Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-17T10:04:29.776Z Has data issue: false hasContentIssue false

11 - The genetics of latent inhibition: studies of inbred and mutant mice

from Current topics in latent inhibition research

Published online by Cambridge University Press:  04 August 2010

Robert Lubow
Affiliation:
Tel-Aviv University
Ina Weiner
Affiliation:
Tel-Aviv University
Get access

Summary

Latent inhibition (LI) refers to the phenomenon of reduced conditioning seen after nonreinforced stimulus preexposure. Animal studies of LI typically employ a between-subject procedure to demonstrate LI. In such procedures, one group of subjects is preexposed (PE) to the to-be-conditioned stimulus (CS), whereas another group of subjects is not preexposed (NPE). The CS is subsequently paired with an unconditioned stimulus (US). LI is measured by the difference in some index of learning (e.g., conditioned fear) of the CS–US association between the PE and NPE groups, and is manifested as poorer learning in the PE group. As detailed in several chapters in the present volume by Weiner, Lubow, Kumari and Ettinger, Escobar and Miller and others, a number of theories have been put forward to explain LI as a form of learned inattention in which subjects learn to ignore or reduce attention to irrelevant stimuli (Lubow,1989). LI has also been characterized as a form of proactive interference in which the inattentional response (acquired as a consequence of a “CS–no-consequence” association) interferes with, or competes for, the expression or retrieval of the conditioned response (resulting from an effective CS–US association) (Miller & Escobar, 2009; Weiner, 1990, 2003, 2009).

Deficits in attention and information processing are central features in schizophrenia, and these deficits may lead to stimulus overload, cognitive fragmentation and thought disorder common in this disorder (Freedman et al., 1991; Perry et al., 1999; Strauss et al., 1993).

Type
Chapter
Information
Latent Inhibition
Cognition, Neuroscience and Applications to Schizophrenia
, pp. 225 - 251
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, N. C., Bagade, S., McQueen, M. B., et al. (2008). Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the Sz Gene database. Nature Genetics, 40, 827–834.CrossRefGoogle Scholar
Atkinson, B. N., Bell, S. C., Vivo, M., et al. (2001). ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Molecular Pharmacology, 60, 1414–1420.CrossRefGoogle ScholarPubMed
Awad, H., Hubert, G. W., Smith, Y., Levey, A. I., & Conn, P. J. (2000). Activation of metabotropic glutamate receptor 5 has direct excitatory effects and potentiates NMDA receptor currents in neurons of the subthalamic nucleus. Journal of Neuroscience, 20, 7871–7879.CrossRefGoogle ScholarPubMed
Barr, C. L., Feng, Y., Wigg, K., et al. (2000). Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Molecular Psychiatry, 5, 405–409.CrossRefGoogle ScholarPubMed
Baruch, I., Hemsley, D., & Gray, J. A. (1988). Differential performance of acute and chronic schizophrenics in a latent inhibition task. Journal of Nervous and Mental Disease, 176, 598–606.CrossRefGoogle Scholar
Bay-Richter, C., O'Tuathaigh, C. M., O'Sullivan, G., et al. (2008). Enhanced latent inhibition in dopamine receptor-deficient mice is sex-specific for the D1 but not D2 receptor subtype: implications for antipsychotic drug action. International Journal of Neuropsychopharmacology, 17, 1–12.Google Scholar
Becker, J. B. (1999). Gender differences in dopaminergic function in striatum and nucleus accumbens. Behavioural Pharmacology, 18, 583–589.Google Scholar
Berger, A. J., Dieudonne, S., & Ascher, P. (1998). Glycine uptake governs glycine site occupancy at NMDA receptors of excitory synapses. Journal of Neurophysiology, 80, 3336–3340.CrossRefGoogle Scholar
Bethus, I., Lemaire, V., Lhomme, M., & Goodall, G. (2005). Does prenatal stress affect latent inhibition? It depends on the gender. Behavioural Brain Research, 158, 331–338.CrossRefGoogle ScholarPubMed
Blasi, G., & Bertolino, A. (2006). Imaging genomics and response to treatment with antipsychotics in schizophrenia. NeuroRx, 3, 117–130.CrossRefGoogle Scholar
Brophy, K., Hawi, Z., Kirley, A., Fitzgerald, M., & Gill, M. (2002). Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): Evidence of linkage and association in the Irish population. Molecular Psychiatry, 7, 913–917.CrossRefGoogle ScholarPubMed
Bruno, K. J., Freet, C. S., Twining, R. C., et al. (2007). Abnormal latent inhibition and impulsivity in coloboma mice, a model of ADHD. Neurobiology of Disease, 25, 206–216.CrossRefGoogle ScholarPubMed
Buonanno, A., & Fischbach, G. D. (2001). Neuregulin and ErbB receptor signaling pathways in the nervous system. Current Opinion in Neurobiology, 11, 287–296.CrossRefGoogle Scholar
