Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-21T17:28:22.694Z Has data issue: false hasContentIssue false

16 - Neural coordination and psychotic disorganization

Published online by Cambridge University Press:  14 August 2009

Christian Holscher
Affiliation:
University of Ulster
Matthias Munk
Affiliation:
Max-Planck-Institut für biologische Kybernetik, Tübingen
Get access

Summary

Introduction

I am trying to understand how ideas and concepts are generated and manipulated in networks of neurons; I want to understand how we think. You probably share my curiosity and believe that the human brain creates and processes mental objects like the ideas and concepts that make up thoughts. We probably also agree that a key to understanding these mental processes is to understand how neurons represent abstract information.

It is less certain we agree on what to do to discover how neurons represent this sort of information. While I suspect we will get quite far by studying mental processes in animals, I admit that I don't know whether or not animals have ideas, concepts, and thoughts. Such open questions do not invalidate the quest to understand thought because the pursuit is founded on the conviction that mental objects are properties of neural systems and that the neural systems in the human brain are fundamentally similar to the systems in the fascinating brains of lower mammals like the laboratory rat. If we restrict the discussion to the non-moral question of how neurons give rise to thought, then the question of animal mentalism need not be asked, because the answer is not important for directing a rigorous scientific effort to understand the neurophysiology of thought.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, H. B. (1972). Single units and sensation: a neuron doctrine for perceptual psychology?Perception 1:371–394.CrossRefGoogle ScholarPubMed
Bliss, T. V. P. and Collingridge, G. L. (1993). A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.CrossRefGoogle ScholarPubMed
Bliss, T. V. P. and Lømo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol (Lond) 232:331–356.CrossRefGoogle ScholarPubMed
Brown, E. N., Frank, L. N., Tang, D., Quirk, M. C., and Wilson, M. A. (1998). A statistical paradigm for neural spike train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place cells. J Neurosci 18:7411–7425.CrossRefGoogle ScholarPubMed
Bures, J. and Fenton, A. A. (2000). Neurophysiology of spatial cognition. News Physiol Sci 15:233–240.Google ScholarPubMed
Bures, J., Fenton, A. A., Kaminsky, Yu., et al. (1997). Dissociation of exteroceptive and idiothetic orientation cues: effect on hippocampal place cells and place navigation. Phil Trans R SocLond B 352:1515–1524.CrossRefGoogle ScholarPubMed
Buzsáki, G. and Czech, G. (1981). Commissural and perforant path interactions in the rat hippocampus: field potentials and unitary activity. Exp Brain Res 43:429–438.Google ScholarPubMed
Buzsáki, G. and Eidelberg, E. (1981). Commissural projection to the dentate gyrus of the rat: evidence for feed-forward inhibition. Brain Res 230:346–350.CrossRefGoogle ScholarPubMed
Buzsáki, G., Csicsvari, J., Dragoi, G., et al. (2002). Homeostatic maintenance of neuronal excitability by burst discharges in vivo. Cereb Cortex 12:893–899.CrossRefGoogle ScholarPubMed
Cimadevilla, J. M., Wesierska, M., Fenton, A. A., and Bures, J. (2001). Inactivating one hippocampus impairs avoidance of a stable room-defined place during dissociation of arena cues from room cues by rotation of the arena. Proc Natl Acad Sci USA 98:3531–3536.CrossRefGoogle ScholarPubMed
Dragoi, G. and Buzsáki, G. (2006). Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50:145–157.CrossRefGoogle ScholarPubMed
Engel, A. K. and Singer, W. (2001). Temporal binding and the neural correlates of sensory awareness. Trends Cogn Sci 5:16–25.CrossRefGoogle ScholarPubMed
Faulkner, H. J., Traub, R. D., and Whittington, M. A. (1999). Anaesthetic/amnesic agents disrupt beta frequency oscillations associated with potentiation of excitatory synaptic potentials in the rat hippocampal slice. Br J Pharmacol 128:1813–1825.CrossRefGoogle ScholarPubMed
Fenton, A. A. and Bures, J. (1993). Place navigation in rats with unilateral tetrodotoxin inactivation of the dorsal hippocampus: place but not procedural learning can be lateralized to one hippocampus. Behav Neurosci 107:552–564.CrossRefGoogle Scholar
