear Multilinear Algebra, 48 (2000), 117–121.Google Scholar
[265] Li, J.S., Pan, Y.L.De Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph. Linear Algebra Appl., 328 (2001), 153–160.Google Scholar
[266] Li, J.S., Zhang, X.D.A new upper bound for eigenvalues of the Laplacian matrix of a graph. Linear Algebra Appl., 265 (1997), 93–100.Google Scholar
[267] Li, R., Shi, J.The minimum signless Laplacian spectral radius of graphs with given independence number. Linear Algebra Appl., 433 (2010), 1614–1622.Google Scholar
[268] Li, S., Simić, S. K., Tošié, D., Zhao, Q.On ordering bicyclic graphs with respect to the Laplacian spectral radius. Appl. Math. Lett., 24 (2011), 2186–2192.Google Scholar
[269] Li, S., Zhang, M.On the signless Laplacian index of cacti with a given number of pendant vertices. Linear Algebra Appl., 436 (2012), 4400–4411.Google Scholar
[270] Li, X.The relations between the spectral radius of the graphs and their complements (in Chinese). J. North China Technol. Inst., 17 (1996), 297–299.Google Scholar
[271] Li, X., Li, Y., Shi, Y., Gutman, I.Note on the HOMO–LUMO index of graphs. MATCH Commun. Math. Comput. Chem., 70 (2013), 85–96.Google Scholar
[272] Li, X., Shi, Y., Gutman, I.Graph Energy. NewYork, Springer, 2012.
[273] de Lima, L. S., Nikiforov, V.On the second largest eigenvalue of the signless Laplacian. Linear Algebra Appl., 438 (2013), 1215–1222.Google Scholar
[274] de Lima, L. S., Oliveira, C. S., Abreu, N. M. M., Nikiforov, V.The smallest eigenvalue of the signless Laplacian. Linear Algebra Appl., 435 (2011), 2570–2584.Google Scholar
[275] Lin, H., Zhou, B.On least distance eigenvalues of trees, unicyclic graphs and bicyclic graphs. Linear Algebra Appl., 443 (2014), 153–163.Google Scholar
[276] Liu, B., Bo, Z.On the third largest eigenvalue of a graph. Linear Algebra Appl., 317 (2000), 193–200.Google Scholar
[277] Liu, B., Chen, Z., Liu, M.On graphs with largest Laplacian index. Czech. Math. J., 58 (2008), 949–960.Google Scholar
[278] Liu, B., Li, G.A note on the largest eigenvalue of non–regular graphs. Electron. J. Linear Algebra, 1 (2008),54–61.Google Scholar
[279] Liu, B., Liu, M.On the spread of the spectrum of a graph. Discrete Math., 309 (2009), 2727–2732.Google Scholar
[280] Liu, H., Lu, M.Bounds of signless Laplacian spectrum of graphs based on the k–domination number. Linear Algebra Appl., 440 (2014), 83–89.Google Scholar
[281] Liu, H., Lu, M.On the spectral radius of quasi–tree graphs. Linear Algebra Appl., 428 (2008), 2708–2714.Google Scholar
[282] Liu, H., Lu, M., Tian, F.Edge–connectivity and (signless) Laplacian eigenvalue of graphs. Linear Algebra Appl., 439 (2013), 3777–3784.Google Scholar
[283] Liu, H., Lu, M., Tian, F.On the Laplacian spectral radius of a graph. Linear Algebra Appl., 376 (2004), 135–141.Google Scholar
[284] Liu, H., Lu, M., Tian, F.On the spectral radius of unicyclic graphs with fixed diameter. Linear Algebra Appl., 420 (2007), 449–457.Google Scholar
[285] Liu, J., Liu, B. L.The maximum clique and the signless Laplacian eigenvalues. Czech. Math. J., 58 (2008), 1233–1240.Google Scholar
[286] Liu, M.The (signless Laplacian) spectral radii of connected graphs with prescribed degree seqences. Electron. J. Combin., 19(4) (2012), P35.Google Scholar
[287] Liu, M., Liu, B.Some results on the spectral radii of trees, unicyclic, and bicyclic graphs. Electron. J. Linear Algebra, 23 (2012), 327–339.Google Scholar
[288] Liu, M., Liu, B.The signless Laplacian spread. Linear Algebra Appl., 432 (2010), 505–514.Google Scholar
[289] Liu, R., Zhai, M., Shu, J.The least eigenvalue of unicyclic graphs with n vertices and k pendant vertices. Linear Algebra Appl., 431 (2009), 657–665.Google Scholar
[290] Liu, Y.The Laplacian spread of cactuses. Discrete Math. Theoret. Comput. Sci., 12 (2010), 35–40.Google Scholar
[291] Liu, Y., Liu, Y.Ordering of unicyclic graphs with Laplacian spectral radii (in Chinese). J. Tongji Univ., 36 (2008), 841–843.Google Scholar
[292] Liu, Y., Shao, J.–Y., Yuan, X.–Y.Some results on the ordering of the Laplacian spectral radii of unicyclic graphs. Discrete Appl. Math., 156 (2008), 2679–2697.Google Scholar
[293] Liu, Z.On spectral radius of the distance matrix. Appl. Anal. Discr. Math., 4 (2010), 269–277.Google Scholar
[294] Liu, Z., Zhou, B.On least eigenvalues of bicyclic graphs with fixed number of pendant vertices. J.Math. Sci. (N.Y.) 182 (2012), 175–192.Google Scholar
[295] Lovás, L., Pelikán, J.On the eigenvalues of trees. Periodica Math. Hung., 3 (1973), 175–182.Google Scholar
[296] Lu, H., Lin, Y.Maximum spectral radius of graphs with given connectivity, minimum degree and independence number. J. Discrete Algorithms, 31 (2015), 113–119.Google Scholar
[297] Lu, M., Liu, H., Tian, F. Anew upper bound for the spectral radius of graphs with girth at least 5. Linear Algebra Appl., 414 (2006), 512–516.Google Scholar
[298] Lu, M., Liu, H., Tian, F.An improved upper bound for the Laplacian spectral radius of graphs. Discrete Math., 309 (2009), 6318–6321.Google Scholar