Camargo, L. M., Collura, V., Rain, J. C., et al. (2007). Disrupted in schizophrenia 1 interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Molecular Psychiatry, 12, 74–86.CrossRefGoogle Scholar
Campbell, D. B., Ebert, P. J., Skelly, T., et al. (2008). Ethnic stratification of the association of RGS4 variants with antipsychotic treatment response in schizophrenia. Biological Psychiatry, 63, 32–41.CrossRefGoogle Scholar
Cannon, T. D., Hennah, W., Erp, T. G., et al. (2005). Association of DISC1/TRAX haplotypes with schizophrenia, reduced prefrontal gray matter, and impaired short and long-term memory. Archives of General Psychiatry, 62, 1205–1213.CrossRefGoogle ScholarPubMed
Carlsson, A., Waters, N., Holm-Waters, S., et al. (2001). Interaction between monoamines, glutamate, and GABA in schizophrenia: new evidence. Annual Review of Pharmacology and Toxicology, 41, 237–260.CrossRefGoogle Scholar
Carroll, L. S., Kendall, K., O'Donovan, M. C., Owen, M. J., & Williams, N. M. (2009). Evidence that putative ADHD low risk alleles at SNAP25 may increase the risk of schizophrenia. American Journal of Medical Genetics B, Neuropsychiatric Genetics, 150, 893–899.CrossRefGoogle Scholar
Catts, V. S., Catts, S. V., McGrath, J. J., et al. (2006). Apoptosis and schizophrenia: a pilot study based on dermal fibroblast cell lines. Schizophrenia Research, 84, 20–28.CrossRefGoogle ScholarPubMed
Chang, T., Meyer, U., Feldon, J., & Yee, B. K. (2007). Disruption of the US pre-exposure effect and latent inhibition in two-way active avoidance by systematic amphetamine in C57BL/6 mice. Psychopharmacology, 191, 211–221.CrossRefGoogle Scholar
Chubb, J. E., Bradshaw, N. J., Soares, D. C., Porteous, D. J., & Millar, J. K. (2008). The DISC locus in psychiatric illness. Molecular Psychiatry, 13, 36–64.CrossRefGoogle ScholarPubMed
Chumakov, I., Blumenfeld, M., Guerassimenko, O., et al. (2002). Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 99, 13675–13680.CrossRefGoogle Scholar
Clapcote, S. J., Lipina, T. V., Millar, K. J., et al. (2007). Behavioral phenotypes of Disc1 missense mutations in mice. Neuron, 54, 387–402.CrossRefGoogle ScholarPubMed
Consolo, S., Bertorelli, R., Russi, G., Zambelli, M., & Ladinsky, H. (1994). Serotonergic facilitation of acetylcholine release in vivo from rat dorsal hippocampus via serotonin 5-HT3 receptors. Journal of Neurochemistry, 62, 2254–2261.CrossRefGoogle ScholarPubMed
Cookson, W., Liang, L., Abecasis, G., Moffatt, M., & Lathrop, M. (2009). Mapping complex disease traits with global gene expression. Nature Reviews Genetics, 10, 184–194.CrossRefGoogle ScholarPubMed
Corvin, A. P., Morris, D. W., McGhee, K., et al. (2004). Confirmation and refinement of an ‘at-risk’ haplotype for schizophrenia suggests the EST cluster, Hs.97362, as a potential susceptibility gene at the Neuregulin-1 locus. Molecular Psychiatry, 9, 208–213.CrossRefGoogle ScholarPubMed
Coyle, J. T. (1996). The glutamatergic dysfunction hypothesis for schizophrenia. Harvard Review of Psychiatry, 3, 241–253.CrossRefGoogle Scholar
Craddock, N., O'Donovan, M. C., & Owen, M. J. (2005). The genetics of schizophrenia and bipolar disorder: dissecting psychosis. Journal of Medical Genetics, 42, 193–204.CrossRefGoogle ScholarPubMed
Crestani, F., Assandri, R., Täuber, M., Martin, J. R., & Rudolph, U. (2002). Contribution of the alpha1-GABA(A) receptor subtype to the pharmacological actions of benzodiazepine site inverse agonists. Neuropharmacology, 43, 679–684.CrossRefGoogle ScholarPubMed
Deckwerth, T. L., Elliott, J. L., Knudson, C. M., et al. (1996). BAX is required for neuronal death after trophic factor deprivation and during development. Neuron, 17, 401– 411.CrossRefGoogle ScholarPubMed
Luca, V., Wang, H., Squassina, A., et al. (2004). Linkage of M5 muscarinic and alpha7-nicotinic receptor genes on 15q13 to schizophrenia. Neuropsychobiology, 50, 124–127.CrossRefGoogle Scholar
Boer, J. A., Megen, H. J., Fleischhacker, W. W., et al. (1995). Differential effects of the D1-DA receptor antagonist SCH39166 on positive and negative symptoms of schizophrenia. Psychopharmacology (Berlin), 121, 317–322.CrossRefGoogle Scholar
Desbonnet, L., Waddington, J. L., & O'Tuathaigh, C. M. (2009). Mutant models for genes associated with schizophrenia. Biochemical Society Transactions, 37, 308–312.CrossRefGoogle ScholarPubMed
DeVietti, T. L., Bauste, R. L., Nutt, G., & Barrett, O. V. (1987). Latent inhibition: a trace conditioning phenomenon?Learning and Motivation, 8, 185–201.CrossRefGoogle Scholar
Devon, R. S., Anderson, S., Teague, P. W., et al. (2001a). The genomic organisation of the metabotropic glutamate receptor subtype 5 gene, and its association with schizophrenia. Molecular Psychiatry, 6, 311–314.CrossRefGoogle ScholarPubMed
Devon, R. S., Anderson, S., Teague, P. W., et al. (2001b). Identification of polymorphisms within Disrupted in Schizophrenia and Disrupted in Schizophrenia 2, and an investigation of their association with schizophrenia and bipolar affective disorder. Psychiatry Genetics, 11, 71–78.CrossRefGoogle ScholarPubMed
