Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T02:09:08.088Z Has data issue: false hasContentIssue false

11 - Experimental methods

Published online by Cambridge University Press:  05 June 2012

Donald H. Perkins
Affiliation:
University of Oxford
Get access

Summary

Accelerators

All accelerators employ electric fields to accelerate stable charged particles (electrons, protons, or heavier ions) to high energies. The simplest machine would be a d.c. high-voltage source (called a Van der Graaff accelerator), which can, however, only achieve beam energies of about 20 MeV. To do better, one has to employ a high frequency a.c. voltage and carefully time a bunch of particles to obtain a succession of accelerating kicks. This is done in the linear accelerator, with a succession of accelerating elements (called drift tubes) in line, or by arranging for the particles to traverse a single (radio-frequency) voltage source repeatedly, as in the cyclic accelerator.

Linear accelerators (linacs)

Figure 11.1 shows a sketch of a proton linac. It consists of an evacuated pipe containing a set of metal drift tubes, with alternate tubes attached to either side of a radio-frequency voltage. The proton (hydrogen ion) source is continuous, but only those protons inside a certain time bunch will be accelerated. Such protons traverse the gap between successive tubes when the field is from left to right, and are inside a tube (therefore in a field-free region) when the voltage changes sign. If the increase in length of each tube along the accelerator is correctly chosen then as the proton velocity increases under acceleration the protons in a bunch receive a continuous acceleration. Typical fields are a few MeV per metre of length. Such proton linacs, reaching energies of 50 MeV or so, are used as injectors for the later stages of cyclic accelerators.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Experimental methods
  • Donald H. Perkins, University of Oxford
  • Book: Introduction to High Energy Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809040.012
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Experimental methods
  • Donald H. Perkins, University of Oxford
  • Book: Introduction to High Energy Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809040.012
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Experimental methods
  • Donald H. Perkins, University of Oxford
  • Book: Introduction to High Energy Physics
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511809040.012
Available formats
×