Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-dvmhs Total loading time: 0 Render date: 2024-09-17T19:56:28.588Z Has data issue: false hasContentIssue false

3 - Surface Engineering with Diffusion Technologies

Published online by Cambridge University Press:  20 January 2017

P. A. Dearnley
Affiliation:
Boride Services Ltd.
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angenete, J. and Stiller, K. (2002), ‘Comparison of inward and outward grown Pt modified aluminide diffusion coatings on a Ni base single crystal superalloy’, Surface & Coatings Technology 150, 107118.CrossRefGoogle Scholar
Angenete, J., Stiller, K. and Bakchinova, E. (2004), ‘Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050°C’, Surface & Coatings Technology 176, 272283.CrossRefGoogle Scholar
Arai, T. (2015), ‘The thermo-reactive deposition and diffusion process for coating steels to improve wear resistance’, in Thermochemical surface engineering of steels, Woodhead Publishing, Amsterdam, 703735, edited by Mittemeijer, E. J. and Somers, M. A. J..CrossRefGoogle Scholar
Arai, T., Fujita, H. Sugimoto, Y. and Ohta, Y. (1986), ‘Diffusion carbide coatings formed in molten borax systems’, in Surface Modifications and Coatings, ASM International, Materials Park, OH, 311317, edited by Sisson, R. D. Jr.Google Scholar
ASM (1992), ASM Handbook Volume 3: Alloy phase diagrams, ASM International, Materials Park, Ohio, 3.313.32.Google Scholar
ASM Committee (1964), ‘Gas carburizing’, American Society for Metals.Google Scholar
Bell, T. (1975), ‘Ferritic nitrocarburising’, Heat Treatment of Metals (2), 3949.Google Scholar
Bell, T. (1991), ‘Gaseous and plasma nitrocarburising’, Metals Handbook, Volume 4: Heat Treating, ASM International, Materials Park, Ohio, 425436.Google Scholar
Bell, T., Bergmann, H. W., Lanagan, J., Staines, A. M. and Morton, P. H. (1986), ‘Surface engineering of titanium with nitrogen’, Surface Engineering 2 (2), 133143.CrossRefGoogle Scholar
Bell, T., Dong, H. and Li, C. X. (2008), ‘Plasma surface treatment of Co-Cr biomaterials’, European Patent EP 1 499 755B1 (21 May).Google Scholar
Bell, T. and Loh, N. M. (1982), ‘The fatigue characteristics of plasma nitrided three percent Cr-Mo steel’, Journal of Heat Treating 2 (3), 232237.CrossRefGoogle Scholar
Billard, A., Steinmetz, J. and Frantz, C. (1991), ‘Sputtered stainless steel carbon coatings as substitute for hard electrolytic chromium for potential applications in mechanics’, Materials Science and Engineering A140, 802808.CrossRefGoogle Scholar
Booth, M., Farrell, T. and Johnson, R. H. (1980), ‘The theory and practice of plasma carburising’, Heat treatment of metals (2), 4552.Google Scholar
Campos-Silva, I. E. and Rodríguez-Castro, G. A. (2015), ‘Boriding to improve the mechanical properties and corrosion resistance of steels’, in Thermochemical surface engineering of steels, Woodhead Publishing, Amsterdam, 651702, edited by Mittemeijer, E. J. and Somers, M. A. J..CrossRefGoogle Scholar
Castle, A. R. and Gabe, D. R. (1999), ‘Chromium diffusion coatings’, International Materials Reviews 44(2), 3758.CrossRefGoogle Scholar
Chen, H. Y., Stock, H. R. and Mayr, P. (1994), ‘Plasma assisted nitriding of aluminiumSurface & Coatings Technology 64, 139147.CrossRefGoogle Scholar
Chen, J. H and Little, J. A. (1997), ‘Degradation of the platinum aluminide coating on CMSX-4 at 1100°C’, Surface & Coatings Technology 92, 6977.CrossRefGoogle Scholar
Child, H. C. (1980), Surface hardening of steel, Oxford University Press.Google Scholar
Cottrell, A. H. (1971), An introduction to metallurgy, Edward Arnold, London, 146152.Google Scholar
Dahm, K. L. (1998), ‘Coatings for corrosive-wear applications’, PhD thesis, University of Auckland, New Zealand.Google Scholar
