Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T14:52:18.027Z Has data issue: false hasContentIssue false

22 - The Potential for Imaging Dynamic Processes in Liquids with High Temporal Resolution

from Part III - Prospects

Published online by Cambridge University Press:  22 December 2016

Frances M. Ross
Affiliation:
IBM T. J. Watson Research Center, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Williamson, M. J., Tromp, R. M., Vereecken, P. M., Hull, R. and Ross, F. M., Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface, Nat. Mater., 2 (2003), 532536.Google Scholar
de Jonge, N., Peckys, D. B., Kremers, G. J. and Piston, D. W., Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. USA, 106 (2009), 21592164.Google Scholar
de Jonge, N. and Ross, F. M., Electron microscopy of specimens in liquid. Nat. Nanotechnol., 6 (2011), 695704.CrossRefGoogle ScholarPubMed
Evans, J. E., Jungjohann, K. L., Browning, N. D. and Arslan, I., Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett., 11 (2011), 28092813.Google Scholar
Zheng, H. M., Smith, R. K., Jun, Y. W. et al., Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324 (2009), 13091312.CrossRefGoogle ScholarPubMed
Li, D. S., Nielsen, M. H., Lee, J. R. I. et al., Direction-specific interactions control crystal growth by oriented attachment. Science, 336 (2012), 10141018.Google Scholar
Woehl, T. J., Park, C., Evans, J. E. et al., Direct observation of abnormal Ostwald ripening in nanoparticle ensembles caused by aggregative growth. Nano Lett., 14 (2014), 373378.Google Scholar
White, E. R., Singer, S. B., Augustyn, V. et al., In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6 (2012), 63086317.Google Scholar
Gu, M., Parent, L. R., Mehdi, L. et al., Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett., 13 (2013), 61066112.CrossRefGoogle ScholarPubMed
Abellán, P., Park, C., Mehdi, B. L. et al., Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in-situ TEM. Nano Lett., 14 (2014), 12931299.Google Scholar
Sutter, E., Jungjohann, K. L., Bliznakov, S. et al., In situ liquid-cell electron microscopy of silver-palladium galvanic replacement reactions on silver nanoparticles. Nat. Commun., 5 (2014), 4946.Google Scholar
Kim, J. S., LaGrange, T. B., Reed, B. W. et al., Imaging of transient structures using nanosecond in situ TEM. Science, 321 (2008), 14721475.Google Scholar
Candes, E. J., Romberg, J. and Tao, T., Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory, 52 (2006), 489509.Google Scholar
Welch, D. A., Faller, R., Evans, J. E. and Browning, N. D., Simulating realistic imaging conditions for in-situ liquid microscopy. Ultramicroscopy, 135 (2013), 3642.CrossRefGoogle ScholarPubMed
Park, C., Woehl, T. J., Evans, J. E. and Browning, N. D., Minimum cost multi-way data association for optimizing large-scale multitarget tracking of interacting objects. IEEE Trans. Patt. Anal. Mach. Intell., 37 (2015), 611624.Google Scholar
Goldman, N. and Browning, N. D., Gold cluster diffusion kinetics on stoichiometric and reduced rutile TiO2 (110). J. Phys. Chem. C, 115 (2011), 1161111617.Google Scholar
Evans, J. E., Jungjohann, K. L., Wong, P. C. K. et al., Visualizing macromolecular complexes with in-situ liquid transmission electron microscopy. Micron, 43 (2012), 10851090.CrossRefGoogle Scholar
Kobayashi, T. and Laidler, K., Kinetic analysis for solid-supported enzymes. Biochim. Biophys. Acta, 302 (1973), 112.Google Scholar
Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, A., Torres, R. and Fernandez-Lafuente, R., Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev., 42 (2013), 62906307.Google Scholar
Lin, B., Yu, J. and Rice, S. A., Direct measurements of constrained Brownian motion of an isolated sphere between two walls. Phys. Rev. E, 62 (2000), 39093919.CrossRefGoogle ScholarPubMed
