Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-15T09:25:17.288Z Has data issue: false hasContentIssue false

Chapter One - Physiological traits of the Greenland shark Somniosus microcephalus obtained during the TUNU-Expeditions to Northeast Greenland

from Part I - Extreme environments: responses and adaptation to change

Published online by Cambridge University Press:  28 September 2020

Guido di Prisco
Affiliation:
National Research Council of Italy
Howell G. M. Edwards
Affiliation:
University of Bradford
Josef Elster
Affiliation:
University of South Bohemia, Czech Republic
Ad H. L. Huiskes
Affiliation:
Royal Netherlands Institute for Sea Research
Get access

Summary

Arctic regions are inhabited by cold-adapted stenothermal or eurythermal species. Unlike in the Antarctic, eurythermal species predominate, because of opportunities for migrations to temperate latitudes. In the Antarctic sea, the modern chondrichthyan genera are scarcely represented. In contrast, in the Arctic, sharks and skates are present with about 8% of the species

Type
Chapter
Information
Life in Extreme Environments
Insights in Biological Capability
, pp. 11 - 41
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ademollo, N., Patrolecco, L., Rauseo, J., Nielsen, J., Corsolini, S. (2018). Biaccumulation of nonylphenols and bisphenol A in the Greenland shark Somniosus microcephalus from the Greenland seawaters. Microchemical Journal, 136, 106112; http://dx.doi.org/10.1016/j.microc.2016.11.009.CrossRefGoogle Scholar
AMAP (2011). AMAP Assessment 2011: Mercury in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo.Google Scholar
Aschauer, H., Weber, R.E., Braunitzer, G. (1985). The primary structure of the hemoglobin of the dogfish shark (Squalus acanthias). Antagonistic effects of ATP and urea on oxygen affinity of an elasmobranch hemoglobin. Biological Chemistry Hoppe-Seyler, 366, 589599.CrossRefGoogle ScholarPubMed
Bacci, E. (1994). Ecotoxicology of Organic Contaminants. Lewis Publ., Boca Raton, FL, p. 164.Google Scholar
Beck, B., Mansfield, A.W. (1969). Observations on the Greenland shark, Somniosus microcephalus, in northern Baffin Island. Journal of the Fisheries Research Board of Canada, 26, 143145; https://doi.org/10.1139/f69-013.Google Scholar
Bell, M.A. (1993). Convergent evolution of nasal structure in sedentary elasmobranchs. Copeia, 1, 144158; doi:10.2307/1446305.Google Scholar
Berland, B. (1961). Copepod Ommatokoita elongata (Grant) in the eyes of the Greenland shark, a possible cause of mutual dependence. Nature, 191, 829830; https://doi.org/10.1038/191829a0.Google Scholar
Berenbrink, M., Koldkjaer, P., Kepp, O., Cossins, A.R. (2005). Evolution of oxygen secretion in fishes and the emergence of a complex physiological system. Science, 307, 17521757; doi.org/10.1126/science.1107793 PMID: 15774753.Google Scholar
Bigelow, H.B., Schroeder, W.C. (1948). Sharks. In: Tee-Van, J (ed.) Fishes of the Western North Atlantic, Part 1. Yale University, New Haven, CT, pp. 59546.Google Scholar
Branco, V., Vale, C., Canàrio, J., Dos Santos, N.M. (2007). Mercury and selenium in blue shark (Prionace glauca, L. Xiphias gladius, L. 1758) from two areas of the Atlantic Ocean. Environmental Pollution, 150, 373380.Google Scholar
Bustamante, P., Caurant, F., Flower, S.W., Miramand, P. (1998). Cephalopods are a vector for the transfer of cadmium to top marine predators in the north-east Atlantic Ocean. Sciences of the Total Environment, 220, 7180.Google Scholar
Butler, P.J., Metcalfe, J.D. (1988). Cardiovascular and respiratory systems. In: Shuttleworth, T.J. (ed.) Physiology of Elasmobranch Fishes. Springer-Verlag, Berlin, pp. 147.Google Scholar
