Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T15:52:46.966Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 December 2015

Evarist Giné
Affiliation:
University of Connecticut
Richard Nickl
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczak, R.Moment inequalities for U-statistics. Ann. Probab. 34 (2006), 2288–314.CrossRefGoogle Scholar
Adamczak, R.A tail inequality for suprema of unbounded empirical processes with applications to Markov chains. Electronic J. Probab. 34 (2008), 1000–34.Google Scholar
Akaike, H.Approximation to the density function. Ann. Stat. Math. Tokyo 6 (1954), 127–32.Google Scholar
Albin, J. M. P., and Choi, H.A new proof of an old result by Pickands. Electronic Comm. Probab. 15 (2010), 339–45.CrossRefGoogle Scholar
Alexander, K.Probability inequalities for empirical processes and a law of the iterated logarithm. Ann.Probab. 12 (1984), 1041–67CrossRefGoogle Scholar
Alexander, K. S.The central limit theorem for empirical processes on Vapnik-Cervonenkis classes. Ann. Probab. 15 (1987), 178–203.CrossRefGoogle Scholar
Andersen, N. T.The Calculus of Non-measurable Functions and Sets. (Various Publications Series No. 36). Aarhus Universitet, Matematisk Institut, Aarhus, Denmark, 1985.Google Scholar
Andersen, N. T., and Dobrić, V.The central limit theorem for stochastic processes. Ann. Probab. 15 (1987), 164–7.CrossRefGoogle Scholar
Andersen, N. T., Giné, E., and Zinn, J.The central limit theorem and the law of iterated logarithm for empirical processes under local conditions. Probab. Theory Related Fields 77 (1988), 271–305.CrossRefGoogle Scholar
Anderson, T. W.The integral of a symmetric unimodal function over a symmetric convex set and some probability inequalities. Proc. Am. Math. Soc. 6 (1955), 170–6.CrossRefGoogle Scholar
Arcones, M. A., and Giné, E.Limit theorems for U-processes. Ann. Probab. 21 (1993), 1494–542.CrossRefGoogle Scholar
Aronszajn, N.Theory of reproducing kernels. Trans. Am. Math. Soc. 68 (1950), 337–404.CrossRefGoogle Scholar
Baernstein, II. A., and Taylor, B. A.Spherical rearrangements, subharmonic functions, and *-functions in n-space. Duke Math. J. 43 (1976), 245–68.CrossRefGoogle Scholar
Balabdaoui, F., Rufiback, K., and Wellner, J.Limit distribution theory for maximum likelihood estimation of a log-concave density. Ann. Stat. 37 (2009), 1299–331.CrossRefGoogle ScholarPubMed
Balabdaoui, F., and Wellner, J.A Kiefer-Wolfowitz theorem for convex densities. IMS Lectures Notes 55 (2007), 1–31.Google Scholar
Baldi, P., and Roynette, B.Some exact equivalents for Brownian motion in Hölder norms. Probab. Theory Rel. Fields 93 (1992), 457–84.CrossRefGoogle Scholar
Ball, K. Isometric problems in lp and sections of convex sets. Ph.D. thesis, University of Cambridge, 1986.
Ball, K., and Pajor, A.The entropy of convex bodies with ‘few’ extreme points. London Mathematical Society Lecture Note Series 158 (1990), 25–32 [Geometry of Banach spaces, Proceedings of a Conference, Strobl, Austria, 1999. P. F. X. Müller and W. Schachermayer, eds.].Google Scholar
Baraud, Y.Non-asymptotic minimax rates of testing in signal detection. Bernoulli 8 (2002), 577–606.Google Scholar
Baraud, Y.Confidence balls in Gaussian regression. Ann. Stat. 32 (2004), 528–51.CrossRefGoogle Scholar
Baraud, Y.Estimator selection with respect to Hellinger-type risks. Probab. Theory Relat. Fields 151 (2011), 353–401.CrossRefGoogle Scholar