Doherty, A. J., Palmer, M. J., Henley, J. M., Collingridge, G. L., & Jane, D. E. (1997). (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGluR5, but no mGluR1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology, 36, 265–267.CrossRefGoogle Scholar
Duffy, S., Labrie, V., & Roder, J. C. (2008). D-serine augments NMDA-NR2B receptor-dependent hippocampal long-term depression and spatial reversal learning. Neuropsychopharmacology, 33, 1004–1018.CrossRefGoogle ScholarPubMed
Falls, D. L. (2003). Neuregulins: functions, forms and signaling strategies. Experimental Cell Research, 284, 14–30.CrossRefGoogle ScholarPubMed
Freedman, R., Waldo, M., Bickford-Wilmer, P., & Nagamoto, H. (1991). Elementary neuronal dysfunctions in schizophrenia. Schizophrenia Research, 4, 233–243.CrossRefGoogle Scholar
Gerber, D. J., Hall, D., Miyakawa, T., et al. (2003). Evidence for association of schizophrenia with genetic variation in the 8p21.3 gene, PPP3CC, encoding the calcineurin gamma subunit. Proceedings of the National Academy of Sciences of the United States of America, 100, 8993–8998.CrossRefGoogle ScholarPubMed
Gerdjikov, T. V., Rudolph, U., Keist, R., et al. (2008). Hippocampal alpha 5 subunit-containing GABA A receptors are involved in the development of the latent inhibition effect. Neurobiology of Learning & Memory, 89, 87–94.CrossRefGoogle ScholarPubMed
Gerlai, R., Pisacane, P., & Erickson, S. (2000). Heregulin, but not ErbB2 or ErbB3, heterozygous mutant mice exhibit hyperactivity in multiple behavioral tasks. Behavioural Brain Research, 109, 219–227.CrossRefGoogle ScholarPubMed
Goff, D. C., & Coyle, J. T. (2001). The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. American Journal of Psychiatry, 158, 1367–1377.CrossRefGoogle ScholarPubMed
Goldstein, J. M., Seidman, C. J., O'Brien, L. M., et al. (2002). Impact of normal sexual dimorphisms on sex differences in structural brain abnormalities in schizophrenia assessed by magnetic resonance imaging. Archives of General Psychiatry, 59, 154–164.CrossRefGoogle ScholarPubMed
Goltsov, A. Y., Loseva, J. G., Andreeva, T. V., et al. (2006). Polymorphism in the 5¢-promoter region of serine racemase gene in schizophrenia. Molecular Psychiatry, 11, 325–326.CrossRefGoogle Scholar
Gould, J., & Wehner, J. M. (1999). Genetic influence on latent inhibition. Behavioral Neuroscience, 113, 1291–1296.CrossRefGoogle Scholar
Groth, R. D., Dunbar, R. L., & Mermelstein, P. G. (2003). Calcineurin regulation of neuronal plasticity. Biochemical and Biophysical Research Communications, 311, 1159–1171.CrossRefGoogle ScholarPubMed
Guilin, O., Abi-Dargham, A., & Laruelle, M. (2007). Neurobiology of dopamine in schizophrenia. International Review of Neurobiology, 78, 1–39.CrossRefGoogle Scholar
Hahn, C. G., Wang, H. Y., Cho, D. S., et al. (2006). Altered neuregulin 1-erbB4 signalling contributes to NMDA receptor hypofunction in schizophrenia. Nature Medicine, 12, 824–828.CrossRefGoogle Scholar
Harrell, A. V., & Allan, A. M. (2003). Improvements in hippocampal-dependent learning and decremental attention in 5-HT3 receptor overexpressing mice. Learning & Memory, 10, 410–419.CrossRefGoogle ScholarPubMed
Harrison, P. J., & Weinberger, D. R. (2005). Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Molecular Psychiatry, 10, 40–68.CrossRefGoogle ScholarPubMed
Hashimoto, R., Straub, R. E., Weickert, C. S., et al. (2004). Expression analysis of neuregulin-1 in the dorsolateral prefrontal cortex in schizophrenia. Molecular Psychiatry, 9, 299–307.CrossRefGoogle Scholar
Hauser, J., Rudolph, U., Keist, R., et al. (2005). Hippocampal alpha5 subunit-containing GABAA receptors modulate the expression of prepulse inhibition. Molecular Psychiatry, 10, 201–207.CrossRefGoogle ScholarPubMed
Hennah, W., Tuulio-Henriksson, A., Paunio, T., et al. (2005). A haplotype within the DISC1 gene is associated with visual memory functions in families with high density of schizophrenia. Molecular Psychiatry, 10, 1097–1103.CrossRefGoogle ScholarPubMed
Hess, E. J., Collins, K. A., & Wilson, M. C. (1996). Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation. Journal of Neuroscience, 16, 3104–3111.CrossRefGoogle ScholarPubMed
Hess, E. J., Jinnah, H. A., Kozak, C. A., & Wilson, M. C. (1992). Spontaneous locomotor hyperactivity in a mouse mutant with a deletion including the Snap gene on chromosome 2. Journal of Neuroscience, 12, 2865–2874.CrossRefGoogle Scholar
Hikida, T., Jaaro-Peled, H., Seshadri, S., et al. (2007). Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 14501–14506.CrossRefGoogle Scholar
Hitzemann, B., Dains, K., Kanes, S., & Hitzemann, R. (1994). Further studies on the relationship between dopamine cell density and haloperidol-induced catalepsy. Journal of Pharmacology and Experimental Therapeutics, 271, 969–976.Google ScholarPubMed