[299] Lu, M., Liu, H., Tian, F.Bounds of Laplacian spectrum of graphs based on the domination number. Linear Algebra Appl., 402 (2005), 390–396.Google Scholar
[300] Lu, M., Liu, H., Tian, F.Laplacian spectral bounds for clique and independence numbers of graphs. J. Combin. Theory B, 97 (2007), 726–732.Google Scholar
[301] Lu, M., Zhang, L.–Z., Tian, F.Lower bounds of the Laplacian spectrum of graphs based on diameter. Linear Algebra Appl., 420 (2007), 400–406.Google Scholar
[302] Lubotzky, A., Phillips, R., Sarnak, P.Ramanujan graphs. Combinatorica, 8 (1988), 261–277.Google Scholar
[303] Maas, C.Perturbation results for the adjacency spectrum of a graph. ZAMM, 67 (1987), 428–430.Google Scholar
[304] Maas, C.Transportation in graphs and the admittance spectrum. Discrete Appl. Math., 16 (1987), 31–49.Google Scholar
[305] Maden, A. D., çevik, A. S., Habibi, N.New bounds for the spread of the signless Laplacian spectrum. Math. Inequal. Appl., 17 (2014), 283–294.Google Scholar
[306] Maden, A. D., Das, K. C., çevik, A. S.Sharp upper bounds on the spectral radius of the signless Laplacian matrix of a graph. Appl. Math. Comput., 219 (2013), 5025–5032.Google Scholar
[307] Malarz, K.Spectral properties of adjacency and distance matrices for various networks. In Bubak, M., van Albada, G.D., Dongarra, J., Sloot, P. M. A. (eds.), Computational Science ICCS. Heidelberg, Springer, 2008, pp. 559–567.
[308] Maxwell, G.Hyperbolic trees. J. Algebra, 54 (1978), 46–49.Google Scholar
[309] McClelland, B. J.Properties of the latent roots of a matrix: The estimation of π–electron energies. J. Chem. Phys., 54 (1971), 640–643.Google Scholar
[310] McKay, B. D.nauty User's Guide (version 1.5) (Technical Report TR–CS–90–02), Australian National University, 1990.
[311] Mélot, H.Facet defining inequalities among graph invariants: The system GraPHedron. Discrete Appl. Math., 156 (2008), 1875–1891.Google Scholar
[312] Merikoski, J.K., Kumar, R., Rajput, R.A.Upper bounds for the largest eigenvalue of bipartite graph. Electron. J. Linear Algebra, 26 (2013), 168–176.Google Scholar
[313] Merris, R.Laplacian graph eigenvectors. Linear Algebra Appl., 278 (1998), 221–236.Google Scholar
[314] Merris, R.The distance spectrum of a tree. J. Graph Theory, 14 (1990), 365–369.Google Scholar
[315] Merris, R.Laplacian matrices of graphs: A Survey. Linear Algebra Appl., 197–198 (1994), 143–176.Google Scholar
[316] Merris, R.Degree maximal graphs are Laplacian integral. Linear Algebra Appl., 199 (1994), 381–389.Google Scholar
[317] Meyer, C.Matrix Analysis and Applied Linear Algebra. Philadelphia, PA, SIAM, 2000.
[318] van Mieghem, P.Graph Spectra for Complex Networks. Cambridge, Cambridge University Press, 2010.
[319] van Mieghem, P., Wang, H.Spectra of a New Class of Graphs with Extremal Properties (Technical Report No. 20091010), Delft University of Technology, 2009.
[320] Mihailović, B., Radosavljević, Z.On a class of tricyclic reflexive cactuses. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 16 (2005), 55–63.Google Scholar
[321] Milatović, M., Stanić, Z.The nested split graphs whose second largest eigenvalue is equal to 1. Novi Sad J. Math., 42(2) (2012), 33–42.Google Scholar
[322] Ming, G. J., Wang, T. S.On the spectral radius of trees. Linear Algebra Appl., 329 (2001), 1–8.Google Scholar
[323] Mohar, B.Eigenvalues, diameter, and mean distance in graphs. Graph Combinator., 7 (1991), 53–64.Google Scholar
[324] Mohar, B.Isoperimetric number of graphs. J. Combin. Theory B, 47 (1987), 274–291.Google Scholar
[325] Mohar, B., The Laplacian spectrum of graphs. In Alavi, Y., Chatrand, G., Oellermann, O.R., Schwenk, A. J. (eds.), Graph Theory, Combinatorics, and Applications. New York, Wiley, 1991, pp. 871–898.
[326] Mohar, B., Poljak, S.Eigenvalues in combinatorial optimization. In Brualdi, F., Friedland, S., Klee, V. (eds.), Combinatorial and Graph–Theoretical Problems in Linear Algebra. New York, Springer, 1993, pp. 107–151.
[327] Molitierno, J. J., Neumann, M., Shader, B. L.Tight bounds on the algebraic connectivity of a balanced binary tree. Electron. J. Linear Algebra 6 (2000), 62–71.Google Scholar
[328] Morrison, J. L., Breitling, R., Higham, D. J., Gilbert, D.R.A lock–and–key model for protein–protein interactions. Bioinformatics, 22 (2006), 2012–2019.Google Scholar
[329] Neumaier, A.The second largest eigenvalue of a tree. Linear Algebra Appl., 46 (1982), 9–25.Google Scholar
[330] Neumaier, A., Seidel, J. J.Discrete hyperbolic geometry. Combinatorica, 3 (1983), 219–237.Google Scholar
[331] Nikiforov, V.Bounds on graph eigenvalues I. Linear Algebra Appl., 420 (2007), 667–671.Google Scholar
[332] Nikiforov, V.Bounds on graph eigenvalues II. Linear Algebra Appl., 427 (2007), 183–189.Google Scholar
[333] Nikiforov, V.Chromatic number and spectral radius. Linear Algebra Appl., 426 (2007), 810–814.Google Scholar
[334] Nikiforov, V. Cut–norms and spectra of matrices, in press.