Campana, S.E., Natanson, L.J., Myklevoll, S. (2002). Bomb dating and age determination of large pelagic sharks. Canadian Journal of Fisheries and Aquatic Sciences, 59, 450455.Google Scholar
Campana, S.E., Fisk, A.T., Klimley, A.P. (2015). Movements of Arctic and northwest Atlantic Greenland sharks (Somniosus microcephalus) monitored with archival satellite pop-up tags. Deep-Sea Research Part II, 115, 109115.CrossRefGoogle Scholar
Chong, K.T., Miyazaki, G., Morimoto, H., Oda, Y., Park, S.Y. (1999). Structures of the deoxy and CO forms of haemoglobin from Dasyatis akajei, a cartilaginous fish. Acta Crystallographica Section D Biological Crystallography, 55, 12911300.Google Scholar
Christiansen, J.S. (2012). The TUNU-Programme: Euro-Arctic Marine Fishes: Diversity and Adaptations. In: di Prisco, G and Verde, C (eds) Adaptation and Evolution in Marine Environments, Volume 1, From Pole to Pole. Springer-Verlag Berlin/Heidelberg, pp. 3550.Google Scholar
Christiansen, J.S., Mecklenburg, C.W., Karamushko, O.V. (2014). Arctic marine fishes and their fisheries in light of global change. Global Change Biology, 20(2), 352359.CrossRefGoogle ScholarPubMed
Collin, S. (2012). The neuroecology of cartilaginous fishes: sensory strategies for survival. Brain Behavior and Evolution, 80, 8096; doi:10.1159/000339870.Google Scholar
Corsolini, S. (2009). Industrial contaminants in Antarctic biota. Journal of Chromatography A, 1216, 598612.Google Scholar
Corsolini, S., Sarà, G. (2017). The trophic transfer of persistent pollutants (HCB, DDTs, PCBs) within polar marine food webs. Chemosphere, 177, 189199; https://doi.org/10.1016/j.chemo sphere.2017.02.116.Google Scholar
Corsolini, S., Ancora, S., Bianchi, N., et al. (2014). Organotropism of persistent organic pollutants and heavy metals in the Greenland shark Somniosus microcephalus in NE Greenland. Marine Pollution Bulletin, 87(1), 381387.Google Scholar
Corsolini, S., Pozo, K., Christiansen, J.S. (2016). Legacy and emergent POPs in a marine trophic web of NE Greenland fjords including the Greenland shark Somniosus microcephalus. Rendiconti Lincei Scienze Fisiche e Naturali, 27(S1), 201206.Google Scholar
Costantini, D., Smith, S., Killen, S.S., Nielsen, J., Steffensen, J.F. (2016). The Greenland shark: a new challenge for the oxidative stress theory of ageing? Comparative Biochemistry and Physiology, Part A. Molecular and Integrative Physiology, 203, 227232.Google Scholar
Cotronei, S., Pozo, K., Kohoutek, J., et al. (2017). HBCDs in the top predator Greenland shark (Somniosus microcephalus) from Greenland seawaters. 8th International Symposium on Flame Retardants: BFR 2017, May 7–10, 2017, York, UK; www.researchgate.net/publication/318882647 (accessed December 4, 2018).Google Scholar
Cotronei, S., Pozo, K., Audy, O., Přibylová, P., Corsolini, S. (2018a). Contamination profile of DDTs in the shark Somniosus microcephalus from Greenland Seawaters. Bulletin of Environmental Contamination and Toxicology, 101(1), 713; https://doi.org/10.1007/s00128-018–2371-z.Google Scholar
Cotronei, S., Pozo, K., Kohoutek, J., et al. (2018b). Occurrence of PBDEs in the Greenland Shark Somniosus microcephalus. Proceedings SCAR Open Science Conference ‘Where the Poles come together’, June 19–23, 2018, Davos, Switzerland, p. 1987.Google Scholar
Cox, J.P.L. (2013). Ciliary function in the olfactory organs of sharks and rays. Fish and Fisheries, 14, 364390; https://doi.org/10.1111/j.1467–2979.2012.00476.x.Google Scholar
Cuvin-Aralar, M.L.A., Furness, R.W. (1991). Mercury and selenium interaction: a review. Ecotoxicology and Environmental Safety, 21, 348364.Google Scholar
