Published online by Cambridge University Press: 05 June 2012
In this chapter, we will study the spanning tree problem in undirected graphs. First, we will study an exact linear programming formulation and show its integrality using the iterative method. To do this, we will introduce the uncrossing method, which is a very powerful technique in combinatorial optimization. The uncrossing method will play a crucial role in the proof and will occur at numerous places in later chapters. We will show two different iterative algorithms for the spanning tree problem, each using a different choice of 1-elements to pick in the solution. For the second iterative algorithm, we show three different correctness proofs for the existence of a 1-element in an extreme point solution: a global counting argument, a local integral token counting argument and a local fractional token counting argument. These token counting arguments will be used in many proofs in later chapters.
We then address the degree-bounded minimum-cost spanning tree problem. We show how the methods developed for the exact characterization of the spanning tree polyhedron are useful in designing approximation algorithms for this NP-hard problem. We give two additive approximation algorithm: The first follows the first approach for spanning trees and naturally generalizes to give a simple proof of the additive two approximation result of Goemans [59]; the second follows the second approach for spanning trees and uses the local fractional token counting argument to provide a very simple proof of the additive one approximation result of Singh and Lau [125].
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.