[335] Nikiforov, V.Eigenvalue problems of Nordhaus–Gaddum type. Discrete Math., 307 (2007), 774–780.Google Scholar
[336] Nikiforov, V.Eigenvalues and extremal degrees in graphs. Linear Algebra Appl., 419 (2006), 735–738.Google Scholar
[337] Nikiforov, V.Eigenvalues and degree deviation in graphs. Linear Algebra Appl., 414 (2006), 347–360.Google Scholar
[338] Nikiforov, V.Maxima of the Q–index: degenerate graphs. Electron. J. Linear Algebra, 27 (2014), 250–257.Google Scholar
[339] Nikiforov, V.More spectral bounds on the clique and independence numbers. J. Combin. Theory B, 99 (2009), 819–826.Google Scholar
[340] Nikiforov, V.Revisiting two classical results in graph spectra. Electron. J. Combin., 14 (2007), R14.Google Scholar
[341] Nikiforov, V.Some inequalities for the largest eigenvalue of a graph. Comb. Probab. Comput., 11 (2002), 179–189.Google Scholar
[342] Nikiforov, V.The maximum spectral radius of C4–free graphs of given order and size. Linear Algebra Appl., 430 (2009), 2898–2905.Google Scholar
[343] Nikiforov, V.The smallest eigenvalue of Kr–free graphs. Discrete Math., 306 (2006), 612–616.Google Scholar
[344] Nikiforov, V.The spectral radius of subgraphs of regular graphs. Electron. J. Combin., 14 (2007), N20.Google Scholar
[345] Nikiforov, V.The spectral radius of graphs without paths and cycles of specified length. Linear Algebra Appl., 432 (2010), 2243–2256.Google Scholar
[346] Nikiforov, V.Walks and the spectral radius of graphs. Linear Algebra Appl., 418 (2006), 257–268.Google Scholar
[347] Nikiforov, V., Yuan, X.More eigenvalue problems of Nordhaus–Gaddum type. Linear Algebra Appl., 451 (2014), 231–245.Google Scholar
[348] Nilli, A.On the second eigenvalue of a graph. Discrete Math., 91 (1991), 207–210.Google Scholar
[349] Ning, W., Li, H., Lu, M.On the signless Laplacian spectral radius of irregular graphs. Linear Algebra Appl., 438 (2013), 2280–2288.Google Scholar
[350] Ning, W., Ouyang, L., Lu, M.Distance spectral radius of trees with fixed number of pendant vertices. Linear Algebra Appl., 439 (2013), 2240–2249.Google Scholar
[351] Nosal, E.Eigenvalues of Graphs (Master's Thesis), University of Calgary, 1970.
[352] Oliveira, C. S., de Lima, L. S., Abreu, N. M. M., Kirkland, S.Bounds on the Qspread of a graph. Linear Algebra Appl., 432 (2010), 2342–2351.Google Scholar
[353] Omidi, G. R.The characterization of graphs with largest Laplacian eigenvalue at most 4. Australas. J. Combin., 44 (2009), 163–170.Google Scholar
[354] Pati, S.The third smallest eigenvalue of the Laplacian matrix. Electron. J. Linear Algebra, 8 (2001), 128–139.Google Scholar
[355] de la Peña, J.A., Gutman, I., Rada, J.Estimating the Estrada index. Linear Algebra Appl., 427 (2007), 70–76.Google Scholar
[356] Petrović, M. AContribution to The Theory of Graph Spectra (Doctoral Thesis, in Serbian), University of Belgrade, 1984.
[357] Petrović, M.Graphs with a small number of nonnegative eigenvalues. Graph Combinator., 15 (1999), 221–232.Google Scholar
[358] Petrović, M.On graphs with exactly one eigenvalue less than −1. J. Combin. Theory B, 52 (1991), 102–112.Google Scholar
[359] Petrović, M.On graphs whose second largest eigenvalue does not exceed. Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat., 4 (1993), 70–75.Google Scholar
[360] Petrović, M.On graphs whose second least eigenvalue is at least −1. Matematički Vesnik, 42 (1990), 233–240.Google Scholar
[361] Petrović, M.On graphs whose spectral spread does not exceed 4. Publ. Inst. Mat. (Beograd), 34(48) (1983), 169–174.Google Scholar
[362] Petrović, M.Some classes of graphs with two, three or four positive eigenvalues. Collection Sci. Papers Fac. Sci. Kragujevac, 5 (1984), 31–39.Google Scholar
[363] Petrović, M., Aleksić, T., Simić, S. K.Further results on the least eigenvalue of connected graphs. Linear Algebra Appl., 435 (2011), 2303–2313.Google Scholar
[364] Petrović, M., Aleksić, T., Simić, V.On the least eigenvalue of cacti. Linear Algebra Appl., 435 (2011), 2357–2364.Google Scholar
[365] Petrović, M., Borovćanin, B., Aleksić, T.Bicyclic graphs for which the least eigenvalue is minimum. Linear Algebra Appl., 430 (2009), 1328–1335.Google Scholar
[366] Petrović, M., Gutman, I.The path is the tree with smallest greatest Laplacian eigenvalue. Kragujevac J. Math., 24 (2002), 67–70.Google Scholar
[367] Petrović, M., Gutman, I., Lepović, M.On bipartite graphs with small number of Laplacian eigenvalues greater than two and three. Linear Multilinear Algebra, 47 (2000), 205–215.Google Scholar
[368] Petrović, M., Milekić, B.Generalized line graphs with the second largest eigenvalue at most 1. Publ. Inst. Mat. (Beograd), 68(82) (2000), 37–45.Google Scholar
[369] Petrović, M., Radosavljević, Z.Spectrally Constrained Graphs. Kragujevac, Faculty of Science, 2001.