Dettaȉ, A., di Prisco, G., Lecointre, G., Parisi, E., Verde, C. (2008). Inferring evolution of fish proteins: the globin case study. Methods in Enzymology, 436, 539570; doi.org/10.1016/S0076-6879(08)36030–3 PMID:18237653.Google Scholar
Devine, B.M., Wheeland, L.J., Fisher, J.A. (2018). First estimates of Greenland shark (Somniosus microcephalus) local abundances in Arctic waters. Scientific Reports, 8, 974; https://doi.org/10.1038/s41598-017–19115-x.Google Scholar
Dietz, R., Rigét, F., Born, E.W. (2000). An assessment of selenium to mercury in Greenland marine animals. Sciences of the Total Environment, 245, 1524.Google Scholar
di Prisco, G., Condò, S.G., Tamburrini, M., Giardina, B. (1991). Oxygen transport in extreme environments. Trends in Biochemical Science, 16, 471474.Google Scholar
di Prisco, G., Eastman, J.T., Giordano, D., Parisi, E., Verde, C. (2007). Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution. Gene, 398, 143155; doi.org/10.1016/j.gene.2007.02.047 PMID: 17553637.Google Scholar
Domi, N., Bouquegneau, J.M., Das, K. (2005). Feeding ecology of five commercial shark species of the Celtic sea through stable isotope and trace metal analysis. Marine Environmental Research, 60, 551569.Google Scholar
Dryer, L., Graziadei, P.P.C. (1996). Synaptology of the olfactory bulb of an elasmobranch fish, Sphyrna tiburo. Anatomy and Embryology, 193, 101114; doi:10.1007/BF00214701.CrossRefGoogle ScholarPubMed
Edwards, J.E., Broell, F., Bushnell, P.G., et al. (2018). Advancing our understanding of long-lived species: A case study on the Greenland shark. Frontiers in Marine Science, https://www.frontiersin.org/articles/10.3389/fmars.2019.00087/fullGoogle Scholar
Endo, T., Hisamichi, Y., Koichi, H., et al. (2008). Hg, Zn and Cu levels in the muscle and liver of tiger sharks (Galeocerdo cuvier) from the coast of Ishigaki island, Japan: relationship between metal concentrations and body length. Marine Pollution Bulletin, 56, 17741780.Google Scholar
Fago, A., Wells, R.M.G., Weber, R.E. (1997). Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins. Comparative Biochemistry and Physiology, 118B, 319326.Google Scholar
Ferrando, S., Amaroli, A., Gallus, L., et al. (2019). Secondary folds determine the surface area in the olfactory organ of Chondrichthyes. Frontiers in Physiology. https://doi.org/10.3389/fphys.2019.00245Google Scholar
Ferrando, S., Gallus, L., Ghigliotti, L., et al. (2016). Gross morphology and histology of the olfactory organ of the Greenland shark Somniosus microcephalus. Polar Biology, 39, 13991409; https://doi.org/10.1007/s00300-015–1862-1.CrossRefGoogle Scholar
Ferrando, S., Gallus, L., Ghigliotti, L., et al. (2017a). Anatomy of the olfactory bulb in Greenland shark Somniosus microcephalus (Bloch & Schneider, 1801). Journal of Applied Ichthyology, 33, 263269; https://doi.org/10.1111/jai.13303.CrossRefGoogle Scholar
Ferrando, S., Gallus, L., Ghigliotti, L., et al. (2017b). Clarification of the terminology of the olfactory lamellae in Chondrichthyes. The Anatomical Record, 300, 20392045; doi:10.1002/ar.23632.CrossRefGoogle ScholarPubMed
Ferrari, M.C., Wisenden, B.D., Chivers, D.P. (2010). Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Canadian Journal of Zoology, 88, 698724; https://doi.org/10.1139/Z10-029.CrossRefGoogle Scholar
Fisher, W.K., Nash, A.R., Thompson, E.O. (1977). Haemoglobins of the shark, Heterodontus portusjacksoni. III. Amino acid sequence of the β-chain. Australian Journal of Biological Science, 30, 487506.Google Scholar