Dahm, K. L. and Dearnley, P. A. (1996), ‘S-phase coatings by unbalanced magnetron sputtering’, Surface Engineering 12 (1), 6167.CrossRefGoogle Scholar
Dahm, K. L. and Dearnley, P. A. (2000), ‘On the nature, properties and wear response of S-phase (nitrogen alloyed stainless steel) coatings on AISI 316L’, Proc I Mech E Part L 214, 181198.Google Scholar
Dahm, K. L., Short, K. T. and Collins, G. A. (2007), ‘Characterisation of nitrogen bearing surface layers on Ni base superalloys’, Wear 263, 625628.CrossRefGoogle Scholar
Das, D. K, Singh, V. and Joshi, S. V. (1998), ‘Evolution of aluminide coating microstructure on nickel-base cast super alloy CM247 in a single step high activity aluminising process’, Metallurgical and Materials Transactions 29A, 21732188.CrossRefGoogle Scholar
Dawes, C. and Tranter, D. F. (1982), ‘Nitrotec surface treatment – its development and application in the design and manufacture of automobile components’, Heat Treatment of Metals 9 (4), 8590.Google Scholar
Dearnley, P. A. and Bell, T. (1985), ‘Engineering the surface with boron based materials’, Surface Engineering 1 (3), 203217.CrossRefGoogle Scholar
Dearnley, P. A., Farrell, T. and Bell, T. (1986), ‘Developments in plasma boriding’, ASM Journal of Materials for Energy Systems 8 (2), 128131.CrossRefGoogle Scholar
Dearnley, P. A., Figueiredo Pina, C. J. and Fisher, J. (2008), ‘Assessment of S-phase coated medical grade stainless steel (Ortron 90) for use in the human joint replacement corrosion-wear environment’, Journal of Physics D: Appl. Phys. 41, 105305.CrossRefGoogle Scholar
Dearnley, P. A., Namvar, A., Hibberd, G. G. A. and Bell, T. (1989), ‘Some observations on plasma nitriding austenitic stainless steels’, in Plasma Surface Engineering, Vol. 1, DGM Informationsgesellschaft Verlag, Oberursel, 219226.Google Scholar
Derbyshire, B., Fisher, J., Dowson, D., Hardacer, C. and Brummitt, K. (1995), ‘Wear of UHMWPE against untreated, titanium nitrided coated and ‘Hardcor’ treated stainless steel counterfaces’, Wear 181 –183, 258262.Google Scholar
Dong, H. (2010), ‘S-phase surface engineering of Fe-Cr, Co-Cr and Ni-Cr alloys’, International Materials Reviews 55 (2), 6598.CrossRefGoogle Scholar
Dong, H., Morton, P. H., Bloyce, A. and Bell, T. (2004), ‘Method of case hardening’, US Patent 6,833,197B1.Google Scholar
Edenhofer, B. (1989), ‘Progress in the control of plasma nitriding and carburizing for better layer consistency and reproducibility’, in Plasma Surface Engineering, Vol. 1, DGM Informationsgesellschaft Verlag, Oberursel, 257268.Google Scholar
Edenhofer, B., Joritz, D., Rink, M. and Voges, K. (2015), ‘Carburising of steels’, in Thermochemical surface engineering of steels, Woodhead Publishing, Amsterdam, 485553, edited by Mittemeijer, E. J. and Somers, M. A. J..CrossRefGoogle Scholar
Filep, E. and Kolozsvary, Z. (1986), ‘Aspectele Formarii Stratului La Borirarea in descarcare luminiscenta’, Conferinta de tratanente termice – comunicari, 24–25 April, 169–174.Google Scholar
Fisher, G., Data, P. K., Burnell-Gray, J. S., Chan, W. Y. and Wing, R. (2000), ‘An investigation of the oxidation resistance of platinum aluminide coatings produced by either high or low activity processes’, in High temperature surface engineering, IOM Communications, London, 111.Google Scholar
Floe, C. F. (1943), ‘A study of the nitriding process: Effect of ammonia on case depth and structure’, Tans. ASM 32, 134.Google Scholar
Galetz, M. C., Montero, X., Mollard, M., Gűnthner, M., Pedraza, F. and Schűtze, M. (2014), ‘The role of combustion synthesis in the formation of slurry aluminization’, Intermetallics 44, 817.CrossRefGoogle Scholar