Fenton, A. A. and Bures, J. (2003). Navigation in the moving world. In: The Neurobiology of Spatial Behaviour, ed. Jeffery, K. J.Oxford, UK: Oxford University Press.Google Scholar
Fenton, A. A. and Kelemen, E. (2006). The discharge of hippocampal place cells with overlapping firing fields is coordinated on the timescale of seconds. Soci Neurosci Abstr 36:211.09.Google Scholar
Fenton, A. A. and Muller, R. U. (1998). Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc Natl Acad Sci USA 95:3182–3187.CrossRefGoogle ScholarPubMed
Fenton, A. A., Arolfo, M. P., Nerad, L., and Bures, J. (1995). Interhippocampal synthesis of lateralized place navigation engrams. Hippocampus 5:16–24.CrossRefGoogle ScholarPubMed
Fenton, A. A., Wesierska, M., Kaminsky, Yu., and Bures, J. (1998). Both here and there: simultaneous expression of autonomous spatial memories. Proc Natl Acad Sci USA 95:11 493–11 498.CrossRefGoogle ScholarPubMed
Fenton, A. A., Kenney, J., and Kao, H.-Y. (2006). Phencyclidine impairs cognition if and only if it co-activates initially independently active neurons. Soc Biol Psychiatry Meeting Abstract1477.Google Scholar
Fox, S. E., Wolfson, S., and Ranck, J. B., Jr. (1986). Hippocampal theta rhythm and the firing of neurons in walking and urethane anesthetized rats. Exp Brain Res 50:210–220.Google Scholar
Fried, I., Wilson, C. L., Maidment, N. T., et al. (1999). Cerebral microdialysis combined with single neuron and EEG recording in neurosurgical patients. J Neurosurg 91:697–705.CrossRefGoogle ScholarPubMed
Guzowski, J. F., McNaughton, B. L., Barnes, C. A., and Worley, P. F. (1999). Environment-specific expression of the immediate-early gene Arc in hippocampal neuronal ensembles. Nat Neurosci 2:1120–1124.CrossRefGoogle ScholarPubMed
Harlan, R. E., Shivers, B. D., Kow, L. M., and Pfaff, D. W. (1983). Estrogenic maintenance of lordotic responsiveness: requirement for hypothalamic action potentials. Brain Res 268:67–78.CrossRefGoogle ScholarPubMed
Harris, K. D., Csicsvari, J., Hirase, H., Dragoi, G., and Buzsáki, G. (2003). Organization of cell assemblies in the hippocampus. Nature 424:552–556.CrossRefGoogle ScholarPubMed
Hebb, D. O. (1949). The Organization of Behavior. New York: John Wiley.Google Scholar
Hoffman, R. E. (1987). Computer simulations of neural information processing and the schizophrenia–mania dichotomy. Arch Gen Psychiat 44:178–188.CrossRefGoogle ScholarPubMed
Hrabetova, S. (2005). Extracellular diffusion is fast and isotropic in the stratum radiatum of hippocampal CA1 region in rat brain slices. Hippocampus 15:441–450.CrossRefGoogle ScholarPubMed
Kelemen, E. and Fenton, A. A. (2006). Temporal coordination of hippocampal discharge during foraging in two continuously dissociated spaces. Soc Neurosci Abstr 36:211.12.Google Scholar
Kentros, C. G., Agnihotri, N. T., Streater, S., Hawkins, R. D., and Kandel, E. R. (2004). Increased attention to spatial context increases both place field stability and spatial memory. Neuron 42:283–295.CrossRefGoogle ScholarPubMed
Klausberger, T., Magill, P. J., Marton, L. F., et al. (2003). Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848.CrossRefGoogle ScholarPubMed
Klement, D., Pastalkova, E., and Fenton, A. A. (2005). Tetrodotoxin infusions into the dorsal hippocampus block non-locomotor place recognition. Hippocampus 15:460–471.CrossRefGoogle ScholarPubMed
Konorski, J. (1948). Conditioned Reflexes and Neuron Organization. Cambridge, UK: Cambridge University Press.Google Scholar
Kubik, S. and Fenton, A. A. (2005). Behavioral evidence that segregation and representation are dissociable hippocampal functions. J Neurosci 25:9205–9212.CrossRefGoogle ScholarPubMed
Pen, G. and Moreau, J. L. (2002). Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropsychopharmacology 27:1–11.CrossRefGoogle Scholar
Lever, C., Wills, T., Caccuci, F., Burgess, N., and O'Keefe, J. (2002). Long-term plasticity in hippocampal place cells representation of environmental geometry. Nature 416:90–94.CrossRefGoogle ScholarPubMed
Ling, D. S., Benardo, L. S., Serrano, P. A., et al. (2002). Protein kinase M zeta is necessary and sufficient for LTP maintenance. Nat Neurosci 5:295–296.CrossRefGoogle Scholar
Lipska, B. K. and Weinberger, D. R., (2000). To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 23:223–239.CrossRefGoogle Scholar