[370] Powers, D. L.Bounds on graph eigenvalues. Linear Algebra Appl., 117 (1989), 1–6.Google Scholar
[371] Powers, D. L.Graph partitioning by eigenvectors. Linear Algebra Appl., 101 (1988), 121–133.Google Scholar
[372] Rad, A. A., Jalili, M., Hasler, M.A lower bound for algebraic connectivity based on the connection–graph–stability method. Linear Algebra Appl., 435 (2011), 186–192.Google Scholar
[373] Radosavljević, Z.On unicyclic reflexive graphs. Appl. Anal. Discr. Math., 1 (2007), 228–240.Google Scholar
[374] Radosavljević, Z.,Mihailović, B., Rašajski, M.On bicyclic reflexive graphs. Discrete Math., 308 (2008), 715–725.Google Scholar
[375] Radosavljević, Z., Rašajski, M.A class of reflexive cactuses with four cycles. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 14 (2003), 64–85.Google Scholar
[376] Radosavljević, Z., Rašajski, M.Multicyclic treelike reflexive graphs. Discrete Math., 296 (2005), 43–57.Google Scholar
[377] Radosavljević, Z., Simić, S. K.Which bicyclic graphs are reflexive. Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat., 7 (1996), 90–104.Google Scholar
[378] Ramane, H. S., Revenkar, D. S., Gutman, I., Walikar, H. B.Distance spectra and distance energies of iterated line graphs of regular graphs. Publ. Inst. Mat.(Beograd), 85(99) (2009), 39–46.Google Scholar
[379] Reingold, E. M., Nievergelt, J., Deo, N.Combinatorial Algorithms, Theory and Practice. Englewood Cliffs, NJ, Prentice Hall, 1977.
[380] Rojo, O.Computing tight upper bounds on the algebraic connectivity of certain graphs. Linear Algebra Appl., 430 (2009), 532–543.Google Scholar
[381] Rojo, O.On the sth Laplacian eigenvalue of trees of order st+1. Linear Algebra Appl., 425 (2007), 143–149.Google Scholar
[382] Rojo, O., Medina, L.Tight bounds on the algebraic connectivity of Bethe trees. Linear Algebra Appl., 418 (2006), 840–853.Google Scholar
[383] Rojo, O., Medina, L., Abreu, N., Justel, C.On the algebraic connectivity of some caterpillars: A sharp upper bound and a total ordering. Linear Algebra Appl., 432 (2010), 586–605.Google Scholar
[384] Rojo, O., Robbiano, M.An explicit formula for eigenvalues of Bethe trees and upper bound on the largest eigenvalue of any tree. Linear Algebra Appl., 427 (2007), 138–150.Google Scholar
[385] Rojo, O., Soto, R.A new upper bound on the largest normalized Laplacian eigenvalues. Operators and Matrices, 7 (2013), 323–332.Google Scholar
[386] Rojo, O., Soto, R., Rojo, H.An always nontrivial upper bound for Laplacian graph eigenvalues. Linear Algebra Appl., 312 (2000), 155–159.Google Scholar
[387] Rojo, O., Rojo, H.A decreasing sequence of upper bounds on the largest Laplacian eigenvalue of a graph. Linear Algebra Appl., 381 (2004), 97–116.Google Scholar
[388] Rowlinson, P.Graphs perturbations. In Keedwell, A.D. (ed.), Surveys in Combinatorics. Cambridge, Cambridge University Press, 1991, pp. 187–219.
[389] Rowlinson, P.On Hamiltonian graphs with maximal index. European J. Combin., 10 (1989), 489–497.Google Scholar
[390] Rowlinson, P.On the index of certain outerplanar graphs. Ars Combin., 29 (1990), 221–225.Google Scholar
[391] Rowlinson, P.On the maximal index of graphs with a prescribed number of edges. Linear Algebra Appl., 110 (1988), 43–53.Google Scholar
[392] Rowlinson, P.Star sets and star complements in finite graphs: a spectral construction technique. DIMACS Ser. Discrete Math. and Theoret. Comp. Sci, 51 (2000), 323–332.Google Scholar
[393] Rowlinson, P., Yuansheng, Y.Tricyclic Hamiltonian graphs with minimal index. Linear Multilinear Algebra, 34 (1993), 187–196.Google Scholar
[394] Ruzieh, S. N., Powers, D. L.The distance spectrum of the path Pn and the first distance eigenvector of connected graphs. Linear Multilinear Algebra, 28 (1990), 75–81.Google Scholar
[395] Sanchis, L.Maximum number of edges in connected graphs with a given domination number. Discrete Math., 87 (1991), 65–72.Google Scholar
[396] Schwenk, A. J.Exactly thirteen connected cubic graphs have integral spectra. In Alavi, Y., Lick, D. (eds.), Theory and Applications of Graphs. Berlin, Springer, 1978, pp. 516–533.
