In this chapter we will study the quantization of the free Maxwell theory. Admittedly, this is a simple problem that certainly could be tackled with more economical techniques, and this was historically the case. However, it will prove to be a very convenient testing ground to gain intuitive feelings for results in the language of loops. It will also highlight the fact that the loop techniques actually produce the usual results of more familiar quantization techniques and guide us in the interpretation of the loop results.
We will perform the loop quantization in terms of real and Bargmann [70] coordinates. The reason for considering the complex Bargmann coordinatization is that it shares many features with the Ashtekar one for general relativity. It also provides a concrete realization of the introduction of an inner product purely as a consequence of reality conditions, a feature that is expected to be useful in the gravitational case.
The Maxwell field was first formulated in the language of loops by Gambini and Trias [62]. The vacuum and other properties are discussed in reference [63] and multiphoton states are discussed in referece [64]. The loop representation in terms of Bargmann coordinates was first discussed by Ashtekar and Rovelli [65].
The organization of this chapter is as follows: in section 4.1 we will first detail some convenient results of Abelian loop theory, which will simplify the discussion of Maxwell theory and will highlight the role that Abelian theories play in the language of loops.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.