Fisk, A.T., Tittlemier, S., Pranschke, J., Norstrom, R.J. (2002). Using anthropogenic contaminants and stable isotopes to assess the feeding ecology of Greenland shark. Ecology, 83, 21622172.Google Scholar
Fisk, A. T., Lydersen, C., and Kovacs, K. M. (2012). Archival pop-off tag tracking of Greenland sharks Somniosus microcephalus in the High Arctic waters of Svalbard, Norway. Mar. Ecol. Prog. Ser. 468, 255265. doi: 10.3354/meps09962CrossRefGoogle Scholar
Fossheim, M., Primicerio, R., Johannesen, E., et al. (2015). Recent warming leads to rapid borealization of fish communities in the Arctic. Nature Climate Change, 5, 673, doi:10.1038/NCLIMATE2647.CrossRefGoogle Scholar
Fyhn, U.E.H., Sullivan, B. (1975). Elasmobranch hemoglobins: dimerization and polymerization in various species. Comparative Biochemistry and Physiology, 50, 119129.Google ScholarPubMed
Gebbink, W.A., Sonne, C., Dietz, R., et al. (2008). Tissue-specific congener composition of organohalogen and metabolite contaminants in East Greenland polar bears (Ursus maritimus). Environmental Pollution, 152, 621629; http://dx.doi.org/10.1016/j.envpol.2007.07.001.Google Scholar
Gillen, R., Riggs, A. (1973). The hemoglobins of a fresh-water teleost, Cichlasoma cyanoguttatum (Baird and Girard). II. Subunit structure and oxygen equilibria of the isolated components. Archives of Biochemistry and Biophysics, 154, 348359.Google Scholar
Giordano, D., Russo, R., Coppola, D., di Prisco, G., Verde, C. (2010). Molecular adaptations in haemoglobins of notothenioid fishes. Journal of Fish Biology, 76, 301318; doi.org/10.1111/j.1095–8649.2009.02528.xPMID: 20738709.Google Scholar
Hara, T.J. (1992). Mechanisms of olfaction. In: Hara, T.J. (ed.) Fish Chemoreception. Fish & Fisheries Series, vol 6. Springer, Dordrecht, pp. 150170.Google Scholar
Herbert, N.A., Skov, P.V., Tirsgaard, B., et al. (2017). Blood O2 affinity of a large polar elasmobranch, the Greenland shark Somniosus microcephalus. Polar Biology, 40(11), 22972305.CrossRefGoogle Scholar
Hodgson, E.S., Mathewson, R.F. (1978). Sensory Biology of Sharks, Skates, and Rays. U.S. Office of Naval Research, Arlington.Google Scholar
Hong, E.J., Choi, K.C., Jung, Y.W., Leung, P.C., Jeung, E.B. (2004). Transfer of maternally injected endocrine disruptors through breast milk during lactation induces neonatal Calbindin-D 9 k in the rat model. Reproductive Toxicology, 18(5), 661668.Google Scholar
Hussey, N.E., Orr, J., Fisk, A.T., et al. (2018). Mark report satellite tags (mrPATs) to detail large-scale horizontal movements of deep water species: First results for the Greenland shark (Somniosus microcephalus). Deep Sea Research Part I: Oceanographic Research Papers, 134, 3240.Google Scholar
IARC (1979). World Health Organization-International Agency for Research on Cancer. WHO-IARC-annual report 1979.Google Scholar
Ikonomou, M.G., Rayne, S., Fischer, M. (2002). Occurrence and congener profiles of polybrominated diphenyl ethers (PBDEs) in environmental samples from coastal British Columbia, Canada. Chemosphere, 46, 649663.CrossRefGoogle ScholarPubMed
Ingvaldsen, R., Gjøsæter, H., Ona, E., Michalsen, K. (2017). Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biology, 40(10), 21052111; DOI 10.1007/s00300-017–2115-2.CrossRefGoogle Scholar
Janák, K., Covaci, A., Voorspoels, S., Becher., G. (2005). Hexabromocyclododecane in marine species from the Western Scheldt Estuary: diastereoisomer-and enantiomer-specific accumulation. Environmental Science Technology, 39, 19871994.Google Scholar
Kannan, K., Corsolini, S., Focardi, S., Tanabe, S., Tatsukawa, R. (1996). Accumulation pattern of butyltin compounds in dolphin, tuna, and shark collected from Italian coastal waters. Archives of Environmental Contamination and Toxicology, 31, 1923.Google Scholar