[397] Schwenk, A. J.New derivations of spectral bounds for the chromatic number. Graph Theory Newsletter, 5 (1975), 77.Google Scholar
[398] Shao, J.–Y., Guo, J.–M., Shan, H.–Y.The ordering of trees and connected graphs by algebraic connectivity. Linear Algebra Appl., 428 (2008), 1421–1438.Google Scholar
[399] Shearer, J. B.On the distribution of the maximum eigenvalue of graphs. Linear Algebra Appl., 114/115 (1989), 17–20.Google Scholar
[400] Shi, L.Bounds on the (Laplacian) spectral radius of graph. Linear Algebra Appl., 422 (2007), 755–770.Google Scholar
[401] Shao, J.Bounds on the kth eigenvalues of trees and forests. Linear Algebra Appl., 149 (1991), 19–34.Google Scholar
[402] Shu, J.–L., Hong, Y.,Wen–Ren, K.A sharp upper bound on the largest eigenvalue of the Laplacian matrix of a graph. Linear Algebra Appl., 347 (2002), 123–129.Google Scholar
[403] Shu, J., Wu, Y.Sharp upper bounds on the spectral radius of graphs. Linear Algebra Appl., 377 (2004), 241–248.Google Scholar
[404] Shu, J., Wu, Y.The spread of the unicyclic graphs. European J. Combin., 31 (2010), 411–418.Google Scholar
[405] Shy, L.Y., Eichinger, B. E.Large computer simulations on elastic networks: Small eigenvalues and eigenvalue spectra of the Kirchhoff matrix. J. Chem. Phys., 90 (1990), 5179–5189.Google Scholar
[406] Simić, S.K.Some notes on graphs whose second largest eigenvalue is less than. Linear Multilinear Algebra, 39 (1995), 59–71.Google Scholar
[407] Simić, S. K.Some results on the largest eigenvalue of a graph. Ars Combin., 39 (1995), 59–71.Google Scholar
[408] Simić, S. K., Belardo, F., LiMarzi, E.M., Tošić, D.V.Connected graphs of fixed order and size with maximal index: Some spectral bounds. Linear Algebra Appl., 432 (2010), 2361–2372.Google Scholar
[409] Simić, S.K., Li Marzi, E.M., Belardo, F.Connected graphs of fixed order and size with maximal index: Structural considerations. LeMatematiche, LIX (2004), 349–365.Google Scholar
[410] Simić, S. K., Li Marzi, E.M., Belardo, F.On the index of caterpillars. Discrete Math., 308 (2008), 324–330.Google Scholar
[411] Simić, S. K., Tošić, D.V.The index of trees with specified maximum degree. MATCH Commun. Math. Comput. Chem., 54 (2005), 351–362.Google Scholar
[412] Simić, S.K., Zhou, B.Indices of trees with a prescribed diameter. Appl. Anal. Discr. Math., 1 (2007), 446–454.Google Scholar
[413] Smith, J.H.Some properties of the spectrum of a graph. In Guy, R., Hanahi, H., Sauer, N., Schonheim, J. (eds.), Combinatorial Structures and Their Applications. New York, Gordon and Breach, 1970, pp. 403–406.Google Scholar
[414] So, W., Robbiano, M., de Abreu, N.M.M., Gutman, I.Applications of a theorem by Ky Fan in the theory of graph energy. Linear Algebra Appl., 432 (2010), 2163–2169.Google Scholar
[415] Song, H., Wang, Q., Tian, L.New upper bounds on the spectral radius of trees with given number of vertices and maximum degree. Linear Algebra Appl., 439 (2013), 2527–2541.Google Scholar
[416] Stanić, Z.Further results on controllable graphs. Discrete Appl. Math., 166 (2014), 215–221.Google Scholar
[417] Stanić, Z.Graphs with small spectral gap. Electron J. Linear Algebra, 26 (2013), 417–432.Google Scholar
[418] Stanić, Z.On determination of caterpillars with four terminal vertices by their Laplacian spectrum. Linear Algebra Appl., 431 (2009), 2035–2048.Google Scholar
[419] Stanić, Z.On graphs whose second largest eigenvalue equals 1 – the star complement technique. Linear Algebra Appl., 420 (2007), 700–710.Google Scholar
[420] Stanić, Z.On nested split graphs whose second largest eigenvalue is less than 1. Linear Algebra Appl., 430 (2009), 2200–2211. (Erratum: Linear Algebra Appl., 434 (2011), xviii.)Google Scholar
[421] Stanić, Z.On regular graphs and coronas whose second largest eigenvalue does not exceed 1. Linear Multilinear Algebra, 58 (2010), 545–554.Google Scholar
[422] Stanić, Z.Some graphs whose second largest eigenvalue does not exceed. Linear Algebra Appl., 437 (2012), 1812–1820.Google Scholar
[423] Stanić, Z.Some Reconstructions in Spectral Graph Theory and Graphs with Integral Q–Spectrum (Doctoral Thesis, in Serbian), University of Belgrade, 2007.
[424] Stanić, Z.Some star complements for the second largest eigenvalue of a graph. Ars Math. Contemp., 1 (2008), 126–136.Google Scholar
[425] Stanić, Z.Simić, S.K.On graphs with unicyclic star complement for 1 as the second largest eigenvalue. In Bokan, N., Djorić, M., Rakić, Z.,Wegner, B.,Wess, J. (eds.), Proceedings of the Conference Contemporary Geometry and Related Topics. Belgrade, Faculty of Mathematics, 2006, pp. 475–484.Google Scholar
[426] Stanić, Z., Stefanović, N. SCL – Star Complement Library (software). Available at http://www.math.rs/∽zstanic/scl.htm.
[427] Stanley, R.P.A bound on the spectral radius of graphs with e edges. Linear Algebra Appl., 87 (1987), 267–269.Google Scholar
[428] Stevanović, D.4–Regular integral graphs avoiding ±3 in the spectrum. Univ. Beograd. Publ. Elektr. Fak, Ser. Mat., 14 (2003), 99–110.Google Scholar
[429] Stevanović, D.Bounding the largest eigenvalue of trees in terms of the largest vertex degree. Linear Algebra Appl., 360 (2003), 35–42.Google Scholar
[430] Stevanović, D.The largest eigenvalue of non–regular graphs. J. Combin. Theory B, 91 (2004), 143–146.Google Scholar
[431] Stevanović, D.Resolution of AutoGraphiX conjectures relating the index and matching number of graphs. Linear Algebra Appl., 433 (2010), 1674–1677.Google Scholar
[432] Stevanović, D.Spectral Radius of Graphs. Amsterdam, Elsevier, 2015.