Kheifets, S., Simha, A., Melin, K., Li, T. and Raizen, M. G., Observation of Brownian motion in liquids at short times: instantaneous velocity and memory loss. Science, 343 (2014), 14931496.Google Scholar
Burada, P. S., Hanggi, P., Marchesoni, F., Schmid, G. and Talkner, P., Diffusion in confined geometries. ChemPhysChem, 10 (2009), 4554.Google Scholar
White, E. R., Mecklenburg, M., Shevitski, B., Singer, S. B. and Regan, B. C., Charged nanoparticle dynamics in water induced by scanning transmission electron microscopy. Langmuir, 28 (2012), 36953698.Google Scholar
Jesson, D. E., Pennycook, S. J. and Baribeau, J. M, Direct imaging of interfacial ordering in ultrathin (SimGen)P superlattices. Phys. Rev. Lett., 66 (1991), 750753.CrossRefGoogle ScholarPubMed
Muller, D. A., Kourkoutis, L. F., Murfitt, M. et al., Atomic scale chemical imaging of composition and bonding by aberration corrected microscopy. Science, 319 (2008), 10731076.Google Scholar
Reed, B. W., Armstrong, M. R., Browning, N. D. et al., The evolution of ultrafast electron microscope instrumentation. Microsc. Microanal., 15 (2009), 272281.Google Scholar
Bostanjoglo, O., High-speed electron microscopy. Adv. Imag. Electron Phys., 121 (2002), 12111251.Google Scholar
Bostanjoglo, O. and Horinek, W. R., Pulsed TEM: a new method to detect transient structures in fast phase-transitions. Optik, 65 (1983), 361367.Google Scholar
LaGrange, T. B., Armstrong, M., Boyden, K. et al., Single shot dynamic transmission electron microscopy for materials science. Appl. Phys. Lett., 89 (2006), 044105.Google Scholar
Armstrong, M., Boyden, K., Browning, N. D. et al., In-situ synthesis of nanowires in the dynamic TEM. Ultramicroscopy, 107 (2007), 356367.Google Scholar
Armstrong, M. R., Browning, N. D., Reed, B. W. and Torralva, B. R., Prospects for electron imaging with ultrafast time resolution. Appl. Phys. Lett., 90 (2007), 114101.Google Scholar
Taheri, M. L., Reed, B. W., Lagrange, T. B. and Browning, N. D., In-situ synthesis of nanowires in the dynamic TEM. Small, 4 (2008), 21872190.Google Scholar
Reed, B. W., LaGrange, T., Shuttlesworth, R. M. et al., Solving the accelerator-condenser coupling problem in a nanosecond dynamic transmission electron microscope. Rev. Sci. Instrum., 81 (2010), 053706.CrossRefGoogle Scholar
Masiel, D. J., LaGrange, T., Reed, B. W., Guo, T. and Browning, N. D., Time resolved annular dark field imaging of catalyst nanoparticles. ChemPhysChem, 11 (2010), 20882090.Google Scholar
Browning, N. D., Bonds, M. A., Campbell, G. H. et al., Recent developments in DTEM. Curr. Opin. Solid State Mater. Sci., 16 (2012), 2330.Google Scholar
Evans, J. E. and Browning, N. D., Enabling direct nanoscale dynamic observations of biological systems with DTEM. Microscopy, 62 (2013), 147156.Google Scholar
Rickman, B. L., Berger, J. A., Nicholls, A. W. and Schroeder, W. A., Intrinsic electron beam emittance from metal photocathodes: the effect of the electron effective mass. Phys. Rev. Lett., 111 (2013), 237401.Google Scholar
Lobastov, V. A., Srinivasan, R. and Zewail, A. H., Four-dimensional ultrafast electron microscopy. Proc. Natl. Acad. Sci. USA, 102 (2005), 70697073.Google Scholar
Zewail, A. H., 4D ultrafast electron diffraction, crystallography and microscopy. Annu. Rev. Phys. Chem., 57 (2006), 65103.Google Scholar
Carbone, F., Kwon, O. H. and Zewail, A. H., Dynamics of chemical bonding mapped by energy resolved 4D electron microscopy. Science, 325 (2009), 181184.CrossRefGoogle ScholarPubMed
Yurtserver, A. and Zewail, A. H., 4D nanoscale diffraction observed by convergent beam ultrafast electron microscopy. Science, 326 (2009), 708712.Google Scholar
Zewail, A. H., 4D electron microscopy. Science, 328 (2010), 187193.Google Scholar
Kwon, O. H. and Zewail, A. H., 4D electron microscopy. Science, 328 (2010), 16681673.Google Scholar