Ibrahim, H. M., Hogg, A. J., Healy, D. J., et al. (2000). Ionotropic glutamate receptor binding and subunit mRNA expression in thalamic nuclei in schizophrenia. American Journal of Psychiatry, 157, 1811–1823.CrossRefGoogle Scholar
Jarskog, L. F., Selinger, E. S., Lieberman, J. A., & Gilmore, J. H. (2004). Apoptotic proteins in the temporal cortex in schizophrenia: high Bax/Bcl-2 ratio without caspase-3 activation. American Journal of Psychiatry, 161, 109–115.CrossRefGoogle ScholarPubMed
Javitt, D. C., Balla, A., Sershen, H., & Lajtha, A. (1999). Reversal of phencyclidine-induced effects by glycine and glycine transport inhibitors. Biological Psychiatry, 45, 668–679.CrossRefGoogle ScholarPubMed
Javitt, D. C., & Zukin, S. R. (1991). Recent advances in the phencyclidine model of schizophrenia. American Journal of Psychiatry, 148, 1301–1308.Google ScholarPubMed
Ji, X., Takahashi, N., Branko, A., et al. (2008). An association between serotonin receptor 3B gene (HTR3B) and treatment-resistant schizophrenia (TRS) in a Japanese population. Nagoya Journal of Medical Science, 70, 11–17Google Scholar
Jones, M. D., & Hess, E. J. (2003). Norepinephrine regulates locomotor hyperactivity in the mouse mutant coloboma. Pharmacology, Biochemistry & Behavior, 75, 209–216.CrossRefGoogle ScholarPubMed
Kapur, S., & Mamo, D. (2003). Half a century of antipsychotics and still a central role for dopamine D-2 receptors. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 27, 1081–1090.CrossRefGoogle Scholar
Kew, J. N. C., Koester, A., Moreau, J. L., et al. (2000). Functional consequences of reduction in NMDA receptor glycine affinity in mice carrying targeted point mutations in the glycine binding site. Journal of Neuroscience, 20, 4037–4049.CrossRefGoogle ScholarPubMed
Killcross, A. S., & Robbins, T. W. (1993). Differential effects of intra-accumbens and systematic amphetamine on latent inhibition using an on-baseline, within-subject conditioned suppression paradigm. Psychopharmacology, 110, 479–489.CrossRefGoogle Scholar
Klee, C. B., Draetta, G. F., & Hubbard, M. J. (1988). Calcineurin. Advances in Enzymology and Related Areas of Molecular Biology, 61, 149–200.Google ScholarPubMed
Kline, L., Decena, E., Hitzemann, R., & McCaughran, J.. (1998). Acoustic startle, prepulse inhibition, locomotion, and latent inhibition in the neuroleptic-responsive (NR) and neuroleptic-nonresponsive (NNR) lines of mice. Psychopharmacology (Berl.), 139, 322–331.CrossRefGoogle Scholar
Knable, M. B., Barci, B. M., Webster, M. J., Meador-Woodruff, J., & Torrey, E. F. (2004). Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Molecular Psychiatry, 9, 609–620.CrossRefGoogle ScholarPubMed
Koike, H., Arguello, P. A., Kvajo, M., Karayiorgou, M., & Gogos, J. A. (2006). Disc1 is mutated in the 129S6/SvEv strain and modulates working memory in mice. Proceedings of the National Academy of Sciences of the United States of America, 103, 3693–3697.CrossRefGoogle ScholarPubMed
Krystal, J. H., Karper, L. P., Seibyl, J. P., et al. (1994). Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Archives of General Psychiatry, 51, 199–214.CrossRefGoogle ScholarPubMed
Kumari, V. (2009). Latent inhibition and schizophrenia: A review of the empirical literature. In Lubow, R. E. and Weiner, I. (Eds.), Latent Inhibition: Data, Theories, and Applications to Schizophrenia. Cambridge: Cambridge University Press.Google Scholar
Kuno, T., Mukai, H., Ito, A., et al. (1992). Distinct cellular expression of calcineurin A-alpha and A-beta in rat brain. Journal of Neurochemistry, 58, 1643–1651.CrossRefGoogle ScholarPubMed
Kustanovich, V., Merriman, B., McGough, J., et al. (2003). Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Molecular Psychiatry, 8, 309–315.CrossRefGoogle ScholarPubMed
Labrie, V., Lipina, T., & Roder, J. C. (2008). Mice with reduced NMDA receptor glycine affinity model some of the negative and cognitive symptoms of schizophrenia. Psychopharmacology (Berlin), 200, 217–230.CrossRefGoogle ScholarPubMed
Law, A. J., Kleinman, J. E., Weinberger, D. R., & Weickert, C. S. (2007). Disease-associated intronic variants in the ErbB4 gene are related to altered ErbB4 splice variant expression in the brain in schizophrenia. Human Molecular Genetics, 16, 129–141.CrossRefGoogle Scholar
LeDoux, J. (2003). The emotional brain, fear, and the amygdala. Cellular and Molecular Neurobiology, 23, 727–738.CrossRefGoogle ScholarPubMed
Saux, M., Morissette, M., & Di Paolo, T. (2006). Erbeta mediates the estradiol increase of D2 receptors in rat striatum and nucleus accumbens. Neuropharmacology, 50, 451–457.CrossRefGoogle ScholarPubMed
Lewine, R. R., Walkert, E. F., Shurett, R., Caudle, J., & Haden, C. (1996). Sex differences in neuropsychological functioning among schizophrenic patients. American Journal of Psychiatry, 153, 1178–1184.Google ScholarPubMed