Klaassen, C.D. (1986). Distribution, excretion, and absorption of toxicants. In: Klaassen, C.D., Amdur, M.O., Doull, J.M.D. (eds) Casarett and Doull’s Toxicology the Basic Science of Poisons. 3rd edition. Macmillan Publishing Company, New York, pp. 3363.Google Scholar
Koeman, J.H., Ven, W.S.M., Goeij, J.J.M., Tijoe, P.S., Haften, J.L. (1975). Mercury and selenium in marine mammals and birds. Sciences of the Total Environment, 3, 279287.Google Scholar
Komiyama, N.H., Shih, D.T., Looker, D., Tame, J., Nagai, K. (1991). Was the loss of the D helix in α-globin a functionally neutral mutation? Nature, 352, 349351; doi.org/10.1038/352349a0 PMID: 1852211.Google Scholar
Koy, K., Plotnick, R.E. (2007). Theoretical and experimental ichnology of mobile foraging. In: Miller, W III (ed.) Trace Fossils: Concepts, Problems and Prospects. Elsevier, Amsterdam, pp. 428441.Google Scholar
Kramer, D.L. (2001). Foraging behavior. In: Fox, C.W., Roff, D.A., Fairbairn, D.J. (eds) Evolutionary Ecology. Oxford University Press, Oxford, pp. 232246.Google Scholar
Leclerc, L.M., Lydersen, C., Haug, T., et al. (2011). Greenland sharks (Somniosus microcephalus) scavenge offal from minke (Balaenoptera acutorostrata) whaling operations in Svalbard (Norway). Polar Research, 30, 7342; doi:10.3402/polar.v30i0.7342.Google Scholar
Leclerc, L. M., Lydersen, C., Haug, T., Bachmann, L., Fisk, A. T., and Kovacs, K. M. (2012). A missing piece in the Arctic food web puzzle? Stomach contents of Greenland sharks sampled in Svalbard, Norway. Polar Biol. 35, 11971208. doi: 10.1007/s00300-012-1166-7 Google Scholar
Lynghammar, A., Christiansen, J.S., Mecklenburg, C.W., et al. (2013). Species richness and distribution of chondrichthyan fishes in the Arctic Ocean and adjacent seas. Biodiversity, 14, 5766.Google Scholar
MacNeil, M.A., McMeans, B.C., Hussey, N.E., et al. (2012). Biology of the Greenland shark Somniosus microcephalus. Journal of Fish Biology, 80, 9911018.Google Scholar
Malins, D.C., Barone, L. (1970). The ether bond in marine lipids. In: Snyder, F (ed.) Ether Lipids, Chemistry and Biology. Academic Press, Boca Raton, FL, pp. 297312.Google Scholar
Manwell, C., Baker, C.M.A. (1970). Molecular Biology and the Origin of Species: Heterosis, Protein Polymorphism and Animal Breeding. Sidwick and Jacson, London.Google Scholar
McMeans, B.C., Börga, K., Bechtol, W.R., Higginbotham, D., Fisk, A.T. (2007). Essential and non-essential element concentrations in two sleeper shark species collected in Arctic waters. Environmental Pollution, 148, 281290.Google Scholar
McMeans, B.C., Svavarsson, J., Dennard, S., Fisk, A.T. (2010). Diet and resource use among Greenland sharks (Somniosus microcephalus) and teleosts sampled in Icelandic waters, using δ13C, δ15 N and mercury. Canadian Journal of Fisheries and Aquatic Sciences, 67, 14281438.Google Scholar
Mecklenburg, C.W., Møller, P.R., Steinke, D. (2011). Biodiversity of arctic marine fishes: taxonomy and zoogeography. Marine Biodiversity, 41, 109140.Google Scholar
Mecklenburg, C.W., Lynghammar, A., Johannesen, E., et al. (2018). Marine Fishes of the Arctic Region, Vol I. CAFF Monitoring Series Report 28, February 14, 2018.Google Scholar
Meng, Q., Yin, M. (1981). A study of the olfactory organ of skates, rays and chimaeras. Journal of Fisheries of China, 5, 209228.Google Scholar
Meredith, T.L., Kajiura, S.M. (2010). Olfactory morphology and physiology of elasmobranch. Journal of Experimental Biology, 213, 34493456; doi:10.1242/jeb.045849.Google Scholar