Gavrilujuk, V. G. and Berns, H. (1999), High nitrogen steels, Springer-Veralg, Berlin.CrossRefGoogle Scholar
Georges, J. and Cleugh, D. (2001), ‘Active screen plasma nitriding’, in Stainless Steel 2000, Institute of Materials, London, 377287, edited by Bell, T. and Akamatsu, K..Google Scholar
Goldschmidt, H. J. (1967), Interstitial Alloys, Butterworths, London, 214253.CrossRefGoogle Scholar
Goldsteinas, A. and Pelissier, L. (2002), ‘Low pressure cementation method’, US Patent 7,118,634.Google Scholar
Goward, G. W. (1986), ‘Protective coatings – purpose, role and design’, Materials Science & Technology 2, 194200.CrossRefGoogle Scholar
Goward, G. W. (1998), ‘Progress in coatings for gas turbine airfoils’, Surface Coatings & Technology 108 –109, 7379.CrossRefGoogle Scholar
Goward, G. W. and Boone, D. H. (1971), ‘Mechanism of formation of diffusion aluminide coatings on nickel base superalloys’, Oxidation of metals 3 (5), 475495.CrossRefGoogle Scholar
Grube, W. L. and Gay, J. G. (1978), ‘High-rate carburizing in a glow-discharge methane plasma’, Metallurgical Transactions A 9 (10), 14211429.CrossRefGoogle Scholar
Hadfield, J. (1986), ‘An investigation of the layers produced by plasma carburising’, MSc thesis (research), University of Birmingham, UK.Google Scholar
Harry, N. J. V. (1986), ‘Marine applications’, Materials Science & Technology 2, 295301.CrossRefGoogle Scholar
Haruman, E., Bell, T. and Sun, Y. (1992), ‘Compound layer characteristics resulting from plasma nitrocarburising with an atmosphere containing CO2 additions’, Surface Engineering 8 (4), 275282.CrossRefGoogle Scholar
Hegewaldt, F., Singheiser, L. and Turk, M. (1984), Harterei-Tech. Mitt. 39 (1), 715 (in German).Google Scholar
Hintermann, H. E. (1981), ‘Tribological and protective coatings by chemical vapor deposition’, Thin Solid Films 84, 215243.CrossRefGoogle Scholar
Hombeck, F., Opel, W. and Remges, W. (1989), Plasma (ion) nitriding and plasma (ion) nitrocarburising. Its units and its applications, Vol. 1, DGM Informationsgesellschaft Verlag, Oberursel, 277287.Google Scholar
Hume-Rothery, (1969), The structure and alloys of iron, Pergamon Press, Oxford, 157159.Google Scholar
Ichii, K., Fujimira, K. and Takase, T. (1986), ‘Structure of the ion nitrided layer of 18–8 stainless steel’, Technology Reports of Kansai University (March, 27), 135–144.Google Scholar
Jack, K. H. (1975), ‘Nitriding’, in Heat Treatment ‘73, Book no. 163, Metals Society, London, 3950.Google Scholar
Jacobs, M. H., Law, T. J. and Ribet, F. (1985), ‘Plasma carburizing: Theory, industrial benefits and practices’, Surface Engineering 1 (2), 105113.CrossRefGoogle Scholar
Kircher, I. A., Mordie, B. G. and McCarter, A. (1994), ‘Performance of silicon modified aluminide coating in high temperature hot corrosion test conditions’, Surface and Coatings Technology 68 /69, 3237.CrossRefGoogle Scholar
Knotek, O., Lugscheider, E. and Leuschen, K. (1977), ‘Surface layers on cobalt base alloys by boron diffusion’, Thin Solid Films 45, 331339.CrossRefGoogle Scholar
Krauss, G. (1995), Steels: Heat treatment and processing principles, ASM International, Materials Park, OH, 285317.Google Scholar
Lehrer, E. (1930), ‘Uber das Eisen-Wasserstoff-Ammoniak-Gleichgewicht’, Zeitscrift fűr Electrochemie 36 (6), 383393.Google Scholar
Li, C. X. (2010), ‘Active screen plasma nitriding – an overview’, Surface Engineering 26, 12, 135141.CrossRefGoogle Scholar
Lightfoot, B. J. and Jack, D. H. (1975), ‘Kinetics of nitriding with and without white layer formation’, in Heat Treatment ’73, Metals Society, London, 5970.Google Scholar
Lu, M. J. (1983), ‘The kinetics of the formation and development of single phase layers of boride’, Harterei-Tech. Mitt. 38 (4), 156169 (in German).Google Scholar