Lipina, T., Labrie, V., Weiner, I., & Roder, J. (2005). Modulators of the glycine site on NMDA receptors, D-serine and ALX 5407, display similar beneficial effects to clozapine in mouse models of schizophrenia. Psychopharmacology, 179, 54–67.CrossRefGoogle ScholarPubMed
Lipina, T., Weiss, K., & Roder, J. (2007). The Ampakine CX546 restores the prepulse inhibition and latent inhibition deficits in mGluR5 deficient mice. Neuropsychopharmacology, 32, 745–756.CrossRefGoogle ScholarPubMed
Lubow, R. E. (1989). Latent Inhibition and Conditioned Attentional Theory. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Lubow, R. E. (2009). Phylogenetic distribution of latent inhibition. In Lubow, R. E. and Weiner, I. (Eds.), Latent Inhibition: Data, Theories, and Applications to Schizophrenia. Cambridge: Cambridge University Press.Google Scholar
Lubow, R. E., Braunstein-Bercovitz, H., Blumenthal, O., Kaplan, O., & Toren, P. (2005). Latent inhibition and asymmetrical visual-spatial attention in children with ADHD. Child Neuropsychology, 11, 445–457.CrossRefGoogle ScholarPubMed
Mansuy, I. M. (2003). Calcineurin in memory and bidirectional plasticity. Biochemical and Biophysical Research Communications, 311, 1195–1208.CrossRefGoogle ScholarPubMed
Matsumoto, M., Yoshioka, M., Togashi, H., et al. (1995). Modulation of norepinephrine release by serotonergic receptors in the rat hippocampus as measured by in vivo microdialysis. Journal of Pharmacology and Experimental Therapeutics, 272, 1044–1051.Google ScholarPubMed
McMahon, L. L., & Kauer, J. A. (1997). Hippocampal interneurons are excited via serotonin-gated ion channels. Journal of Neurophysiology, 78, 2493–2502.CrossRefGoogle ScholarPubMed
Meador-Woodruff, J. H., Clinton, S. M., Beneyto, M., & McCullumsmith, R. E. (2003). Molecular abnormalities of the glutamate synapse in the thalamus in schizophrenia. Annals of the New York Academy of Sciences, 1003, 75–93.CrossRefGoogle Scholar
Meador-Woodruff, J. H., & Healy, D. J. (2000). Glutamate receptor expression in schizophrenia brain. Brain Research Interactive, 31, 288–294.CrossRefGoogle Scholar
Mei, L., & Xiong, W. C. (2008). Neuregulin 1 in neural development, synaptic plasticity and schizophrenia. Nature ReviewsNeuroscience, 9, 437–452.Google Scholar
Meyer, U., Feldon, J., Schedlowski, M., & Yee, B. K. (2005). Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neuroscience and Biobehavioral Reviews, 29, 913–947.CrossRefGoogle ScholarPubMed
Mill, J., Curran, S., Kent, L., et al. (2002). Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder. American Journal of Medical Genetics, 114, 269–271.CrossRefGoogle ScholarPubMed
Millan, M. J. (2005). N-methyl-D-aspartate receptors as a target for improved antipsychotic agents: novel insights and clinical perspectives. Psychopharmacology, 179, 30–53.CrossRefGoogle ScholarPubMed
Millar, J. K., Wilson-Annan, J. C., Anderson, S., et al. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 1415–1423.CrossRefGoogle ScholarPubMed
Miller, R. R., & Escobar, M. (2009). Latent inhibition as a performance effect. In Lubow, R. E. and Weiner, I. (Eds.), Latent Inhibition: Data, Theories, and Applications to Schizophrenia. Cambridge: Cambridge University Press.Google Scholar
Miyakawa, T., Leiter, L. M., Gerber, D. J., et al. (2003). Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 100, 8987–8992.CrossRefGoogle Scholar
Mohler, H., Rudoulph, U., Boison, D., et al. (2008). Regulation of cognition and symptoms of psychosis: focus on GABAA receptors and glycine transporter 1′. Pharmacology, Biochemistry and Behavior, 90, 58–64.CrossRefGoogle Scholar
Moran, P. M., Fischer, T. R., Hitchcock, J. M., & Moser, P. C. (1996). Effects of clozapine on latent inhibition in the rat. Behavioral Pharmacology, 7, 42–48.CrossRefGoogle ScholarPubMed
Moretti, L., Pentikäinen, O. T., Settimo, L., & Johnson, M. S. (2004). Model structures of the NMDA receptor subunit NR1 explain the molecular recognition of agonist and antagonist ligands. Journal of Structural Biology, 145, 205–215.CrossRefGoogle ScholarPubMed
Morita, Y., Ujike, H., Tanaka, Y., et al. (2006). A genetic variant of the serine racemase gene is associated with schizophrenia. Biological Psychiatry, 61, 1200–1203.CrossRefGoogle ScholarPubMed
Moser, P. C., Hitchcock, J. M., Lister, S., & Moran, P. M. (2000). The pharmacology of latent inhibition as an animal model of schizophrenia. Brain Research Reviews, 33, 275–307.CrossRefGoogle ScholarPubMed
Nayak, S. V., Ronde, P., Spier, A. D., Lummis, S. C. R., & Nichols, R. A. (1999). Calcium changes induced by presynaptic 5-hydroxytryptamine-3 serotonin receptors on isolated terminals from various regions of the rat brain. Neuroscience, 91, 107–117.CrossRefGoogle ScholarPubMed
Ng, D., Pitcher, G. M., Szilard, R. K., et al. (2009). Neto1 is a novel CUB-domain NMDA receptor-interacting protein required for synaptic plasticity and learning. Public Library of Sciences, Biology, 24, 7:e41.Google Scholar