[433] Stevanović, D., Aouchiche, M., Hansen, P.On the spectral radius of graphs with a given domination number. Linear Algebra Appl., 428 (2008), 1854–1864.Google Scholar
[434] Stevanović, D., Brankov, V.An invitation to newGRAPH. Rend. Semin. Mat. Messina Ser. II, 9 (2004), 211–216.Google Scholar
[435] Stevanović, D., Hansen, P.The minimum spectral radius of graphs with a given clique number. Electron. J. Linear Algebra, 17 (2008), 110–117.Google Scholar
[436] Stevanović, D., Ilić, A.Distance spectral radius of trees with fixed maximum degree. Electron. J. Linear Algebra, 20 (2010), 168–179.Google Scholar
[437] Stevanović, D., Indulal, G.The distance spectrum and energy of the compositions of regular graphs. Appl. Math. Lett., 22 (2009), 1136–1140.Google Scholar
[438] Sun, F., Wang, L.The signless Laplacian spectral radii and spread of bicyclic graphs. J. Math. Res. Appl., 34 (2014), 127–136.Google Scholar
[439] Tam, B.–S., Fan, Y.–Z., Zhou, J.Unoriented Laplacian maximizing graphs are degree maximal. Linear Algebra Appl., 429 (2008), 735–758.Google Scholar
[440] Tan, Y.–Y., Fan, Y.–Z.The vertex (edge) independence number, vertex (edge) cover number and the least eigenvalue of a graph. Linear Algebra Appl., 433 (2010), 790–795.Google Scholar
[441] Tannner, R. M.Explicit concentrators from generalized n–gons. SIAM J. Algebra Discr., 5 (1984), 287–293.Google Scholar
[442] Taniguchi, T.On graphs with the smallest eigenvalue at least, part I. Ars. Math. Contemp., 1 (2008), 81–98.Google Scholar
[443] Teranishi, Y.Main eigenvalues of a graph. Linear Multilinear Algebra, 49 (2002), 289–303.Google Scholar
[444] Teranishi, Y., Yasuno, F.The second largest eigenvalues of regular bipartite graphs. Kyushu J. Math., 54 (2000), 39–54.Google Scholar
[445] Terpai, T.Proof of a conjecture of V. Nikiforov. Combinatorica, 31 (2011), 739–754.Google Scholar
[446] Wang, H., Kooij, R. E., van Mieghem, P.Graphs with given diameter maximizing the algebraic connectivity. Linear Algebra Appl., 433 (2010), 1889–1908.Google Scholar
[447] Wang, J., Belardo, F.A note on the signless Laplacian eigenvalues of graphs. Linear Algebra Appl., 435 (2011), 2585–2590.Google Scholar
[448] Wang, J., Belardo, F.Signless Laplacian eigenvalues and circumference of graphs. Discrete Appl. Math., 161 (2013), 1610–1617.Google Scholar
[449] Wang, J., Belardo, F., Huang, Q., Borovćanin, B.On the two largest Q–eigenvalues of graphs. Discrete Math., 310 (2010), 2858–2866.Google Scholar
[450] Wang, J., Belardo, F., Huang, Q., Li Marzi, E.M.On graphs whose Laplacian index does not exceed 4.5.Linear Algebra Appl., 438 (2013), 1541–1550.Google Scholar
[451] Wang, J., Belardo, F., Wang, W., Huang, Q.On graphs with exactly three Q–eigenvalues at least two. Linear Algebra Appl., 438 (2013), 2861–2879.Google Scholar
[452] Wang, J., Huang, Q.Maximizing the signless Laplacian spectral radius of graphs with given diameter of cut vertices. Linear Multilinear Algebra, 59 (2011), 733–744.Google Scholar
[453] Wang, X.–K., Tan, S.–W.Ordering trees by algebraic connectivity. Linear Algebra Appl., 436 (2012), 3684–3691.Google Scholar
[454] Wang, Y., Fan, Y.–Z.The least eigenvalue of a graph with cut vertices. Linear Algebra Appl., 433 (2010), 19–27.Google Scholar
[455] Wang, Y., Fan, Y.–Z.The least eigenvalue of graphs with cut edges. Graphs and Combin., 28 (2012), 555–561.Google Scholar
[456] Wang, Y., Fan, Y.–Z.The least eigenvalue of signless Laplacian of graphs under perturbation. Linear Algebra Appl., 436 (2012), 2084–2092.Google Scholar
[457] Wang, Y., Qiao, Y., Fan, Y.–Z.On the least eigenvalue of graphs with cut vertices. J. Math. Research Exposition, 30 (2010), 951–956.Google Scholar
[458] Wang, Y., Zhou, B.On distance spectral radius of graphs. Linear Algebra Appl., 438 (2013), 3490–3503.Google Scholar
[459] Wei, F.–Y., Liu, M.Ordering of the signless Laplacian spectral radii of unicyclic graphs. Australas. J. Combin., 49 (2011), 255–264.Google Scholar
[460] Wei, J., Liu, B.The index of tricyclic Hamiltonian graphs with Δ(G) = 3. Ars Combin., 73 (2004), 187–192.Google Scholar
[461] Wilf, H. S.Graphs and their spectra – old and new results. Congressus Numerantium, 50 (1985), 37–42.Google Scholar
[462] Wilf, H. S.Spectral bounds for the clique and independence numbers of graphs. J. Combin. Theory B, 40 (1986), 113–117.Google Scholar
[463] Wilf, H. S.The eigenvalues of a graph and its chromatic number. Journal London Math. Soc., 42 (1967), 330–332.Google Scholar
[464] Wolk, E. S.A note on the comparability graph of a tree. Proc. Amer. Math. Soc., 16 (1965), 17–20.Google Scholar
[465] Wolkovicz, H., Styan, P. H.Bounds for eigenvalues using traces. Linear Algebra Appl., 29 (1980), 471–506.Google Scholar
[466] Woo, R., Neumaier, A.On graphs whose smallest eigenvalue is at least −1−2. Linear Algebra Appl., 226–228 (1995), 577–591.Google Scholar
[467] Woo, R., Neumaier, A.On graphs whose spectral radius is bounded by 2. Graphs Combin., 23 (2007), 713–726.Google Scholar
[468] Wu, Y., Yu, G., Shu, J.Graphs with small second largest Laplacian eigenvalue. European J. Combin., 36 (2014), 190–197.Google Scholar
[469] Wu, B., Xiao, E., Hong, Y.The spectral radius of trees on k pendant vertices. Linear Algebra Appl., 395 (2005), 343–349.Google Scholar
[470] Xing, R., Zhou, B. Graphs characterized by the second distance eigenvalue, in press.
