Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-g78kv Total loading time: 0 Render date: 2024-07-25T12:56:21.208Z Has data issue: false hasContentIssue false

10 - Murine rodents: late but highly successful invaders

from Part I - Ancient invaders

Published online by Cambridge University Press:  05 February 2014

Ken Aplin
Affiliation:
United States National Museum
Fred Ford
Affiliation:
CSIRO Australian National Wildlife Collection
Herbert H. T. Prins
Affiliation:
Wageningen Universiteit, The Netherlands
Iain J. Gordon
Affiliation:
The James Hutton Institute, Scotland
Get access

Summary

Introduction

Prior to European settlement the Australian continental landmass (i.e. Australia plus the main island of New Guinea; Figure 10.1) was successfully invaded by only four groups of placental mammals: bats (Chapter 8), rodents, primates (our own species) and the dog (which almost certainly came with people; Chapter 19). Not surprisingly, bats were the earliest and in many respects, the most successful invaders (Hand 2006). Bats colonised Australia at least nine times, commencing sometime prior to the Early Eocene (Hand et al. 1994) when Australia was still connected to other Gondwanan landmasses. At the other end of the geological timescale, humans entered the region only during the late Pleistocene (c. 50 thousand years ago; kya) despite a much longer occupancy of islands to the immediate north (Morwood et al. 1999). Later still, the dog was transported to Australia around 4000 years ago (see Chapter 19). Rodents represent the middle ground in the history of placental invasion of Australia. They first entered the Australasian region during the late Miocene, after northward drift had brought the Australian continental plate into collisional contact with the Asian Plate (Lee et al. 1981). Despite the proximity of landmasses, the journey from Asia to Australasia still involved multiple water crossings, even during periods of low sea levels. Ultimately, only one of the many different kinds of rodents found in Asia proved fit for the challenge – the true rats and mice of the family Muridae – but members of this group succeeded on multiple occasions through natural dispersal and, more recently, with human assistance.

At the time of European settlement Australia supported around 66 species of native rats and mice, more species than in any family of marsupials or bats. Murine diversity is even more pronounced on the island of New Guinea and its major satellites to the north, with 114 species of native rodents already known and more being discovered (Helgen 2005a, b; Musser et al. 2008; Helgen and Helgen 2009; Musser and Lunde 2010). Native rodents thus comprised around 29% of the native terrestrial mammal fauna of Australia, and around 59% of that of the Melanesian islands. These figures do not rest comfortably with the common notion of Australasia as a continent of marsupials – but they do point to a fascinating history of invasion by what is clearly a highly successful evolutionary lineage.

Type
Chapter
Information
Invasion Biology and Ecological Theory
Insights from a Continent in Transformation
, pp. 196 - 240
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, A. (1997). Zoogeography of amphibians and reptiles of New Guinea and the Pacific Region. In Keast, A. and Miller, S. E. (eds), The Origin and Evolution of Pacific Island Biotas, New Guinea to Eastern Polynesia: Patterns and Processes. Amsterdam: SPB Academic Publishing, pp. 407–436.Google Scholar
Allison, A. (2007). The herpetofauna of Indonesia’s Papua Province, New Guinea. In Marshall, A. J. and Beehler, B. M. (eds), The Ecology of Papua. Singapore: Periplus Press, pp. 564–616.Google Scholar
Amori, G. and Cristaldi, M. (1999). Brown rat. In Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W. et al. (eds), The Atlas of European Mammals. London, UK: Academic Press. pp. 278–279.Google Scholar
Aplin, K. P. (2006). Ten million years of rodent evolution in Australasia: phylogenetic evidence and a speculative historical biogeography. In Merrick, J. R., Archer, M., Hickey, G. M. and Lee, M. S. Y. (eds), Evolution and Biogeography of Australasian Vertebrates. Sydney, Australia: Auscipub Pty Ltd., pp. 707–744.Google Scholar
Aplin, K. P. and Helgen, K. M. (2010). Quaternary murid rodents of Timor part I: new material of Coryphomys buehleri Schaub, 1937, and description of a second species of the genus. Bulletin of the American Museum of Natural History 341: 1–80.CrossRefGoogle Scholar
Aplin, K. P. and Kale, E. (2011). Non-volant mammals of the Muller Range, Papua New Guinean. In Rapid Biological Assessments of the Nakanai Mountains and the upper Strickland Basin: Surveying the Biodiversity of Papua New Guinea’s Sublime Karst Environments. RAP Bulletin of Biological Assessment 60. Arlington, VA: Conservation International, pp. 210–221.Google Scholar
Aplin, K. P. and Lalsiamliana, J. (2010). The chronicle and impacts of Mautam 2007–2009 in Mizoram. In Singleton, G. R., Belmain, S., Brown, P. R. and Krebs, C. (eds), Rodent Outbreaks and Food Security. Los Banos, Philippines: IRRI, pp. 13–48.Google Scholar
Aplin, K. P. and Opiang, M. (2011). Mammals of the Nakanai Plateau, West New Britain, Papua New Guinea. Conservation International Rapid Assessment Program. In Rapid Biological Assessments of the Nakanai Mountains and the Upper Strickland Basin: Surveying the Biodiversity of Papua New Guinea’s Sublime Karst Environments. RAP Bulletin of Biological Assessment 60. Arlington, VA: Conservation International, pp. 85–103.Google Scholar
Aplin, K. and Pasveer, J. (2005). Mammals and other vertebrates from late Quaternary archaeological sites on Pulau Kobroor, Aru Islands, eastern Indonesia. In Archaeology of the Aru Islands, Terra Australis 22. Canberra, ACT: Pandanus Press, pp. 41–62.Google Scholar
Aplin, K. P., Baynes, A., Chappell, J. and Pillans, B. (2001). Pliocene and Quaternary vertebrate faunas from a succession of karstic and related coastal deposits on Barrow Island, northwestern Australia. 2001 Biennial Conference of the Australian Quaternary Association, Port Fairy, February 2001 (abstract only).