Lipska, B. K., Jaskiw, G. E., Chrapusta, S., Karoum, F., and Weinberger, D. R. (1992). Ibotenic acid lesion of the ventral hippocampus differentially affects dopamine and its metabolites in the nucleus accumbens and prefrontal cortex in the rat. Brain Res 585:1–6.CrossRefGoogle ScholarPubMed
Lipska, B. K., Jaskiw, G. E., and Weinberger, D. R. (1993). Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75.CrossRefGoogle ScholarPubMed
Lipska, B. K., Aultman, J. M., Verma, A., Weinberger, D. R., and Moghaddam, B. (2002). Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27:47–54.CrossRefGoogle ScholarPubMed
Muller, R. U. and Kubie, J. L. (1987). The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J Neurosci 7:1951–1968.CrossRefGoogle ScholarPubMed
O'Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Exp Neurol 51:78–109.CrossRefGoogle ScholarPubMed
Olypher, A. V., Lansky, P., and Fenton, A. A. (2002). Properties of the extra-positional signal in hippocampal place cell discharge derived from the overdispersion in location-specific firing. Neuroscience 111:553–656.CrossRefGoogle ScholarPubMed
Olypher, A. V., Klement, D., and Fenton, A. A. (2006). Cognitive disorganization in hippocampus: a physiological model of the disorganization in psychosis. J Neurosci 26:158–168.CrossRefGoogle ScholarPubMed
Pastalkova, E., Serrano, P., Pinkhasova, D., et al. (2006). Storage of spatial information by the maintenance mechanism of LTP. Science 313:1141–1144.CrossRefGoogle ScholarPubMed
Phillips, W. A. and Silverstein, S. M. (2003). Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci 26:65–82; discussion 82–137.CrossRefGoogle Scholar
Phillips, W. A. and Singer, W. (1997). In search of common foundations for cortical computation. Behav Brain Sci 20:657–683; discussion 683–722.CrossRefGoogle ScholarPubMed
Sams-Dodd, F., Lipska, B. K., and Weinberger, D. R. (1997). Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology 132:303–310.CrossRefGoogle ScholarPubMed
Schneidman, E., Berry, M. J. 2nd, Segev, R., and Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature 440:1007–1012.CrossRefGoogle Scholar
Singer, W. (1999). Time as coding space? Curr Opin Neurobiol 9:189–194.CrossRef
Spencer, K. M., Nestor, P. G., Perlmutter, R., et al. (2004). Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci USA 101:17 288–17 293.CrossRefGoogle ScholarPubMed
Sutherland, R. J., Whishaw, I. Q., and Kolb, B. (1983). A behavioural analysis of spatial localization following electrolytic, kainate- or colchicine-induced damage to the hippocampal formation in the rat. Behavioral. Brain Res 7:133–153.Google ScholarPubMed
Tononi, G. and Edelman, G. M. (2000). Schizophrenia and the mechanisms of conscious integration. Brain Res Brain Res Rev 31:391–400.CrossRefGoogle ScholarPubMed
Uhlhaas, P. J. and Singer, W. (2006). Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168.CrossRefGoogle ScholarPubMed
Vanderwolf, C. H. (2001). The hippocampus as an olfacto-motor mechanism: were the classical anatomists right after all?Behav Brain Res 127:25–47.CrossRefGoogle Scholar
Vanderwolf, C. H. and Cain, D. P. (1994). The behavioral neurobiology of learning and memory: a conceptual reorientation. Brain Res Brain Res Rev 19:264–297.CrossRefGoogle ScholarPubMed
der Malsburg, C. (1981). The Correlation Theory of Brain Function, Technical Report 81–2. Frankfunt, Germany: Biophysical Chemistry, Max Planck Institute.Google Scholar
Wallace, D. G., Gorny, B., and Whishaw, I. Q. (2002). Rats can track odors, other rats, and themselves: implications for the study of spatial behavior. Behav Brain Res 131:185–192.CrossRefGoogle Scholar
Wesierska, M., Dockery, C., and Fenton, A. A. (2005). Beyond memory, navigation and inhibition: behavioural evidence for hippocampus-dependent cognitive coordination in the rat. J Neurosci 25:2413–2419.CrossRefGoogle ScholarPubMed
Wilson, M. A. and McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science 261:1055–1058.CrossRefGoogle ScholarPubMed
Zhuravin, I. A. and Bures, J. (1991). Extent of the tetrodotoxin induced blockade examined by pupillary paralysis elicited by intracerebral injection of the drug. Exp Brain Res 83:687–690.CrossRefGoogle ScholarPubMed
Zinyuk, L., Kubik, S., Kaminsky, Yu., Fenton, A. A., and Bures, J. (2000). Understanding hippocampal activity using purposeful behavior: place navigation induces place cell discharge in both the task-relevant and task-irrelevant spatial reference frames. Proc Natl Acad Sci USA 97:3771–3776.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×