Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-17T04:23:31.177Z Has data issue: false hasContentIssue false

12 - Calculation of stellar models

Published online by Cambridge University Press:  08 January 2010

Erika Böhm-Vitense
Affiliation:
University of Washington
Get access

Summary

Schwarzschild's method

Before we can discuss the detailed structure of the stars on the main sequence we have to outline the methods by which it can be calculated. In Chapter 10 we have compared homologous stars on the main sequence. While we were able to see how temperatures and pressures in the stars change qualitatively with changing mass and chemical composition, we have never calculated what the radius and effective temperature of a star with a given mass really is. In order to do this we need to integrate the basic differential equations, which determine the stellar structure as outlined in Chapter 9. Two methods are in use: Schwarzschild's method and Henyey's method.

Schwarzschild's method is described in his book on stellar structure and evolution (1958). The basic differential equations are integrated both from the inside out and from the outside in. In the dimensionless form the differential equations for the integration from the outside in contain the unknown constant C (see Chapter 9), for the integration from the inside out the differential equations also contain the unknown constant D. A series of integrations from both sides of the star is performed for different values of these constants. The problem then is to find the correct values for the constants C and D and thereby the correct solutions for the stellar structure. At some fitting point Xf = (r/R)f we have to fit the exterior and the interior solutions together in order to get the solution for the whole star. At this fitting point we must of course require that pressure and temperature are continuous.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×