Mita, L., Bianco, M., Viggiano, E., et al. (2011). Bisphenol A content in fish caught in two different sites of the Tyrrhenian Sea (Italy). Chemosphere, 82, 405410.Google Scholar
Molde, K., Ciesielski, T.M., Fisk, A.T., et al. (2013). Associations between vitamins A and E and legacy POP levels in highly contaminated Greenland sharks (Somniosus microcephalus). Science of the Total Environment, 442, 445454.Google Scholar
Muir, D.G., de Wit, C.A. (2010). Trends of legacy and new persistent organic pollutants in the circumpolar arctic: overview, conclusions, and recommendations. Science of Total Environment, 408, 30443051.Google Scholar
Naoi, Y., Chong, K.T., Yoshimatsu, K., et al. (2001). The functional similarity and structural diversity of human and cartilaginous fish hemoglobins. Journal of Molecular Biology, 307, 259270; doi.org/10.1006/jmbi.2000.4446 PMID: 11243818.Google Scholar
Nash, A.R., Fisher, W.K., Thompson, E.O. (1976). Haemoglobins of the shark, Heterodontus portusjacksoni. II. Amino acid sequence of the α-chain. Australian Journal of Biological Science, 29, 7397.Google Scholar
Nielsen, J. (2018). The Greenland shark (Somniosus microcephalus): Diet, tracking and radiocarbon age estimates reveal the world’s oldest vertebrate. PhD thesis, University of Copenhagen; DOI:10.13140/RG.2.2.35883.49448.Google Scholar
Nielsen, J., Christiansen, J.S., Grønkjær, P., et al. (2019) Greenland shark (Somniosus microcephalus) stomach content and stable isotope values reveal ontogenetic dietary shift. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2019.00125Google Scholar
Nielsen, J., Hedeholm, R.B., Simon, M., Steffensen, J.F. (2014). Distribution and feeding ecology of the Greenland shark (Somniosus microcephalus) in Greenland waters. Polar Biology, 37, 3746.Google Scholar
Nielsen, J., Hedeholm, R.B., Heinemeier, J., et al. (2016). Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science, 353(6300), 702704.Google Scholar
Nielsen, J., Hedeholm, R.B., Lynghammar, A., McClusky, L.M., Berland, B., Steffensen, J.F., Christiansen, J.S. Assessing the reproductive biology of the Greenland shark (Somniosus microcephalus). Plos One, in press.Google Scholar
Olin, J.A., Beaudry, M., Fisk, A.T., Paterson, G. (2014). Age-related polychlorinated biphenyl dynamics in immature bull sharks (Carcharhinus leucas). Environmental Toxicology and Chemistry, 33, 3543; https://doi.org/10.1002/etc.2402.Google Scholar
Pedersen, S.A., Madsen, J., Dyhr-Nielsen, M. (2004). Global International waters assessment: Arctic Greenland, East Greenland Shelf, West Greenland Shelf. United Nations Environment Programme, GIWA Regional Assessment 2b, 15, 16. University of Kalmar, Kalmar, Sweden.Google Scholar
Perutz, M.F. (1983). Species adaptation in a protein molecule. Molecular Biology and Evolution, 1, 128.Google ScholarPubMed
Perutz, M.F. (1998). The stereochemical mechanism of the cooperative effects in haemoglobin revisited. Annual Reviews of Biophysical and Biomolecular Structure, 27, 134.Google Scholar
Perutz, M.F., Brunori, M. (1982). Stereochemistry of cooperative effects in fish and amphibian haemoglobins. Nature, 299, 421426.Google Scholar
Porteiro, F.M., Sutton, T.T., Byrkjedal, I., et al. (2017). Fishes of the northern Mid-Atlantic Ridge collected during the MAR-ECO cruise in 522 June–July 2004: an annotated checklist. Arquipelago Life and Marine Sciences Supplement 10.Google Scholar
Rigét, F., Bignert, A., Braune, B., Stow, J., Wilson, S. (2010). Temporal trends of legacy POPs in Arctic biota, an update. Science of Total Environment, 408, 28742884.Google Scholar