Aplin, K. P., Brown, P. R., Singleton, G. R., Boupha, B. Douang and Khamphoukeo, K. (2007). Rodents in the rice environments of Laos. In Schiller, J. M., Chanphengxay, M. B., Linquist, B., and Rao, S. Appa (eds), Rice in Laos. Los Banos, Philippines/Canberra, ACT: IRRI and ACIAR, pp. 291–308.Google Scholar
Aplin, K. P., Chesser, T., and ten Have, J. (2003). Evolutionary biology of the genus Rattus: profile of an archetypal rodent pest. Rats, mice and people: rodent biology and management, ACIAR Technical Report 96. Canberra, ACT: ACIAR, pp. 487–498.
Aplin, K. P., Pasveer, J. M. and Boles, W. E. (1999). Late Quaternary vertebrates from the Bird’s Head Peninsula, Irian Jaya, including descriptions of two, previously unknown marsupials. Records of the Western Australian Museum S57 : 351–387.Google Scholar
Aplin, K. P., Suzuki, H., Chinen, A. A. et al. (2011). Multiple geographic origins of commensalism and complex dispersal history of black rats, PLoS One 6: e26357.CrossRefGoogle ScholarPubMed
Archer, M., Hand, S. J. and Godthelp, H. J. (1994). Riversleigh, the Story of Animals in Ancient Rainforests of Inland Australia, 2nd edn. Sydney, Australia: Reed Books.Google Scholar
Banks, P. R. and Hughes, N. K. (2012). A review of the evidence for potential impacts of black rats (Rattus rattus) on wildlife and humans in Australia, Wildlife Research 39: 78–88.CrossRefGoogle Scholar
Bastos, A. D., Nair, D., Taylor, P. J. et al. (2011). Genetic monitoring detects an overlooked cryptic species and reveals the diversity and distribution of three invasive Rattus congeners in South Africa. BMC Genetics 12: 26.CrossRefGoogle ScholarPubMed
Baverstock, P. R., Watts, C. H. S., Hogarth, J. T., Robinson, A. C. and Robinson, J. F. (1977). Chromosome evolution in Australian rodents. II. The Rattus Group. Chromosoma (Berlin) 61: 227–241.CrossRefGoogle ScholarPubMed
Beck, R. M. D. (2008). A dated phylogeny of marsupials using a molecular supermatrix and multiple fossil constraints. Journal of Mammalogy 89: 175–189.CrossRefGoogle Scholar
Beck, R. M. D. (2009). Was the Oligo-Miocene Australian metatherian Yalkaparidon a ‘mammalian woodpecker’?. Biological Journal of the Linnean Society 97: 1–17.CrossRefGoogle Scholar
Berry, R. J. (1970). The natural history of the house mouse. Field Studies (London) 3: 219–262.Google Scholar
Berryman, A. A. (1992). The origins and evolution of predator–prey theory. Ecology 73: 1530–1535.CrossRefGoogle Scholar
Beuchat, C. A. (1990). Body size, medullary thickness, and urine concentrating ability in mammals. American Journal of Physiology 258: 298–308.Google ScholarPubMed
Bilney, R. J., Cooke, R. and White, J. G. (2010). Underestimated and severe: small mammal decline from the forests of south-eastern Australia since European settlement, as revealed by a top-order predator. Biological Conservation 143: 52–59.CrossRefGoogle Scholar
Boursot, P., Auffray, J. C., Britton-Davidian, J. and Bonhomme, F. (1993). The evolution of house mice. Annual Review of Ecology and Systematics 2: 119–152.CrossRefGoogle Scholar
Breed, W. G. and Ford, F. (2007) Native Mice and Rats, Australian Natural History Series, Melbourne, Australia: CSIRO publications.Google Scholar
Bryant, L. M., Donnellan, S. C., Hurwood, D. A. and Fuller, S. J. (2011). Phylogenetic relationships and divergence date estimates among Australo-Papuan mosaic-tailed rats from the Uromys division (Rodentia: Muridae). Zoologica Scripta 40: 433–447.CrossRefGoogle Scholar
Byrne, M., Steane, D. A., Joseph, L. et al. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38: 1635–1656.CrossRefGoogle Scholar
Byrne, M., Yeates, D. K., Joseph, L. et al. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17: 4398–4417.CrossRefGoogle ScholarPubMed
Choquenot, D. and Ruscoe, W. A. (2000). Mouse population eruptions in New Zealand forests: the role of population density and seedfall. Journal of Animal Ecology 69: 1058–1070.CrossRefGoogle Scholar
Clout, M. N. and Russell, J. C. (2007). The invasion ecology of mammals: a global perspective. Wildlife Research 35: 180–184.CrossRefGoogle Scholar
