Book contents
- Frontmatter
- Contents
- Foreword
- Preface
- 1 Holonomies and the group of loops
- 2 Loop coordinates and the extended group of loops
- 3 The loop representation
- 4 Maxwell theory
- 5 Yang–Mills theories
- 6 Lattice techniques
- 7 Quantum gravity
- 8 The loop representation of quantum gravity
- 9 Loop representation: further developments
- 10 Knot theory and physical states of quantum gravity
- 11 The extended loop representation of quantum gravity
- 12 Conclusions, present status and outlook
- References
- Index
4 - Maxwell theory
- Frontmatter
- Contents
- Foreword
- Preface
- 1 Holonomies and the group of loops
- 2 Loop coordinates and the extended group of loops
- 3 The loop representation
- 4 Maxwell theory
- 5 Yang–Mills theories
- 6 Lattice techniques
- 7 Quantum gravity
- 8 The loop representation of quantum gravity
- 9 Loop representation: further developments
- 10 Knot theory and physical states of quantum gravity
- 11 The extended loop representation of quantum gravity
- 12 Conclusions, present status and outlook
- References
- Index
Summary
In this chapter we will study the quantization of the free Maxwell theory. Admittedly, this is a simple problem that certainly could be tackled with more economical techniques, and this was historically the case. However, it will prove to be a very convenient testing ground to gain intuitive feelings for results in the language of loops. It will also highlight the fact that the loop techniques actually produce the usual results of more familiar quantization techniques and guide us in the interpretation of the loop results.
We will perform the loop quantization in terms of real and Bargmann [70] coordinates. The reason for considering the complex Bargmann coordinatization is that it shares many features with the Ashtekar one for general relativity. It also provides a concrete realization of the introduction of an inner product purely as a consequence of reality conditions, a feature that is expected to be useful in the gravitational case.
The Maxwell field was first formulated in the language of loops by Gambini and Trias [62]. The vacuum and other properties are discussed in reference [63] and multiphoton states are discussed in referece [64]. The loop representation in terms of Bargmann coordinates was first discussed by Ashtekar and Rovelli [65].
The organization of this chapter is as follows: in section 4.1 we will first detail some convenient results of Abelian loop theory, which will simplify the discussion of Maxwell theory and will highlight the role that Abelian theories play in the language of loops.
- Type
- Chapter
- Information
- Loops, Knots, Gauge Theories and Quantum Gravity , pp. 88 - 112Publisher: Cambridge University PressPrint publication year: 1996