Riggs, A. (1970). Properties of fish hemoglobins. In: Hoar, W.S., Randall, D.J. (eds) Fish Physiology, Vol. 4. Academic Press, New York, pp. 209252.Google Scholar
Righton, D.A., Andersen, K.H., Neat, F., et al. (2010). Thermal niche of Atlantic cod Gadus morhua, limits, tolerance and optima. Marine Ecology Progress Series, 420, 113.Google Scholar
Roesijadi, G. (1992). Metallothioneins in metal regulation and toxicity in aquatic animals. Aquatic Toxicology, 22, 81113.Google Scholar
Russo, R., Giordano, D., Paredi, G., et al. (2017). The Greenland shark Somniosus microcephalus: Hemoglobins and ligand-binding properties. PLoS ONE, 12(10), e0186181; doi.org/10.1371/journal.pone.0186181.Google Scholar
Schluessel, V., Bennett, M.B., Bleckmann, H., Blomberg, S., Collin, S.P. (2008). Morphometric and ultrastructural comparison of the olfactory system in elasmobranchs: the significance of structure–function relationships based on phylogeny and ecology. Journal of Morphology, 269, 13651386; https://doi.org/10.1002/jmor.10661.Google Scholar
Schluessel, V., Bennett, M.B., Bleckmann, H., Collin, S.P. (2010). The role of olfaction throughout juvenile development: functional adaptations in elasmobranchs. Journal of Morphology, 271, 451461; https://doi.org/10.1002/jmor.10809.CrossRefGoogle ScholarPubMed
SC-POPs (2013). Stockholm convention on persistent organic pollutants. http://chm.pops.int/Implementation/Exemptions/AcceptablePurposesDDT/tabid/456/Default.aspx.Google Scholar
Shadwick, R.E., Bernal, D., Bushnell, P.G., Steffensen, J.F. (2018). Blood pressure in the Greenland shark as estimated from ventral aortic elasticity. Journal of Experimental Biology, 221, 16. doi/10.1242/jeb.186957.Google Scholar
Skomal, G.B., Benz, G.W. (2004). Ultrasonic tracking of Greenland sharks (Somniosus microcephalus) under Arctic ice. Marine Biology, 145, 489498.Google Scholar
Smeets, W.J.A.J. (1998). Cartilaginous fishes. In: Nieuwenhuys, R, Donkelaar, H.J. ten, Nicholson, C (eds) The Central Nervous System of Vertebrates. Springer, Berlin, pp. 551654.Google Scholar
Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., Lester, J.N. (2008). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environmental International, 34(7), 10331049.Google Scholar
Speers-Roesch, B., Richards, J.G., Brauner, C.J., et al. (2012a). Hypoxia tolerance in elasmobranchs. I. Critical oxygen tension as a measure of blood oxygen transport during hypoxia exposure. Journal of Experimental Biology, 215, 93102.Google Scholar
Speers-Roesch, B., Brauner, C.J., Farrell, A.P., et al. (2012b). Hypoxia tolerance in elasmobranchs. II. Cardiovascular function and tissue metabolic responses during progressive and relative hypoxia exposures. Journal of Experimental Biology, 215, 103114.Google Scholar
Staniszewska, M., Falkowska, L., Grabowski, P., et al. (2014). Bisphenol A, 4-tert-octylphenol, and 4-nonylphenol in the Gulf of Gdańsk (E. Southern Baltic). Archives of Environmental Contamination and Toxicology, 67, 335.Google Scholar
Storelli, M.M., Marcotrigiano, G.O. (2002). Mercury speciation and relationship between mercury and selenium in liver of Galeus melastomus from the Mediterranean Sea. Bulletin of Environmental Contamination and Toxicology, 69, 516522.CrossRefGoogle ScholarPubMed
Strid, A., Athanassiadis, I., Athanasiadou, M., et al. (2010). Neutral and phenolic brominated organic compounds of natural and anthropogenic origin in northeast Atlantic Greenland Shark (Somniosus microcephalus). Environmental Toxicology and Chemistry, 29, 26532659.Google Scholar
Strid, A., Jörundsdóttir, H., Päpke, O., Svavarsson, J., Bergman, Å. (2007). Dioxins and PCBs in Greenland shark (Somniosus microcephalus) from the North-East Atlantic. Marine Pollution Bulletin, 54, 15141522.Google Scholar