Norton, N., Moskvina, V., Morris, D. W., et al. (2006). Evidence that interaction between neuregulin 1 and its receptor erbB4 increases susceptibility to schizophrenia. American Journal of Medical Genetics B: Neuropsychiatry Genetics, 141, 96–101.CrossRefGoogle Scholar
Numata, S., Ueno, S., Iga, J., et al. (2008). Positive association of the PDE4B (phosphodiesterase 4B) gene with schizophrenia in the Japanese population. Journal of Psychiatric Research, 43, 7–12.CrossRefGoogle ScholarPubMed
Ohnuma, T., Augood, S. J., Arai, H., McKenna, P. J., & Ernson, P. C. (1998). Expression of the human excitatory amino acid transporter 2 and metabotropic glutamate receptos 3 and 5 in the prefrontal cortex from normal individuals and patients with schizophrenia. Molecular Brain Research, 56, 207–217.CrossRefGoogle Scholar
Olijslagers, J., Werkman, T., McCreary, A., Kruse, C., & Wadman, W. (2006). Modulation of midbrain dopamine neurotransmission by serotonin, a versatile interaction between neurotransmitters and significance for antipsychotic drug action. Current Neuropharmacology, 4, 59–68.CrossRefGoogle ScholarPubMed
Ortells, M. O., & Lunt, G. G. (1995). Evolutionary history of the ligand-gated ion-channel superfamily of receptors. Trends in Neurosciences, 18, 121–127.CrossRefGoogle ScholarPubMed
Owen, E. H., Christensen, S. C., Paylor, R., & Wehner, J. M. (1997). Identification of quantitative trait loci involved in contextual and auditory-cued fear conditioning in BXD recombinant inbred strains. Behavioural Neuroscience, 111, 292–300.CrossRefGoogle ScholarPubMed
Peñas-Lledó, E. M., Dorado, P., Cáceres, M. C., Rubia, A., & Llerena, A. (2007). Association between T102C and A-1438G polymorphisms in the serotonin receptor 2A (5-HT2A) gene and schizophrenia: relevance for treatment with antipsychotic drugs. Clinical Chemistry and Laboratory Medicine, 45, 835–838.CrossRefGoogle ScholarPubMed
Perez, G. I., Jurisicova, A., Wise, L., et al. (2007). Absence of pro-apoptotic Bax protein extends fertility and alleviates post-menopausal health complications in aging females. Proceedings of the National Academy of Sciences of the United States of America, 104, 5229–5234.CrossRefGoogle Scholar
Perry, W., Geyer, M. A., & Braff, D. L. (1999). Sensorimotor gaiting and thought disturbance measured in close temporal proximity in schizophrenic patients. Archives of General Psychiatry, 56, 277–281.CrossRefGoogle Scholar
Petryshen, T. L., Middleton, F. A., Tahl, A. R., et al. (2005). Genetic investigation of chromosome 5q GABAA receptor subunit genes in schizophrenia. Molecular Psychiatry, 10, 1074–1088.CrossRefGoogle Scholar
Pickard, B. S., Thomson, P. A., Christoforou, A., et al. (2007). The PDE4B gene confers sex-specific protection against schizophrenia. Psychiatric Genetics, 17, 129–133.CrossRefGoogle Scholar
Pletnikov, M. V., Ayhan, Y., Nikolskaia, O., et al. (2008). Inducible expression of mutant human DISC1 in mice is associated with brain and behavioral abnormalities reminiscent of schizophrenia. Molecular Psychiatry, 13, 173–186.CrossRefGoogle ScholarPubMed
Ponder, C. A., Huded, C. P., Munoz, M. B, et al. (2008). Rapid selection response for contextual fear conditioning in a cross between C57BL/6J and A/J: behavioral, QTL and gene expression analysis. Behavioral Genetics, 38, 277–291.CrossRefGoogle Scholar
Ponder, C. A., Kliethermes, C. L., Drew, M. R., et al. (2007). Selection for contextual fear conditioning affects anxiety-like behaviors and gene expression. Genes Brain Behavior, 6, 736–749.CrossRefGoogle ScholarPubMed
Porteous, D. J., Thomson, P., Brandon, N. J., & Millar, J. K. (2006). The genetics and biology of Disc1—an emerging role in psychosis and cognition. Biological Psychiatry, 60, 123–131.CrossRefGoogle ScholarPubMed
Radcliffe, R. A., Lowe, M. V., & Wehner, J. M. (2000). Confirmation of contextual fear conditioning QTLs by short-term selection. Behavioral Genetics, 30, 183–191.CrossRefGoogle ScholarPubMed
Rao, S. G., Williams, G. V., & Goldman-Rakic, P. S. (2000). Destruction and creation of spatial tuning by disinhibition: GABA(A) blockade of prefrontal cortical neurons engaged by tuning working memory. Journal of Neuroscience, 20, 485–494.CrossRefGoogle ScholarPubMed
Reif, A., Schmitt, A., Fritzen, S., & Lesch, K. P. (2007). Neurogenesis and schizophrenia: dividing neurons in a divided mind?European Archives of Psychiatry and Clinical Neuroscience, 257, 290–299.CrossRefGoogle Scholar
Rimer, M., Barrett, D. W., Maldonado, M. A., Vock, V. M., & Gonzalez-Lima, F. (2005). Neuregulin-1 immunoglobulin-like domain mutant mice: clozapine sensitivity and impaired latent inhibition. Neuroreport, 16, 271–275.CrossRefGoogle ScholarPubMed
Ross, C. A., Margolis, R. L., Reading, S. A., Pletnikov, M., & Coyle, J. T. (2006). Neurobiology of schizophrenia. Neuron, 52, 139–153.CrossRefGoogle ScholarPubMed