Cox, M. P. G., Dickman, C. R. and Cox, W. G. (2000). Use of habitat by the black rat (Rattus rattus) at North Head, New South Wales: an observational and experimental study. Austral Ecology 25: 375–385.CrossRefGoogle Scholar
Crabb, P. L. (1977). Fossil mammals of the lower Pleistocene Moorna Sands, southwestern New South Wales with an analysis of the Australian pseudomyine murid molars. PhD Thesis, Monash University, Victoria, Australia.
Cramb, J. and Hocknull, S. (2010). New Quaternary records of Conilurus (Rodentia: Muridae) from eastern and northern Australia with the description of a new species. Zootaxa 2634: 41–56.Google Scholar
Dawson, L., Muirhead, J., and Wroe, S. (1999). The Big Sink local fauna: a lower Pliocene mammalian fauna from the Wellington Caves complex, Wellington, New South Wales. Records of the Western Australian Museum Supplement 57: 265–290.Google Scholar
Dickman, C. R. (1986). An experimental study of competition between two species of dasyurid marsupials. Ecological Monographs 56: 221–241.CrossRefGoogle Scholar
Dickman, C. R. and Watts, C. H. S. (2008). Black rat. In Van Dyck, S. and Strahan, R. (eds), The Mammals of Australia, 3rd edn. Chatswood, Australia: Reed New Holland, pp. 707–709.Google Scholar
Dwyer, P. D. (1978). Rats, pigs and men: disturbance and diversity in the New Guinea highlands. Australian Journal of Ecology 3: 213–232.CrossRefGoogle Scholar
Dwyer, P. D. (1984). From garden to forest: small rodents and plant succession in Papua New Guinea. Australian Mammalogy 7: 29–36.Google Scholar
Flannery, T. F. (1988). Origins of the Australo-Pacific land mammal fauna. Australian Zoological Reviews 1: 15–24.Google Scholar
Flannery, T. F. (1995). The Mammals of New Guinea, 2nd edn. Sydney, NSW: Reed Books.Google Scholar
Fox, B. J. (1982). Fire and mammalian secondary succession in an Australian coastal heath. Ecology 63: 1332–1341.CrossRefGoogle Scholar
Fox, B. J. and Fox, M. D. (1984). Small-mammal recolonization of open-forest following sand mining. Australian Journal of Ecology 9: 241–252.CrossRefGoogle Scholar
Franklin, D. C., Woinarski, J. C. Z. and Noske, R. A. (2000). Geographic patterning of species richness among granivorous birds in Australia. Journal of Biogeography 27: 829–842.CrossRefGoogle Scholar
Gabriel, S. I., Stevens, M. I., Mathias, M. L. and Searle, J. B. (2011). Of mice and ‘convicts’: origin of the Australian house mouse, Mus musculus. PLoS ONE 6: e28622.CrossRefGoogle ScholarPubMed
Gibb, G. C. and Penny, D. (2010). Two aspects along the continuum of pigeon evolution: a South-Pacific radiation and the relationship of pigeons within Neoaves. Molecular Phylogenetics and Evolution 56: 698–706.CrossRefGoogle ScholarPubMed
Godthelp, H. (1999). Diversity, relationships and origins of the Tertiary and Quaternary rodents of Australia. In Archer, M., Arena, R., Bassarova, M. et al. (eds), Evolutionary History and Diversity of Australian Mammals. Australian Mammalogy 21: 1–45.Google Scholar
Godthelp, H. (2001). The Australian rodent fauna, flotilla’s flotsam or just fleet footed? In Metcalfe, I., Smith, J. M. B., Morwood, M. and Davidson, I. (eds), Faunal and Floral Migrations and Evolution in S.E. Asia–Australasia. Lisse, The Netherlands: A.A. Balkema, pp. 319–322.Google Scholar
Gongora, J., Swan, A. B., Chong, A. Y. et al. (2012). Genetic structure and phylogeography of platypuses revealed by mitochondrial DNA. Journal of Zoology 286: 110–119.CrossRefGoogle Scholar
Goodman, S. M. (1994). Rattus on Madagascar and the dilemma of protecting the endemic rodent fauna. Conservation Biology 9: 450–453.CrossRefGoogle Scholar
Haering, R. and Fox, B. J. (1995). Habitat utilization patterns of sympatric populations of Pseudomys gracilicaudatus and Rattus lutreolus in coastal heathland: a multivariate analysis. Australian Journal of Ecology 20: 427–41.CrossRefGoogle Scholar
Haig, D. W. and Medd, D. (1996). Latest Miocene to Early Pliocene bathymetric cycles related to tectonism, Puri Anticline, Papuan Basin, Papua New Guinea. Australian Journal of Earth Sciences 43: 451–465.CrossRefGoogle Scholar