[471] Xing, R., Zhou, B.On least eigenvalues and least eigenvectors of real symmetric matrices and graphs. Linear Algebra Appl., 438 (2013), 2378–2384.Google Scholar
[472] Xing, R., Zhou, B.On the least eigenvalue of cacti with pendant vertices. Linear Algebra Appl., 438 (2013), 2256–2273.Google Scholar
[473] Xu, G. H.On the spectral radius of trees with perfect matchings. In Combinatorics and Graph Theory. Singapore, World Scientific, 1997.Google Scholar
[474] Xu, G. H. Ordering unicyclic graphs in terms of their smaller least eigenvalues. J. Inequalities Appl., (2010), ID 591758.
[475] Yan, C.Properties of spectra of graphs and line graphs. Appl. Math. J. Chinese Univ. Ser. B, 3 (2002), 371–376.Google Scholar
[476] Ye, M.–L., Fan, Y.–Z.,Liang, D.The least eigenvalue of graphs with given connectivity. Linear Algebra Appl., 430 (2009), 1375–1379.Google Scholar
[477] Ye, M.–L., Fan, Y.–Z., Wang, H.–F.Maximizing signless Laplacian or adjacency spectral radius of graphs subject to fixed connectivity. Linear Algebra Appl., 433 (2010), 1180–1186.Google Scholar
[478] Yong, X.On the distribution of eigenvalues of a simple undirected graph. Linear Algebra Appl., 295 (1999), 70–83.Google Scholar
[479] Yoon, M.–G., Cvetković, D., Rowlinson, P., Stanić, Z.Controllability of multi–agent dynamical systems with a broadcasting control signal. Asian J. Control, 16 (2014), 1066–1072.Google Scholar
[480] Yu, A., Lu, M., Tian, F.Characterization on graphs which achieve a Das' upper bound for Laplacian spectral radius. Linear Algebra Appl., 400 (2005), 271–277.Google Scholar
[481] Yu, A., Lu, M., Tian, F.On the spectral radius of graphs. MATCH Commun. Math. Comput. Chem., 51 (2004), 97–109.Google Scholar
[482] Yu, A., Tian, F.On the spectral radius of unicyclic graphs. MATCH Commun. Math. Comput. Chem., 51 (2004), 97–109.Google Scholar
[483] Yu, A., Lu, M.Laplacian spectral radius of trees with given maximum degree. Linear Algebra Appl., 429 (2008), 1962–1969.Google Scholar
[484] Yu, A., Lu, M., Tian, F.Ordering trees by their Laplacian spectral radii. Linear Algebra Appl., 405 (2005), 45–59.Google Scholar
[485] Yu, G.On the least distance eigenvalue of a graph. Linear Algebra Appl., 439 (2013), 2428–2433.Google Scholar
[486] Yu, G.On the maximal signless Laplacian spectral radius of graphs with given matching number. Proc. Japan Acad., 84 (2008), 163–166.Google Scholar
[487] Yu, G., Guo, S., Xu, M.On the least signless Laplacian eigenvalue of some graphs. Electron. J. Linear Algebra, 26 (2013), 560–573.Google Scholar
[488] Yu, G., Fan, Y.The least eigenvalue of graphs whose complements are 2–vertex or 2–edge connected. Operation Research Transactions, 17 (2013), 81–88.Google Scholar
[489] Yu, G., Wu, Y., Shu, J.Signless Laplacian spectral radii of graphs with given chromatic number. Linear Algebra Appl., 435 (2011), 1813–1822.Google Scholar
[490] Yuan, X.–J., Liu, Y., Han, M.The Laplacian spectral radius of trees and maximum vertex degree. Discrete Math., 311 (2011), 761–768.Google Scholar
[491] Yuan, X.–J., Shan, H.–Y., Liu, Y.On the Laplacian spectral radii of trees. Discrete Math., 309 (2009), 4241–4246.Google Scholar
[492] Yuan, X.–J., Shao, J.–Y., Liu, Y.The minimal spectral radius of graphs of order n with diameter n−4. Linear Algebra Appl., 428 (2008), 2840–2851.Google Scholar
[493] Yuan, X.–J., Shao, J.–Y., Zhang, L.The six classes of trees with the largest algebraic connectivity. Discrete Appl. Math., 156 (2008), 757–769.Google Scholar
[494] Zhai, M., Lin, H., Wang, B.Sharp upper bounds on the second largest eigenvalues of connected graphs. Linear Algebra Appl., 437 (2012), 236–241.Google Scholar
[495] Zhai, M., Liu, R., Shu, J.Minimizing the least eigenvalue of unicyclic graphs with fixed diameter. Discrete Math., 310 (2010), 947–955.Google Scholar
[496] Zhai, M., Liu, R., Shu, J.On the spectral radius of bipartite graphs with given diameter. Linear Algebra Appl., 430 (2009), 1165–1170.Google Scholar
[497] Zhai, M., Shu, J., Lu, Z.Maximizing the Laplacian spectral radii of graphs with given diameter. Linear Algebra Appl., 430 (2009), 1897–1905.Google Scholar
[498] Zhai, M., Yu, G., Shu, J.The Laplacian spectral radius of bicyclic graphs with a given girth. Comput. Math. Appl., 59 (2010), 376–381.Google Scholar
[499] Zhang, F., Chen, Z.Ordering graphs with small index and its applications. Discrete Appl. Math., 121 (2002), 295–306.Google Scholar
[500] Zhang, F.–F.The Least Eigenvalues of the Complements of Graphs (Master's Thesis), Anhui University, 2011.