Russig, H., Murphy, C. A., & Feldon, J. (2002). Clozapine and haloperidol reinstate latent inhibition following its disruption during amphetamine withdrawal. Neuropsychopharmacology, 26, 765–777.CrossRefGoogle ScholarPubMed
Schumacher, J., Jamra, R. A., Freudenberg, J., et al. (2004). Examination of G72 and D-amino acid oxidase as genetic risk factor for schizophrenia and bipolar affective disorder. Molecular Psychiatry, 9, 203–207.CrossRefGoogle ScholarPubMed
Shen, S., Lang, B., Nakamoto, C., et al. (2008). Schizophrenia-related neural and behavioral phenotypes in transgenic mice expressing truncated Disc1. Journal of Neuroscience, 28, 10893–10904.CrossRefGoogle ScholarPubMed
Silberberg, G., Darvasi, A., Pinkas-Kramarski, R., & Navon, R. (2006). The involvement of ErbB4 with schizophrenia: association and expression studies. American Journal of Medical Genetics B, Neuropsychiatric Genetics, 141, 142–148.CrossRefGoogle Scholar
Smith, K. E., Borden, L. A., Hartig, P. R., Branchek, T., & Weinshank, R. L. (1992). Cloning and expression of a glycine transporter reveal colocalization with NMDA receptors. Neuron, 8, 927–935.CrossRefGoogle ScholarPubMed
Smith, S. E. P., Li, J., Garbett, K., Mirnics, K., & Patterson, P. H. (2007). Maternal immune activation alters fetal brain development through interleukin-6. Journal of Neuroscience, 27, 10695–10702.CrossRefGoogle ScholarPubMed
Stefansson, H., Sigurdsson, E., Steinhorsdottir, V., et al. (2002). Neuregulin 1 and susceptibility to schizophrenia. American Journal of Human Genetics, 71, 877–892.CrossRefGoogle Scholar
Strauss, M. E., Buchanan, R. W., & Hale, J. (1993). Relations between attentional deficits and clinical symptoms in schizophrenic outpatients. Psychiatry Research, 47, 205–213.CrossRefGoogle ScholarPubMed
Sun, S., Wang, F., Wei, J., et al. (2008). Association between interleukin-6 receptor polymorphism and patients with schizophrenia. Schizophrenia Research, 102, 346–347.CrossRefGoogle ScholarPubMed
Sun, W., & Oppenheim, R. W. (2003). Response of motoneurons to neonatal sciatic nerve axotomy in Bax-knockout mice. Molecular and Cellular Neurosciences, 24, 875– 886.CrossRefGoogle ScholarPubMed
Takaishi, T., Saito, N., Kuno, T., & Tanaka, C. (1991). Differential distribution of the mRNA encoding two isoforms of the catalytic subunit of calcineurin in the rat brain. Biochemical and Biophysical Research Communications, 174, 393–398.CrossRefGoogle ScholarPubMed
Tandon, R., & Greden, J. F. (1989). Cholinergic hyperactivity and negative schizophrenia symptoms: a model of cholinergic/dopaminergic interactions in schizophrenia. Archives of General Psychiatry, 46, 745–753.CrossRefGoogle Scholar
Tecott, L. H., & Wehner, J. M. (2001). Mouse molecular genetic technologies: Promise for psychiatric research. Archives of General Psychiatry, 58, 995–1004.CrossRefGoogle ScholarPubMed
Thompson, P. M., Sower, A. C., & Perrone-Bizzozero, N. I. (1998). Altered levels of the synaptosomal associated protein SNAP-25 in schizophrenia. Biological Psychiatry, 43, 239–243.CrossRefGoogle Scholar
Tomppo, L., Hennah, W., Lahermo, P., et al. (2009). Association between genes of disrupted in Schizophrenia 1 (DISC1) interactors and schizophrenia supports the role of the DISC1 pathway in the etiology of major mental illnesses. Biological Psychiatry, 65, 1055–1062.CrossRefGoogle ScholarPubMed
Tovar, K. R., & Westbrook, G. L. (2002). Mobile NMDA receptors at hippocampal synapses. Neuron, 34, 255–264.CrossRefGoogle ScholarPubMed
Usall, J., Suarez, D., & Haro, J. M. (2007). Gender differences in response to antipsychotic treatment in outpatients with schizophrenia. Psychiatry Research, 153, 225–231.CrossRefGoogle ScholarPubMed
Berckel, B. N. M. (2003) Glutamate and schizophrenia. Current Neuropharmacology, 1, 351–370.CrossRefGoogle Scholar
Hooft, J. A., & Vijverberg, H. P. M. (2000). 5-HT3 receptors and neurotransmitter release in the CNS: a nerve ending story?Trends in Neurosciences, 23, 605–610.CrossRefGoogle ScholarPubMed
Volk, D. W., & Lewis, D. A. (2002). Impaired prefrontal inhibition in schizophrenia: relevance for cognitive dysfunction. Physiology & Behavior, 77, 501–505.CrossRefGoogle ScholarPubMed
Waddington, J. L., Corvin, A. P., Donohoe, G., et al. (2007). Functional genomics and schizophrenia: endophenotypes and mutant models. The Psychiatric Clinics of North America, 30, 365–399.CrossRefGoogle ScholarPubMed
Wang, H., Ng, K., Hayes, D., et al. (2004). Decreased amphetamine-induced locomotion and improved latent inhibition in mice mutant for the M5 muscarinic receptor gene found in the human 15q schizophrenia region. Neuropsychopharmacology, 29, 2126–2139.CrossRefGoogle ScholarPubMed
Wang, L., Yu, L., He, G., et al. (2007). Response of risperidone treatment may be associated with polymorphisms of HTT gene in Chinese schizophrenia patients. Neuroscience Letters, 414, 1–4.CrossRefGoogle ScholarPubMed