Haines, H., MacFarlane, W. V., Setchell, C. and Howard, B. (1974). Water turnover and pulmocutaneous evaporation of Australian desert dasyurids and murids. American Journal of Physiology 227: 958–963.Google ScholarPubMed
Hairston, N. G., Smith, F. E. and Slobodkin, L. B. (1960). Community structure, population control, and competition. American Naturalist 94: 421–425.CrossRefGoogle Scholar
Hand, S. J. (1984). Australia’s oldest rodents: master mariners from Malaysia. In Archer, M. and Clayton, G. (eds), Vertebrate Zoogeography and Evolution in Australasia. Perth, Australia: Hesperian Press, pp. 905–912.Google Scholar
Hand, S. J. (2006). Bat beginnings and biogeography: the Australasian record. In Merrick, J. R., Archer, M., Hickey, G. M. and Lee, M. S. Y. (eds), Evolution and Biogeography of Australasian Vertebrates. Sydney, Australia: Auscipub Pty Ltd., pp. 673–705Google Scholar
Hand, S. J., Novacek, M. J., Godthelp, H. and Archer, M. (1994). First Eocene bat from Australia. Journal of Vertebrate Paleontology 14: 375–381.CrossRefGoogle Scholar
Heinsohn, G. E. (1966). Ecology and reproduction of the Tasmanian bandicoots (Perameles gunnii and Isoodon obesulus). University of California Publications in Zoology 80: 1–96.Google Scholar
Helgen, K. M. (2005a). A new species of murid rodent (genus Mayermys) from south-eastern New Guinea. Mammalian Biology 70: 61–67.CrossRefGoogle Scholar
Helgen, K. M. (2005b). The amphibious murines of New Guinea (Rodentia, Muridae): the generic status of Baiyankamys and description of a new species of Hydromys. Zootaxa 913: 1–20.CrossRefGoogle Scholar
Helgen, K. M. (2007). A taxonomic and geographic overview of the mammal fauna of Papua. In Marshall, A. J. and Beehler, B. M. (eds), The Ecology of Papua. Pt 1. The Ecology of Indonesia Series. Volume V1. Singapore: Periplus Press, pp. 689–749.Google Scholar
Helgen, K. M. and Helgen, L. E. (2009). Biodiversity and biogeography of the moss-mice of New Guinea: a taxonomic revision of Pseudohydromys (Muridae: Murinae). Bulletin of the American Museum of Natural History 331: 230–313.CrossRefGoogle Scholar
Hill, K. C. and Gleadow, A. J. W. (1989). Uplift and thermal history of the Papuan Fold Belt, Papua New Guinea: apatite fission track analysis. Australian Journal of Earth Sciences 36: 515–539.CrossRefGoogle Scholar
Hoberg, E. P. and Brooks, D. R. (2008). A macroevolutionary mosaic: episodic host-switching, geographical colonization and diversification in complex host–parasite systems. Journal of Biogeography 35: 1533–1550.CrossRefGoogle Scholar
Hoch, E. and Holm, P. M. (1986). New K/Ar age determinations of the Awe Fauna Gangue, Papua New Guinea: consequences for Papuaustralian late Cenozoic biostratigraphy. Modern Geology 10: 181–195.Google Scholar
Hocknull, S. A. (2005). Ecological succession during the late Cainozoic of central eastern Queensland; extinction of a diverse rainforest community. Memoirs of the Queensland Museum 51: 39–122.Google Scholar
Hocknull, S. A., Zhao, J.-X., Feng, Y.-x. and Webb, G. E. (2007). Responses of Quaternary rainforest vertebrates to climate change in Australia. Earth and Planetary Science Letters 264: 317–331.CrossRefGoogle Scholar
Hodell, D. A., Elmstrom, K. M. and Kennett, J. P. (1986). Latest Miocene benthic d18O changes, global ice volume, sea level and the ‘Messinian salinity crisis’. Nature 320: 411–414.CrossRefGoogle Scholar
Hope, G. S. and Aplin, K. P. (2007). Palaeontology of Papua. In Marshall, A. J. and Beehler, B. M. (eds), The Ecology of Papua. Pt 1. The Ecology of Indonesia Series. Volume V1. Singapore: Periplus Press, pp. 246–254Google Scholar
Jansa, S., Barker, K. and Heaney, L. R. (2006). The pattern and timing of diversification of Philippine endemic rodents: evidence from mitochondrial and nuclear gene sequences. Systematic Biology 55: 73–88.CrossRefGoogle ScholarPubMed
Johnson, C. (2006). Australia’s Mammal Extinctions: A 50 000 Year History. Cambridge: Cambridge University Press.Google Scholar