Hofer, F., Grogger, W., Kothleitner, G. and Warbichler, P., Quantitative analysis of EFTEM elemental distribution images. Ultramicroscopy, 67 (1997), 83103.Google Scholar
Leary, R., Saghi, Z., Midgley, P. A. and Holland, D. J., Compressed sensing electron tomography. Ultramicroscopy, 131 (2013), 7091.CrossRefGoogle ScholarPubMed
Stevens, A., Yang, H., Carin, L., Arslan, I. and Browning, N. D., The potential for Bayesian compressive sensing to significantly reduce electron dose in high resolution STEM images. Microscopy, 63 (2014), 4151.CrossRefGoogle ScholarPubMed
Arce, G. R., Brady, D. J., Carin, L., Arguello, H. and Kittle, D. S., Compressive coded aperture spectral imaging. IEEE Signal Proces. Mag., 31 (2014), 105115.Google Scholar
Stevens, A., Kovarik, L., Yuan, X., Carin, L. and Browning, N. D., Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Adv. Struct. Chem. Imag., 1 (2015), 10.Google Scholar
Liu, Y., Tai, K. and Dillon, S. J., Growth kinetics and morphological evolution of ZnO precipitated from solution. Chem. Mater., 25 (2013), 29272933.Google Scholar
Proetto, M. T., Rush, A. M., Chien, M. et al., Transmission electron microscopy of a synthetic soft material in liquid water. J. Am. Chem. Soc., 136 (2014), 11621165.Google Scholar
Gai, P. L., Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Topics in Catalysis, 21 (2002), 161173.Google Scholar
McPherson, A. and Eisenberg, D., In Donev, R.. ed., Protein Structures and Diseases, Advances in Protein Chemistry and Structural Biology (New York: Academic Press, 2011).Google Scholar
Tarascon, J. M and Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature, 414 (2001), 359367.Google Scholar
Goodenough, J. B and Kim, Y., Challenges for rechargeable Li batteries. Chem. Mater., 22 (2010), 587.Google Scholar
Jie, X. L. and Nazar, L. F., Advances in Li-S batteries. J. Mater. Chem., 20 (2010), 98219826.Google Scholar
Bruce, P. G., Freunberger, S. A., Hardwick, L. J. and Tarascon, J. M., Li-O2 and Li-S batteries with high energy storage. Nat. Mater., 11 (2012), 1929.Google Scholar
Verma, P., Maire, P. and Novak, P., A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochem. Acta, 55 (2010), 63326341.Google Scholar
Wen, J., Yu, Y. and Chen, C., A review on lithium-ion batteries safety issues: existing problems and possible solutions. Mater. Express, 2 (2012), 197212.Google Scholar
Huang, J. Y., Zhong, L., Wang, C. M. et al., In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science, 330 (2010), 15151520.Google Scholar
Mehdi, B. L., Gu, M., Parent, L. R. et al., In-situ electrochemical transmission electron microscopy for battery research. Microsc. Microanal., 20 (2014), 484492.Google Scholar
Mehdi, B. L., Nasybulin, E., Qian, J. et al., Observation and quantification of nanoscale processes in lithium batteries by operando electrochemical S/TEM. Nano Lett., 15 (2015), 21682173.CrossRefGoogle ScholarPubMed
Glaeser, R. M., Downing, K., DeRosier, D., Chiu, W. and Frank, J., Electron Crystallography of Biological Macromolecules (Oxford: Oxford University Press, 2007).Google Scholar
Berriman, J. and Unwin, N., Analysis of transient structures by cryomicroscopy combined with rapid mixing of spray droplets. Ultramicroscopy, 56 (1994), 241252.Google Scholar
Shaikh, T. R., Barnard, D., Meng, X. and Wagenknecht, T., Implementation of a flash-photolysis system for time-resolved cryo-electron microscopy. J. Struct. Biol., 165 (2009), 184189.Google Scholar
Subramanian, S. and Henderson, R., Electron crystallography of bacteriorhodopsin with millisecond time resolution. J. Struct Biol., 144 (1999), 25462562.Google Scholar
Zhang, L., Song, J., Cavigiolio, G. et al., Morphology and structure of lipoproteins revealed by an optimized negative-staining protocol of electron microscopy. J. Lipid Res., 52 (2011), 175184.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×