Warburton, E. C., Joseph, M. H., Feldon, J., Weiner, I., & Gray, J. A. (1994). Antagonism of amphetamine-induced disruption of latent inhibition in rats by haloperidol and ondansetron – implications for a possible antipsychotic action of ondansetron. Psychopharmacology, 114, 657–664.CrossRefGoogle ScholarPubMed
Wehner, J. M., Radcliffe, R. A., Rosmann, S. T., et al. (1997). Quantitative trait locus analysis of contextual fear conditioning in mice. Nature Genetics, 17, 331–334.CrossRefGoogle ScholarPubMed
Weiner, I. (1990). Neural substrate of latent inhibition: the switching model. Psychological Bulletin, 108, 442–461.CrossRefGoogle Scholar
Weiner, I. (2003). The “two-headed” latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology (Berl.), 169, 257–297.CrossRefGoogle ScholarPubMed
Weiner, I. (2009). The latent inhibition model of schizophrenia. In Lubow, R. E. and Weiner, I. (Eds.), Latent Inhibition: Data, Theories, and Applications to Schizophrenia. Cambridge: Cambridge University Press.Google Scholar
Weiner, D. M., Levey, A. I., & Brann, M. R. (1990). Expression of muscarinic acetylcholine and dopamine receptor mRNAs in rat basal ganglia. Proceedings of the National Academy of Sciences of the United States of America, 87, 7050–7054.CrossRefGoogle ScholarPubMed
Weiner, I., Lubow, R. E., & Feldon, J. (1988). Disruption of latent inhibition by acute administration of low doses of amphetamine. Pharmacology, Biochemistry & Behavior, 30, 871–878.CrossRefGoogle ScholarPubMed
Weiner, I., Schiller, D., & Gaisler-Salomon, I. (2003). Disruption and potentiation of latent inhibition by risperidone: the latent inhibition model of atypical antipsychotic action. Neuropsychopharmacology, 28, 499–509.CrossRefGoogle ScholarPubMed
Weiner, I., Shadach, E., Barkai, R., & Feldon, J. (1997). Haloperidol- and clozapine-induced enhancement of latent inhibition with extended conditioning: implications for the mechanism of action of neuroleptic drugs. Neuropsychopharmacology, 16, 42–50.CrossRefGoogle ScholarPubMed
White, F. A., Keller-Peck, C. R., Knudson, C. M., Korsmeyer, S. J., & Snider, W. D. (1998). Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. Journal of Neuroscience, 18, 1428–1439.CrossRefGoogle ScholarPubMed
Williams, J. H., Wellman, N. A., Geaney, D. P., et al. (1997). Haloperidol enhances latent inhibition in visual tasks in healthy people. Psychopharmacology, 133, 262–268.CrossRefGoogle ScholarPubMed
Wolpowitz, D., Mason, T. B., Dietrich, P., et al. (2000). Cysteine-rich domain isoforms of the neuregulin-1 gene are required for maintenance of peripheral synapses. Neuron, 25, 79–91.CrossRefGoogle ScholarPubMed
Wong, A. H., Buckle, C. E., & Tol, H. H. (2000). Polymorphisms in dopamine receptors: what do they tell us?European Journal of Pharmacology, 410, 183–203.CrossRefGoogle ScholarPubMed
Woo, T. U., Whitehead, R. E., Melchitzky, D. S., & Lewis, D. A. (1998). A subclass of prefrontal gamma-aminobutyric acid axon terminals are selectively altered in schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 95, 5341–5346.CrossRefGoogle Scholar
Xing, Q., Qian, X., Li, H., et al. (2007). The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. International Journal of Neuropsychopharmacology, 10, 631–637.CrossRefGoogle ScholarPubMed
Yamakura, T., & Shimoh, K. (1999). Subunit- and site-specific pharmacology of the NMDA receptor channel. Progress in Neurobiology, 59, 279–298.CrossRefGoogle ScholarPubMed
Yee, B. K., Balic, E., Singer, P., et al. (2006). Disruption of glycine transporter 1 restricted to forebrain neurons is associated with a procognitive and antipsychotic phenotypic profile. Journal of Neuroscience, 26, 3169–3181.CrossRefGoogle ScholarPubMed
Yee, B. K., Hauser, J., Dolgov, V. V., et al. (2004). GABA receptors containing the alpha5 subunit mediate the trace effect in aversive and appetitive conditioning and extinction of conditioned fear. European Journal of Neuroscience, 20, 1928–1936.CrossRefGoogle ScholarPubMed
Yeomans, J. S. (1995). Role of tegmental cholinergic neurons in dopaminergic activation, antimuscarinic psychosis and schizophrenia. Neuropsychopharmacology, 12, 3–16.CrossRefGoogle Scholar
Yeomans, J. S., Forster, G., & Blaha, C. (2001). M5 muscarinic receptors are needed for slow activation of dopamine neurons and for rewarding brain stimulation. Life Science, 68, 2449–2456.CrossRefGoogle ScholarPubMed
Zeng, H., Chattarji, S., Barbarosie, M., et al. (2001). Forebrain-specific calcineurin knockout selectively impairs bidirectional synaptic plasticity and working/episodic-like memory. Cell, 107, 617–629.CrossRefGoogle ScholarPubMed
Zhang, W., Yamada, M., Gomeza, J., Basile, A. S., & Wess, J. (2002). Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knockout mice. Journal of Neuroscience, 22, 6347–6352.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×