Kitchener, D. J. (1982). Predictors of vertebrate species richness in nature reserves in the Western Australian wheatbelt. Australian Wildlife Research 9: 1–7.CrossRefGoogle Scholar
Kitchener, D. J., Chapman, A., Muir, B. G. and Palmer, M. (1980). The conservation value for mammals of reserves in the western Australian wheatbelt. Biological Conservation 18: 179–207.CrossRefGoogle Scholar
Korpimaki, E., Brown, P. R., Jacob, J. and Pech, R. P. (2004). The puzzles of population cycles and outbreaks of small mammals solved?BioScience 54: 1071–1079.CrossRefGoogle Scholar
Krajewski, C., Wroe, S. and Westerman, M. (2000). Molecular evidence for the pattern and timing of cladogenesis in dasyurid marsupials. Zoological Journal of the Linnean Society 130: 375–404.CrossRefGoogle Scholar
Krebs, C. J. (1996). Population cycles revisited. Journal of Mammalogy 77: 8–24.CrossRefGoogle Scholar
Lecompte, E., Aplin, K., Denys, C., et al. (2008). Phylogeny and biogeography of African Murinae based on mitochondrial and nuclear gene sequences, with a new tribal classification of the subfamily. BMC Evolutionary Biology 8: 199.CrossRefGoogle ScholarPubMed
Lee, A. K., Baverstock, P. R. and Watts, C. H. S. (1981). Rodents: the late invaders. In Keast, A. (ed.), Ecological Biogeography of Australia, Vol. 3. The Hague: Dr W. Junk, pp. 1521–1553.CrossRefGoogle Scholar
Letnic, M. and Dickman, C. R. (2005). The responses of small mammals to patches regenerating after fire and rainfall in the Simpson Desert, central Australia. Austral Ecology 30: 24–39.CrossRefGoogle Scholar
Levin, B. R., Lipsitch, M. and Bonhoeffer, S. (1999). Population biology, evolution, and infectious disease: convergence and synthesis. Science 283: 806–809.CrossRefGoogle ScholarPubMed
Lisiecki, L. E. and Raymo, M. E. (2007). Plio–Pleistocene climate evolution: trends and transitions in glacial cycle dynamics. Quaternary Science Reviews 26: 56–69.CrossRefGoogle Scholar
Lunney, D. (2008). Swamp rat. In Van Dyck, S. and Strahan, R. (eds), The Mammals of Australia, 3rd edn. Chatswood, Australia: Reed New Holland, pp. 690–692.Google Scholar
Luo, J. and Fox, B. J. (1995). Competitive effects of Rattus lutreolus on food resource use by Pseudomys gracilicaudatus. Australian Journal of Ecology 20: 481–489.Google Scholar
MacArthur, R. H. and Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton, NJ: Princeton University Press.Google Scholar
Mackness, B. S., Whitehead, P. W. and McNamara, G. C. (2000). New potassium–argon basalt date in relation to the Pliocene Bluff Downs Local Fauna, northern Australia. Australian Journal of Earth Sciences 47: 807–811.CrossRefGoogle Scholar
Macphail, M. K. (1996). Neogene environments in Australia, 1. Re-evaluation of microfloras associated with important early Pliocene marsupial remains at Grange Burn, southwest Victoria. Review of Palaeobotany and Palynology 92: 307–328.CrossRefGoogle Scholar
Maitz, W. E. and Dickman, C. R. (2001). Competition and habitat use in two species of native Australian Rattus: is competition intense, or important?Oecologia 128 : 526–538.CrossRefGoogle ScholarPubMed
Mansergh, I. M. and Broome, L. S. 1994. The Mountain Pygmy-possum of the Australian Alps. Sydney, Australia: University of New South Wales Press.Google Scholar
Maron, J. L. and Vilà, M. (2001). When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95: 361–373.CrossRefGoogle Scholar
Marshall, L. G. (1973). Fossil vertebrate faunas from the Lake Victoria region. National Museum of Victoria, Memoirs 34: 151–171.CrossRefGoogle Scholar
Megirian, D., Prideaux, G. J., Murray, P. F., and Smit, N. (2010). An Australian land mammal age biochronological scheme. Paleobiology 36: 658–671.CrossRefGoogle Scholar
Moro, D. and Bradshaw, S. D. (1999). Water and sodium requirements of field populations of house mice (Mus domesticus) and short-tailed mice (Leggadina lakedownensis) on Thevenard Island, in the arid Pilbara region of Western Australia. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 169: 419–428.CrossRefGoogle ScholarPubMed