Maldzinski, L. and Tacikowski, J. (2015), ‘Zeroflow gas nitriding of steels’, in Thermochemical surface engineering of steels, edited by Mittemeijer, E. J. and Somers, M. A. J., Woodhead Publishing, Amsterdam, 459483.CrossRefGoogle Scholar
Mändl, S., Lutz, J., Díaz, C., Gerlach, J. W. and García, J. A. (2014), ‘Influence of reduced Current density on diffusion and phase formation during PIII nitriding of austenitic stainless steel and CoCr alloys’, Surface & Coatings Technology 256, 7884.CrossRefGoogle Scholar
Matuschka, G. V. (1980), Boronising, Hanser, Munich.Google Scholar
Medeiros, L. and King, T. (2002), ‘Method of nitriding suspension components’, US Patent Application US2002/0104587 A1.Google Scholar
Meetham, G. W. (1986), ‘Use of protective coatings in aero gas turbine engines’, Materials Science & Technology 2, 290294.CrossRefGoogle Scholar
Meijering, J. L. (1971), ‘Introductory considerations of phase theory and technology’, De Ingenieur 83 (5), 18.Google Scholar
Mévrel, R., Duret, C. and Pichoir, R. (1986), ‘Pack cementation processes’, Materials Science & Technology 2, 201206.CrossRefGoogle Scholar
Michalski, J., Tacikowski, J., Wach., P., Lunarska., E. and Baum, H., ‘Chemicothermal Treatment – formation of single-phase layer of g’-nitride in controlled gas nitriding’, Metal Science and Heat Treatment 47 (11–12), 516519.CrossRefGoogle Scholar
Mittemeijer, E. J. (2015), ‘Nitriding of binary and ternary iron-based alloys’, in Thermochemical surface engineering of steels, Woodhead Publishing, Amsterdam, 314340, edited by Mittemeijer, E. J. and Somers, M. A. J..Google Scholar
Navas, G. and Viloria, L. (1997), ‘Laboratory and field corrosion behaviour of coatings for turbine blades’, Surface and Coatings Technology 94 –95, 161167.CrossRefGoogle Scholar
Nicholls, J. R. (2003), ‘Advances in high performance gas turbines’, MRS Bulletin 28 (9), 659670.CrossRefGoogle Scholar
Nowacki, J. (1994), ‘Mathematical and chemical description of friction of diffusive phosphorized iron’, Wear 173, 5157.CrossRefGoogle Scholar
Ozdemir, O., Usta, M., Bindal, C. and Hikmet Ucisik, A. (2006), ‘Hard iron boride (Fe2B) on 99.7wt-% pure iron’, Vacuum 80, 13911395.CrossRefGoogle Scholar
Pierce, B. O. (1929), A short table of integrals, Gin and Company, Boston.Google Scholar
Praxair Surface Technologies (2010), ‘SermaLoy J Diffused Slurry Aluminide Coating’, data sheet, Praxair, Indianapolis, IN.Google Scholar
Prĕnosil, B. (1966), ‘Properties of the carbonitrided layers forming as a result of carbon diffusion in austenite’, Harterei-Tech. Mitt. 21 (1), 2433 (in German).Google Scholar
Remges, W. (1987), ‘Fundamentals, applications and economical considerations of plasma nitriding’, in Ion nitriding, ASM International, edited by Spalvins, T..Google Scholar
Samandi, M., Shedden, B. A., Smith, D. I., Collins, G. A., Hutchings, R. and Tendys, J. (1993), ‘Microstructure, corrosion and tribological behaviour of plasma immersion ion implanted stainless steels’, Surface & Coatings Technology 59 (1–3), 261266.CrossRefGoogle Scholar
Saunders, S. R. J. (1986), ‘Correlation between laboratory and corrosion rig testing and service experience’, Materials Science & Technology 2, 282289.CrossRefGoogle Scholar
Saunders, S. R. J. and Nicholls, J. R. (1989), ‘Coatings and surface treatments for high temperature oxidation resistance’, Materials Science & Technology 5, 780798.CrossRefGoogle Scholar
Shibata, H., Tokaji, K., Ogawa, T. and Hori, C. (1994), ‘The effect of gas nitriding on fatigue behaviour in titanium alloys’, Fatigue 16, 370376.CrossRefGoogle Scholar
Shirvani, K., Saremi, M. and Yamamoto, Y. (2006), ‘The approaches to the thin film preparation and TEM observations on slurry Si-modified aluminide coatings’, Materials and Corrosion 57 (2), 182184.CrossRefGoogle Scholar