Baraud, Y., Huet, S., and Laurent, B.Adaptive tests of linear hypotheses by model selection. Ann. Stat. 31 (2003), 225–51.Google Scholar
Baraud, Y., Huet, S., and Laurent, B.Testing convex hypotheses on the mean of a Gaussian vector: application to testing qualitative hypotheses on a regression function. Ann. Stat. 33 (2005), 214–57.CrossRefGoogle Scholar
Barron, A., Birgé, L., and Massart, P.Risk bounds for model selection via penalization. Probab. Theory Relat. Fields 113 (1999), 301–413.CrossRefGoogle Scholar
Barron, A., Schervish, M. J., and Wasserman, L.The consistency of posterior distributions in nonparametric problems. Ann. Stat. 27 (1999), 536–61.Google Scholar
Bartlett, P., Boucheron, S., and Lugosi, G.Model selection and error estimation. Mach. Learn. 48 (2002), 85–113.CrossRefGoogle Scholar
Bass, R. F.Law of the iterated logarithm for set-indexed partial sum processes with finite variance. Z. Wahrsch. Verw. Gebiete 70 (1985), 591–608.CrossRefGoogle Scholar
Beckner, W.Inequalities in Fourier analysis. Ann. Math. 102 (1975), 159–82.CrossRefGoogle Scholar
Bednorz, W., and Latała, R.On the boundedness of Bernoulli processes. Ann. Math. 180 (2014), 1167–203.Google Scholar
Beers, G.Topologies on Closed and Closed Convex Sets. Klüwer, Dordrecht, 1993.CrossRefGoogle Scholar
Beirlant, J., and Mason, D. M.On the asymptotic normality of Lp-norms of empirical functionals. Math. Methods Stat. 4 (1995), 1–19.Google Scholar
Bennett, G.Probability inequalities for the sum of independent random variables. J. Am. Stat. Assoc. 57 (1962), 33–45.CrossRefGoogle Scholar
Benyamini, Y.Two point symmetrization, the isoperimetric inequality on the sphere and some applications. Longhorn Notes, Texas Functional Analysis Seminar 1983–1984. University of Texas, Austin, 1984, pp. 53–76.Google Scholar
Beran, R., and Dümbgen, L.Modulation of estimators and confidence sets. Ann. Stat. 26 (1998), 1826–56.Google Scholar
Bergh, J., and Löfström, J.Interpolation Spaces. Springer, Berlin, 1976.CrossRefGoogle Scholar
Berman, S. M.Limit theorems for the maximum term in stationary sequences. Ann. Math. Stat. 35 (1964), 502–16.CrossRefGoogle Scholar
Berman, S. M.Excursions above high levels for stationary Gaussian processes. Pacific J. Math. 36 (1971), 63–79.CrossRefGoogle Scholar
Berman, S. M.Asymptotic independence of the number of high and low level crossings of stationary Gaussian processes. Ann. Math. Stat. 42 (1971a), 927–45.CrossRefGoogle Scholar
Besov, O. V.On a family of function spaces: Embedding theorems and applications. Dokl. Akad. Nauk SSSR 126 (1959), 1163–65 (in Russian).Google Scholar
Besov, O. V.On a family of function spaces in connection with embeddings and extensions. Trudy Mat. Inst. Steklov 60 (1961), 42–81 (in Russian).Google Scholar
Bickel, P. and Ritov, Y.Estimating integrated squared density derivatives: sharp best order of convergence estimates. Sankhya 50 (1988), 381–93.Google Scholar
Bickel, P. J., and Ritov, Y.Nonparametric estimators that can be ‘plugged-in’. Ann. Stat. 31 (2003), 1033–53.Google Scholar
Bickel, P. J., and Rosenblatt, M.On some global measures of the deviations of density function estimates. Ann. Stat. 1 (1973), 1071–95; correction, ibid. 3, p. 1370.CrossRefGoogle Scholar
Billingsley, P., and Topsoe, F.Uniformity in weak convergence. Z. Wahrsch. Verw. Gebiete 7 (1967), 1–16.