Moro, D. and Morris, K. (2000). Movements and refugia of Lakeland Downs short-tailed mice, Leggadina lakedownensis, and house mice, Mus domesticus, on Thevenard Island, Western Australia. Wildlife Research 27: 11–20.CrossRefGoogle Scholar
Morton, S. R. (1985). Granivory in arid regions: comparison of Australia with North and South America. Ecology 66: 1859–1866.CrossRefGoogle Scholar
Morton, S. R. and Davies, P. H. (1983). Food of the zebra finch (Poephila guttata) and an examination of granivory in birds of the Australian arid zone. Australian Journal of Ecology 8: 235–243.CrossRefGoogle Scholar
Morton, S. R., Smith, D. M. Stafford, Dickman, C. R. et al. (2011). A fresh framework for the ecology of arid Australia. Journal of Arid Environments, 75, 313–329.CrossRefGoogle Scholar
Morwood, M. J., Aziz, F., O’Sullivan, P. et al. (1999). Archaeological and palaeontological research in central Flores, East Indonesia: results of fieldwork 1997–98. Antiquity 73: 273–286.CrossRefGoogle Scholar
Moseby, K. E., Reada, J. L., Patona, D. C. et al. (2011). Predation determines the outcome of 10 reintroduction attempts in arid South Australia. Biological Conservation 144: 2863–2872.CrossRefGoogle Scholar
Musser, A. M. (1998). Evolution, biogeography and palaeoecology of the Ornithorhynchidae. Australian Mammalogy 20: 147–162.Google Scholar
Musser, G. G. (1981). The Giant Rat of Flores and its relatives east of Borneo and Bali. Bulletin of the American Museum of Natural History 169: 67–176.Google Scholar
Musser, G. G. and Carleton, M. D. (2005). Family Muridae. In Wilson, D. E. and Reeder, D. M. (eds), Mammal Species of the World. A Taxonomic and Geographic Reference, 3rd edn. Baltimore, MD: Johns Hopkins University Press, pp. 501–755.Google Scholar
Musser, G. G. and Lunde, D. P. (2010). Systematic reviews of New Guinea Coccymys and ‘Melomys’ albidens (Muridae, Murinae) with descriptions of new taxa. Bulletin of the American Museum of Natural History, 329.Google Scholar
Musser, G. G., Helgen, K. M. and Lunde, D. P. (2008). Systematic review of New Guinea Leptomys (Muridae, Murinae) with descriptions of two new species. American Museum Novitates 3624: 1–60.CrossRefGoogle Scholar
Newsome, A. E. and Corbett, L. K. (1975). Outbreaks of rodents in central Australia: origins, declines and evolutionary considerations. In Prakash, I. and Ghosh, P. K. (eds), Rodents in Desert Environments. Monographiae Biologie. The Hague: Dr W. Junk, pp. 117–153.CrossRefGoogle Scholar
O’Connor, S., Barham, A., Aplin, K. et al.(2011). The power of paradigms: examining the evidential basis for early to mid-Holocene pigs and pottery in Melanesia. Journal of Pacific Archaeology 2: 1–25.Google Scholar
Orians, G. H. and Milewski, A. V. (2007). Ecology of Australia: the effects of nutrient-poor soils and intense fires. Biological Reviews 82: 393–423.CrossRefGoogle ScholarPubMed
Page, R. W. and McDougal, I. (1972). Ages of mineralization of gold and porphyry copper deposits in the New Guinean highlands. Economic Geology 67: 1034–1048.CrossRefGoogle Scholar
Pasveer, J. M. and Aplin, K. P. (1998). Late Pleistocene to Recent faunal succession and environmental change in lowland New Guinea: evidence from the Bird’s Head of Irian Jaya, Indonesia. Perspectives on the Bird’s Head Peninsula of Irian Jaya, Indonesia. Proceedings of an Interdisciplinary Conference. Leiden, The Netherlands: Rodopi Publishers, pp. 891–930.Google Scholar
Pearson, D. E., Potter, T. and Maron, J. L. (2012). Biotic resistance: exclusion of native rodent consumers releases populations of a weak invader. Journal of Ecology 100: 1383–1390.CrossRefGoogle Scholar
Pedersen, A. B., Jones, K. E., Nunn, C. L. and Altizer, S. (2007). Infectious diseases and extinction risk in wild mammals. Conservation Biology 21: 1269–1279.CrossRefGoogle ScholarPubMed
Pickering, J. and Norris, C. A. (1996). New evidence concerning the extinction of the endemic murid Rattus macleari from Christmas Island, Indian Ocean. Australian Mammalogy 19: 19–25.Google Scholar