Smith, A. B., Kempster, A. and Smith, J. (2000), Characterisation of aluminide coatings formed on nickel-base superalloys by vapour aluminising, IOM Communications, London, 1327.Google Scholar
Somers, M. A. J. (2015), ‘Development of the compound layer during nitriding and nitrocarburising of iron and iron-carbon alloys’ in Thermochemical surface engineering of steels, Woodhead Publishing, Amsterdam, 341372, edited by Mittemeijer, E. J. and Somers, M. A. J..CrossRefGoogle Scholar
Somers, M. A. J. and Christiansen, T. L. (2015), ‘Gaseous processes for low temperature surface hardening of stainless steels’, in Thermochemical surface engineering of steels, Woodhead Publishing, Amsterdam, 581614, edited by Mittemeijer, E. J. and Somers, M. A. J..CrossRefGoogle Scholar
Spies, H-J. (2015), ‘Corrosion behaviour of nitrided, nitrocarburised and carburised steels’, in Thermochemical surface engineering of steels, Woodhead Publishing, Amsterdam, 265309, edited by Mittemeijer, E. J. and Somers, M. A. J..Google Scholar
Staines, A. M. (1994), ‘A new development in gaseous nitriding’, Heat Treatment of Metals (3), 7274.Google Scholar
Staines, A. M. (1996), ‘Today’s processing options for nitriding- gaseous and plasma routes compared’, Heat Treatment of Metals (1), 16.Google Scholar
Suhadi, A., Li, C. X, and Bell, T. (2006), ‘Austenitic plasma nitrocarburising of carbon steel in a N2-H2 atmosphere with organic vapour additions’, Surface & Coatings Technology 200, 43974405.CrossRefGoogle Scholar
Sun, Y. (1989), ‘Plasma nitriding and PVD ceramic coating of low alloy steel’, PhD thesis, University of Birmingham, UK.Google Scholar
Sun, Y., Dearnley, P. A. and Bell, T. (1989), ‘The principal wear mechanisms of plasma nitrided low alloy steel’, in Plasma Surface Engineering, Vol. 2, DGM Informationsgesellschaft Verlag, Oberursel, 927934.Google Scholar
Sun, Y., Li, X. and Bell, T. (2001a), ‘The formation and decomposition of nitrogen and carbon FCT austenite and austenitic stainless steels’, in Stainless Steel 2000, Institute of Materials, London, 263273, edited by Bell, T. and Akamatsu, K..Google Scholar
Sun, Y., Li, X. and Bell, T. (2001b), ‘Low temperature plasma carburizing of austenitic stainless steels for improved wear and corrosion resistance’, in Stainless Steel 2000, Institute of Materials, London, 5163, edited by Bell, T. and Akamatsu, K..Google Scholar
Tamarin, Y. (2006), Protective coatings for turbine blades, ASM International, Materials Park, OH, 2534.Google Scholar
Tendys, J., Donnelly, I. J., Kenny, M. J., Pollock, J. T. A. (1988), ‘Plasma immersion ion implantation using plasmas generated by radio frequency techniques’, Applied Physics Letters 53 (22), 21432145.CrossRefGoogle Scholar
Thelning, K-E. (1981), Steel and its heat treatment – Bofors Handbook, Butterworths, London, 381382, 396, 404.Google Scholar
Tokaji, K., Ogawa, T. and Shibata, H. (1994), ‘The effect of gas nitriding on fatigue behaviour in pure titanium’, Fatigue 16, 331336.CrossRefGoogle Scholar
van der Jagt, R. H. (2001), ‘Kolsterising – Surface hardening of austenitiic and duplex stainless steels without a loss of corrosion resistance’, in Stainless Steel 2000, Institute of Materials, London, 415423, edited by Bell, T. and Akamatsu, K..Google Scholar
Williamson, D. L., Wilbur, P. J., Fickett, F. R. and Parascandola, S. (2001), ‘Role of ion beam processing and growth of the high nitrogen phase in austenitic stainless steel’, in Stainless Steel 2000, Institute of Materials, London, 333352, edited by Bell, T. and Akamatsu, K..Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×