Birgé, L.Approximation dans les espace métriques et théorie de l'estimation. Z. für Wahrscheinlichkeitstheorie und Verw. Geb. 65 (1983), 181–238.Google Scholar
Birgé, L.Sur un théoréme de minimax et son application aux tests. Probab. Math. Stat. 3 (1984), 259–82.Google Scholar
Birgé, L.Model selection via testing: an alternative to (penalized) maximum likelihood estimators. Ann. Inst. H. Poincaré B 20 (2006), 201–23.Google Scholar
Birgé, L.Robust tests for model selection. IMS Collections 9 (2012), 47–64.Google Scholar
Birgé, L., and Massart, P.Rates of convergence for minimum contrast estimators. Probab. Theory Rel. Fields 97 (1993), 113–50.CrossRefGoogle Scholar
Birgé, L., and Massart, P.Estimation of integral functionals of a density. Ann. Stat. 23 (1995), 11–29.CrossRefGoogle Scholar
Birgé, L., and Massart, P.Minimum contrast estimators on sieves: exponential bounds and rates of convergence. Bernoulli 4 (1998), 329–75.CrossRefGoogle Scholar
Birgé, L., and Massart, P.Gaussian model selection. J. Eur. Math. Soc. 3 (2001), 203–68.Google Scholar
Birgé, L., and Massart, P.Minimal penalties for Gaussian model selection. Probab. Theory Related Fields 138 (2007), 33–73.CrossRefGoogle Scholar
Birman, M. S., and Solomjak, M. Z.Piecewise polynomial approximations of functions of the classes Wαp Math. Sb. 73 (1967), 331–55 (in Russian).Google Scholar
Blum, J. R.On the convergence of empirical distribution functions. Ann. Math. Stat. 26 (1955), 527–9.CrossRefGoogle Scholar
Bobkov, S. G., and Ledoux, M.From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities. Geom. and Funct. Analysis 10 (2000), 1028–52Google Scholar
Bogachev, V. L.Gaussian Measures. American Mathematical Society, Providence, RI, 1998.Google Scholar
Bonami, A.Étude des coefficients de Fourier des fonctions de Lp(G). Ann. Inst. Fourier 20 (1970), 335–402.CrossRefGoogle Scholar
Borell, C.The Brunn-Minkowski inequalty in Gauss space. Invent. Math. 30 (1975), 207–16.CrossRefGoogle Scholar
Borell, C.Gaussian Radon measures on locally convex spaces. Math. Scand. 38 (1976), 265–84.CrossRefGoogle Scholar
Borell, C.On the integrability of Banach space valued Walsh Polynomials. Seminaire de Probabilités XIII, Lect. Notes in Math. 721 (1979), 1–3.Google Scholar
Borisov, I. S.Some limit theorems for empirical distributions. Abstracts of Reports, Third Vilnius Conf. Probab. Theory Math. Stat. 1 (1981), 71–2.Google Scholar
Borovkov, A., and Mogulskii, A.On probabilities of small deviations for stochastic processes. Siberian Adv. Math. 1 (1991), 39–63.Google Scholar
Boucheron, S., Bousquet, O., Lugosi, G., and Massart, P.Moment inequalities for functions of independent random variables. Ann. Prob. 33 (2005), 514–60.CrossRefGoogle Scholar
Boucheron, S., Lugosi, G., and Massart, P.A sharp concentration inequality with applications. Random Structures and Algorithms 16 (2000), 277–92.3.0.CO;2-1>CrossRefGoogle Scholar
Boucheron, S., Lugosi, G., and Massart, P.Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford, UK, 2013.CrossRefGoogle Scholar
Bourdaud, G., de Cristoforis, M. L., and Sickel, W.Superposition operators and functions of bounded p-variation. Rev. Mat. Iberoam. 22 (2006), 455–87.Google Scholar
Bousquet, O.Concentration inequalities for sub-additive functions using the entropy method. In Stochastic Inequalities and Applications, E., Giné, C., Houdré, and D., Nualart, eds. Birkhäuser, Boston, 2003, pp. 180–212.Google Scholar
Bretagnolle, J., and Huber, C.Estimation des densités: risque minimax. Z. für Wahrscheinlichkeitstheorie und verw. Geb. 47 (1979), 199–37.Google Scholar
Brown, L. D., Cai, T. T., Low, M., and Zhang, C. H.Asymptotic equivalence theory for nonparametric regression with random design. Ann. of Stat. 30 (2002), 688–707.Google Scholar
Brown, L. D., and Low, M.Asymptotic equivalence of nonparametric regression and white noise. Ann. Stat. 24 (1996), 2384–98.Google Scholar
Brown, L. D., and Zhang, C. H.Asymptotic nonequivalence of nonparametric experiments when the smoothness index is 1/2. Ann. Stat. 26 (1998), 279–87.Google Scholar
Bull, A. D.Honest adaptive confidence bands and self-similar functions. Elect. J. Stat. 6 (2012), 1490–516.Google Scholar