Piper, K. J. (2007). Early Pleistocene mammals from the Nelson Bay Local Fauna, Portland, Victoria, Australia. Journal of Vertebrate Paleontology 27: 492–503.CrossRefGoogle Scholar
Plane, M. D. (1967). Stratigraphy and vertebrate fauna of the Otibanda Formation, New Guinea. Bulletin of the Bureau of Mineral Resources, Geology and Geophysics, Australia 85: 1–64.Google Scholar
Quarles van Ufford, A. and Cloos, M. (2005). Cenozoic tectonics of New Guinea. AAPG Bulletin 89: 119–140.CrossRefGoogle Scholar
Rajabi-Maham, H., Orth, A. and Bonhomme, F. (2008). Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent from Iran to Europe. Molecular Ecology 17: 627–641.CrossRefGoogle ScholarPubMed
Rowe, K. C., Aplin, K. P., Baverstock, P. R. and Moritz, C. (2011). Recent and rapid speciation with limited morphological disparity in the genus Rattus. Systematic Biology 60: 188–203.CrossRefGoogle ScholarPubMed
Rowe, K. C., Reno, M. L., Richmond, D. M., Adkins, R. M. and Steppan, S. J. (2008). Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): multilocus systematics of the old endemic rodents (Muroidea: Murinae). Molecular Phylogenetics and Evolution 47: 84–101.CrossRefGoogle Scholar
Serena, M., ed. (1994). Reintroduction Biology of Australian and New Zealand Fauna. Chipping Norton, UK: Surrey Beatty and Sons.
Schmidt, B., Coulson, G. and Di Stefano, J. (2010). Habitat partitioning among sympatric grey kangaroos and swamp wallabies in box-ironbark remnants. In Coulson, G. and Eldridge, M. (eds), Macropods: the Biology of Kangaroos, Wallabies and Rat-Kangaroos. Melbourne, Australia: CSIRO Publishing, pp. 219–230.Google Scholar
Simmons, G., Young, P., McKee, J., Meers, J. and Mizuno, T. (2011). The epidemiology of koala retrovirus. Juiekigaku Zasshi 15: 1–9.Google Scholar
Singleton, G. R. (2008). House mouse. In Van Dyck, S. and Strahan, R. (eds), The Mammals of Australia, 3rd edn. Chatswood, Australia: Reed New Holland, pp. 706–707.Google Scholar
Singleton, G. R. and Redhead, T. D. (1990). Structure and biology of house mouse populations that plague irregularly: an evolutionary perspective. Biological Journal of the Linnean Society 41: 285–300.CrossRefGoogle Scholar
Singleton, G. R., Belmain, S., Brown, P. R., Aplin, K., and Htwe, N. M. (2010). Impacts of rodent outbreaks on food security in Asia. Wildlife Research 37: 355–359.CrossRefGoogle Scholar
Singleton, G. R., Brown, P. R., Pech, R. P. et al. (2005). One hundred years of eruptions of house mice in Australia: a natural biological curio. Biological Journal of the Linnean Society 84: 617–627.CrossRefGoogle Scholar
Spratt, D. M. (1990). The role of helminths in the biological control of mammals. International Journal for Parasitology 20: 543–550.CrossRefGoogle ScholarPubMed
Stearns, S. C. (1977). The evolution of life-history traits: a critique of the theory and a review of the data. Annual Review of Ecology and Systematics 8: 145–171.CrossRefGoogle Scholar
Steppan, S. J, Adkins, R. M. and Anderson, J. (2004). Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology 53: 533–553.CrossRefGoogle ScholarPubMed
Steppan, S. J., Zawadski, C. and Heaney, L. R. (2003). Molecular phylogeny of the endemic Philippine rodent Apomys (Muridae) and the dynamics of diversification in an oceanic archipelago. Biological Journal of the Linnean Society 80: 699–715.CrossRefGoogle Scholar
Stokes, V. L., Banks, P. B., Pech, R. P. and Spratt, D. M. (2009). Competition in an invaded rodent community reveals black rats as a threat to native bush rats in littoral rainforest of south-eastern Australia. Journal of Applied Ecology 46: 1239–1247.CrossRefGoogle Scholar
Sutherland, E. F. and Dickman, C. R. (1999). Mechanisms of recovery after fire by rodents in the Australian environment: a review. Wildlife Research 26: 405–419.CrossRefGoogle Scholar
Swadling, P. (1996). Plumes from Paradise, Trade Cycles in Outer Southeast Asia and Their Impact on New Guinea and Nearby Islands Until 1920. Queensland, Australia: Papua New Guinea National Museum in association with Robert Brown and Associates Pty Ltd.Google Scholar