[501] Zhang, F. J., Chang, A.Acyclic molecules with greatest HOMO–LUMO separation. Discrete Appl. Math., 98 (1999), 165–171.Google Scholar
[502] Zhang, J.–M., Huang, T.–Z., Guo, J.M.The smallest signless Laplacian spectral radius of graphs with a given clique number. Linear Algebra Appl., 439 (2013), 2562–2576.Google Scholar
[503] Zhang, X., Zhang, H.Some results on Laplacian spectral radius of graphs with cut vertices. Discrete Math., 310 (2010), 3494–3505.Google Scholar
[504] Zhang, X., Zhang, H.The Laplacian spectral radius of some bipartite graphs. Linear Algebra Appl., 428 (2008), 1610–1619.Google Scholar
[505] Zhang, X.–D.Bipartite graphs with small third Laplacian eigenvalue. Discrete Math., 278 (2004), 241–253.Google Scholar
[506] Zhang, X.–D.Eigenvectors and eigenvalues of non–regular graphs. Linear Algebra Appl., 409 (2005), 79–86.Google Scholar
[507] Zhang, X.–D.Graphs with fourth Laplacian eigenvalue less than two. European J. Combin., 24 (2003), 617–630.Google Scholar
[508] Zhang, X.–D.On the distance spectral radius of unicyclic graphs with perfect matchings. Electron. J. Linear Algebra, 27 (2014), 569–587.Google Scholar
[509] Zhang, X.–D.On the two conjectures of Graffiti. Linear Algebra Appl., 385 (2004), 369–379.Google Scholar
[510] Zhang, X.–D.Ordering trees with algebraic connectivity and diameter. Linear Algebra Appl., 427 (2007), 301–312.Google Scholar
[511] Zhang, X.–D.The Laplacian spectral radii of trees with degree sequences. Discrete Math., 308 (2008),3143–3150.Google Scholar
[512] Zhang, X.–D.Two sharp upper bounds for the Laplacian eigenvalues. Linear Algebra Appl., 376 (2004), 207–213.Google Scholar
[513] Zhang, X.–D., Li, J. S.On the k–th largest eigenvalue of the Laplacian matrix of a graph. Acta Appl. Math. Sinica (English Ser.), 17 (2001), 183–190.Google Scholar
[514] Zhang, X.–D., Li, J. S.The two largest eigenvalues of Laplacian matrices of trees (in Chinese). J. China Univ. Sci. Technol., 28 (1998), 513–518.Google Scholar
[515] Zhang, X.–D., Luo, R.Non–bipartite graphs with third largest Laplacian eigenvalue less than three. Acta Math. Sinica (English Ser.), 22 (2006), 917–934.Google Scholar
[516] Zhang, X.–D., Luo, R.The Laplacian eigenvalues of mixed graphs. Linear Algebra Appl., 362 (2003), 109–119.Google Scholar
[517] Zhang, X.–D., Luo, R.The spectral radius of triangle–free graphs. Australas. J. Combin., 26 (2002), 33–39.Google Scholar
[518] Zhou, B.Bounds for index of a modified graph. Discuss. Math. Graph Theory, 24 (2004), 213–221.Google Scholar
[519] Zhou, B.On Estrada index. MATCH Commun. Math. Comput. Chem., 60 (2008), 485–492.Google Scholar
[520] Zhou, B.On the largest eigenvalue of the distance matrix of a tree. MATCH Commun. Math. Comput. Chem., 58 (2007), 657–662.Google Scholar
[521] Zhou, B.Signless Laplacian spectral radius and Hamiltonicity. Linear Algebra Appl., 432 (2010), 566–570.Google Scholar
[522] Zhou, B., Cho, H.H.Remarks on spectral radius and Laplacian eigenvalues of a graph. Czech. Math. J., 55 (2005), 781–790.Google Scholar
[523] Zhou, B., Ilić, A.On distance spectral radius and distance energy of graphs. MATCH Commun. Math. Comput. Chem., 64 (2010), 261–280.Google Scholar
[524] Zhou, B., Trinajstić, N.Further results on the largest eigenvalues of the distance matrix and some distance based matrices of connected (molecular) graphs. Internet Electron. J. Mol. Des., 6 (2007), 375–384.Google Scholar
[525] Zhou, B., Trinajstić, N.On the largest eigenvalue of the distance matrix of a connected graph. Chem. Phys. Lett., 447 (2007), 384–387.Google Scholar
[526] Zhu, B.–X.On the signless Laplacian spectral radius of graphs with cut vertices. Linear Algebra Appl., 433 (2010), 928–933.Google Scholar
[527] Zhu, D.On upper bounds for Laplacian graph eigenvalues. Linear Algebra Appl., 432 (2010), 2764–2772.Google Scholar
[528] Zhu, M., Guo, M., Tian, F., Lu, L.The least eigenvalues of the signless Laplacian of non–bipartite graphs with fixed diameter. Int. J. Math. Eng. Sci., 2 (2013), 1–12.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Zoran Stanić, Univerzitet u Beogradu, Serbia
  • Book: Inequalities for Graph Eigenvalues
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316341308.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Zoran Stanić, Univerzitet u Beogradu, Serbia
  • Book: Inequalities for Graph Eigenvalues
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316341308.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Zoran Stanić, Univerzitet u Beogradu, Serbia
  • Book: Inequalities for Graph Eigenvalues
  • Online publication: 05 August 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781316341308.011
Available formats
×