Published online by Cambridge University Press: 05 May 2010
ABSTRACT
We have measured the line-of-sight velocity profiles of M32. The major axis velocity profiles are asymmetric, with opposite asymmetry on opposite sides of the nucleus. Existing models for M32 cannot account for these asymmetries. We present new models which assume the distribution function to be of the form f = f(E, Lz). Such models require a central black hole of ∼ 1.8 × 106 M⊙ to fit the observed rotation velocities and velocity dispersions. Without invoking any further free parameters, these models provide a good fit to the observed velocity profile asymmetries.
OBSERVED VELOCITY PROFILES
The presence of a massive black hole has been invoked to match the observed rotation velocities and velocity dispersions at the center of M32 (Tonry 1987; Richstone, Bower and Dressier 1990). Previous studies have assumed the line-of-sight velocity distributions of the stars, henceforth referred to as the velocity profiles, to be Gaussian. We have determined the velocity profile shapes of M32 from high S/N spectra taken with the William Herschel Telescope at La Palma (van der Marel et al. 1993), using the techniques of Rix and White (1992) and van der Marel and Franx (1993). The velocity profiles are asymmetric, with the asymmetry changing sign upon going from one side of the nucleus to the other (see Fig. 1). None of the existing models, in which the local (unprojected) velocity distributions of the stars are assumed to be Gaussian, can reproduce the observed asymmetries of the velocity profiles.
To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.