Tate, G. H. H. (1951). Results of the Archbold Expedition. No. 65. The rodents of Australia and New Guinea. Bulletin of the American Museum of Natural History 72: 501–728.Google Scholar
Taylor, J. M. and Horner, B. E. (1973). Results of the Archbold Expeditions, No. 98. Systematics of Australian Rattus (Rodentia, Muridae). Bulletin of the American Museum of Natural History 150: 1–130.Google Scholar
Taylor, J. M., Calaby, J. H. and Van Deusen, H. M. (1982). A revision of the genus Rattus (Rodentia, Muridae) in the New Guinea region. Bulletin of the American Museum of Natural History 173: 177–336.Google Scholar
Tedford, R. H. (1994). Succession of Pliocene through medial Pleistocene mammal faunas of southeastern Australia. Records of the South Australian Museum 27: 79–93.Google Scholar
Tedford, R. H., Wells, R. T. and Barghoorn, S. F. (1992). Tirari Formation and contained faunas, Pliocene of the Lake Eyre Basin, South Australia. The Beagle, Records of the Northern Territory Museum of Arts and Sciences 9: 173–194.Google Scholar
Terashima, M., Furusawa, S., Hanzawa, N. et al. (2006). Phylogeographic origin of Hokkaido house mice (Mus musculus) as indicated by maternal paternal and biparental inheritance molecules. Heredity 96: 128–138.CrossRefGoogle Scholar
Turnbull, W. D. and LundeliusJr., E. L. (1970). The Hamilton Fauna: a late Pliocene mammalian record from the Grange Burn, Victoria. Fieldiana Geology 19: 1–163.Google Scholar
Van der Meij, M. A. A., de Bakker, M. A. G. and Bout, R. G. (2005). Phylogenetic relationships of finches and allies based on nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution 34: 97–105CrossRefGoogle ScholarPubMed
Viggers, K. L., Lindenmayer, D. B. and Spratt, D. M. (1993). The importance of disease in reintroduction programmes. Wildlife Research 20: 687–698.CrossRefGoogle Scholar
Wakefield, N. A. (1960a). Recent mammal bones in the Buchan District. Part 1. Victorian Naturalist 77: 164–178.Google Scholar
Wakefield, N. A. (1960b). Recent mammal bones in the Buchan District. Part 2. Victorian Naturalist 77: 227–240.Google Scholar
Watts, C. H. S. and Aplin, K. P. (2008). Brown rat. In Van Dyck, S. and Strahan, R. (eds), The Mammals of Australia, 3rd edn. Chatswood, Australia: Reed New Holland, pp. 706–707.Google Scholar
Watts, C. H. S. and Aslin, H. J. (1981). The Rodents of Australia. Sydney, Australia: Angus and Robertson.Google Scholar
Westerman, M., Kear, B. P., Aplin, K. P. et al. (2012). Phylogenetic relationships of living and recently extinct bandicoots based on nuclear and mitochondrial DNA sequences. Molecular Phylogenetics and Evolution 62: 97–108.CrossRefGoogle ScholarPubMed
White, J. P., Clark, G. and Bedford, S. (2000). Distribution present and past of Rattus praetor in the Pacific and its implications. Pacific Science 54: 105–117.Google Scholar
Whitelaw, M. J. (1991). Magnetic polarity stratigraphy of Pliocene and Pleistocene fossil vertebrate localities in southeastern Australia. Geological Society of America, Bulletin 103: 1493–1503.2.3.CO;2>CrossRefGoogle Scholar
Withers, P. C., Lee, A. K. and Martin, R. W. (1979). Metabolism, respiration and evaporative water loss in the Australian hopping-mouse Notomys alexis (Rodentia: Muridae). Australian Journal of Zoology 27: 195–204.CrossRefGoogle Scholar
Woodburne, M. O. and Clemens, W. A. (1986). Revision of the Ektopodontidae (Mammalia; Marsupialia; Phalangeroidea) of the Australian Neogene. University of California Publications in Geological Science 131.Google Scholar
Wyatt, K. B., Campos, P. F., Gilbert, M. T. P., et al. (2008). Historical mammal extinction of Christmas Island (Indian Ocean) correlates with introduced infectious disease. PLoS One 3(11): e3602.CrossRefGoogle ScholarPubMed
Yosida, T. H. (1980). Cytogenetics of the Black Rat: Karyotype Evolution and Species Differentiation. Toyko: University of Tokyo Press.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×