Strid, A., Bruhn, C., Sverko, E., et al. (2013). Brominated and chlorinated flame retardants in liver of Greenland shark (Somniosus microcephalus). Chemosphere, 91(2), 222228.Google Scholar
Tetens, V., Wells, R.M. (1984). Oxygen binding properties of blood and hemoglobin solutions in the carpet shark (Cephaloscyllium isabella): roles of ATP and urea. Comparative Biochemistry and Physiology, 79A, 165168.Google Scholar
Tierney, K.B. (2015). Olfaction in aquatic vertebrates. In: Doty, R.L (ed.) Handbook of Olfaction and Gustation. Wiley-Blackwell, USA, pp. 547564.CrossRefGoogle Scholar
UNEP (2013). Global Mercury Assessment 2013, Sources, Emissions, Releases and Environmental Transport. UNEP Chemicals Branch, Geneva, Switzerland.Google Scholar
van den Berg, M., Birnbaum, L., Bosveld, A.T.C., et al. (1998). Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives, 106, 775792.Google Scholar
van den Berg, M., Birnbaum, L.S., Denison, M., et al. (2006). The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicological Sciences, 93(2), 223241; http://dx.doi.org/10.1093/toxsci/kfl055.Google Scholar
Vas, P. (1991). Trace-metal levels in sharks from British and Atlantic Waters. Marine Pollution Bulletin, 22, 6772.Google Scholar
Verde, C., De Rosa, M.C., Giordano, D., et al. (2005). Structure, function and molecular adaptations of haemoglobins of the polar cartilaginous fish Bathyraja eatonii and Raja hyperborea. Biochemical Journal, 389, 297306; doi.org/10.1042/BJ20050305 PMID: 15807670.Google Scholar
Verde, C., Balestrieri, M., de Pascale, D., et al. (2006). The oxygen-transport system in three species of the boreal fish family Gadidae. Molecular phylogeny of hemoglobin. Journal of Biological Chemistry, 281, 2207322084; doi.org/10.1074/jbc.M513080200 PMID: 16717098Google Scholar
Verreault, J., Gabrielsen, G.W., Chu, S., Muir, D.C.G., Andersen, M. (2005). Flame retardants and methoxylated and hydroxylated polybrominated diphenyl ethers in two Norwegian Arctic top predators: glaucous gulls and polar bears. Environmental Science and Technology, 39, 60216028.Google Scholar
Weber, R.E., Campbell, K.L. (2011). Temperature dependence of haemoglobin-oxygen affinity in heterothermic vertebrates: mechanisms and biological significance. Acta Physiologica, Oxford, 202, 549562.Google Scholar
Weber, R.E., Wells, R.M., Rossetti, J.E. (1983a). Allosteric interactions governing oxygen equilibrium in the haemoglobin system of the spiny dogfish Squalus acanthias. Journal of Experimental Biology, 103, 109120.Google Scholar
Weber, R.E., Wells, R.M., Tougaard, S. (1983b). Antagonistic effect of urea on oxygenation-linked binding of ATP in an elasmobranch hemoglobin. Life Sciences, 32, 21572161.Google Scholar
Yano, K., Stevens, J.D., Compagno, L.J.V. (2007). Distribution, reproduction and feeding of the Greenland shark Somniosus (Somniosus) microcephalus, with notes on two other sleeper sharks, Somniosus (Somniosus) pacificus and Somniosus (Somniosus) antarcticus.Journal of Fish Biology, 70, 374390.Google Scholar
Yopak, K., Lisney, T.J., Collin, S.P. (2015). Not all sharks are ‘swimming noses’: Variation in olfactory bulb size in cartilaginous fishes. Brain Structure and Function, 220, 11271143; https://doi.org/10.1007/s00429-014–0705-0.CrossRefGoogle ScholarPubMed
Zhou, J., Cai, Z.H., Zhu, X.S. (2009). Endocrine disruptors: an overview and discussion on issues surrounding their impact on marine mammals. Journal of Marine Animal Ecology, 2, 712.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×