Bull, A. D.A Smirnov-Bickel-Rosenblatt theorem for compactly-supported wavelets. Construct. Approx. 37 (2013), 295–309.CrossRefGoogle Scholar
Bull, A. D., and Nickl, R.Adaptive confidence sets in L2. Probability Theory and Related Fields 156 (2013), 889–919.CrossRefGoogle Scholar
Bunea, F., Tsybakov, A. B., and Wegkamp, M.Aggregation for Gaussian regression. Ann. Stat. 35 (2007), 1674–97.CrossRefGoogle Scholar
Butucea, C., Matias, C., and Pouet, C.Adaptive goodness-of-fit testing from indirect observations. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009), 352–72.CrossRefGoogle Scholar
Butucea, C., and Tsybakov, A. B.Sharp optimality in density deconvolution with dominating bias, I (Russian summary). Teor. Veroyatn. Primen. 52 (2007), 111–28; trans. in Theory Probab. Appl. 52 (2008a), 24–39.Google Scholar
Butucea, C., and Tsybakov, A. B.Sharp optimality in density deconvolution with dominating bias, II (Russian summary). Teor. Veroyatn. Primen. 52 (2007), 336–49; trans. in Theory Probab. Appl. 52 (2008b), 237–49.Google Scholar
Cai, T. T., and Low, M. G.An adaptation theory for nonparametric confidence intervals. Ann. Stat. 32 (2004), 1805–40.Google Scholar
Cai, T. T., and Low, M. G.On adaptive estimation of linear functionals, Ann. Stat. 33 (2005), 2311–43.CrossRefGoogle Scholar
Cai, T. T., and Low, M.Nonquadratic estimators of a quadratic functional. Ann. Stat. 33 (2005), 2930–56.CrossRefGoogle Scholar
Cai, T. T., and Low, M. G.Adaptive confidence balls. Ann. Stat. 34 (2006), 202–28.CrossRefGoogle Scholar
Cai, T. T., Low, M. G., and Ma, Z.Adaptive confidence bands for nonparametric regression functions. J. Amer. Stat. Assoc. 109 (2014), 1054–70.CrossRefGoogle ScholarPubMed
Cai, T. T., Low, M. G., and Xia, Y.Adaptive confidence intervals for regression functions under shape constraints. Ann. Stat. 41 (2013), 722–50.CrossRefGoogle Scholar
Cameron, R. H., and Martin, W. T.Transformations of Wiener integrals under translations. Ann. Math. 45 (1944), 386–96.CrossRefGoogle Scholar
Cantelli, F. P.Sulla determinazione empirica delle leggi di probabilit;á. Giorn. Ist. Ital. Attuari 4 (1933), 421–4.Google Scholar
Carl, B.Metric entropy of convex hulls in Hilbert spaces. Bull. London Math. Soc. 29 (1997), 452–8.CrossRefGoogle Scholar
Carpentier, A.Honest and adaptive confidence sets in Lp. Elect. J. Stat. 7 (2013), 2875–2923.Google Scholar
Carpentier, A.Testing the regularity of a smooth signal (2014). Bernoulli, 21 (2015), 465–88.Google Scholar
Castillo, I.On Bayesian supremum norm contraction rates, Ann. Stat. 42 (2014), 2058–91.CrossRefGoogle Scholar
Castillo, I., and Nickl, R.Nonparametric Bernstein-von Mises theorems in Gaussian white noise. Ann. Stat. 41 (2013), 1999–2028.CrossRefGoogle Scholar
Castillo, I., and Nickl, R.On the Bernstein–von Mises phenomenon for nonparametric Bayes procedures. Ann. Stat. 42 (2014), 1941–69.CrossRefGoogle Scholar
Cavalier, L.Nonparametric statistical inverse problems. Inverse Problems 24 (2008).CrossRefGoogle Scholar
Cavalier, L., and Tsybakov, A. B.Penalized blockwise Stein's method, monotone oracles and sharp adaptive estimation. Math. Meth. Stat. 10 (2001), 247–82.Google Scholar
Čencov, N. N.A bound for an unknown distribution density in terms of the observations. Dokl. Akad. Nauk. SSSR 147 (1962), 45–8.Google Scholar
Cencov, N. N. (1972) Statistical Decision Rules and Optimal Inference. Nauka, Moscow. English translation in Translations of Mathematical Monographs, 53, AMS, Providence, RI, 1982.Google Scholar
Chernozhukov, V., Chetverikov, D., and Kato, K.Gaussian approximation of suprema of empirical processes. Ann. Stat. 42 (2014), 1564–97.CrossRefGoogle Scholar
Chernozhukov, V., Chetverikov, D., and Kato, K.Anti-concentration and honest adaptive confidence bands. Ann. Stat. 42 (2014a), 1787–818.CrossRefGoogle Scholar
Chevet, S.Mesures de Radon sur Rn et mesures cylindriques. Ann. Fac. Sci. Univ. Clermont 43 (1970), 91–158.Google Scholar
Ciesielski, Z., Kerkyacharian, G., and Roynette, B.Quelques espaces fonctionnels associeś à des processus Gaussiens. Studia Math. 107 (1993), 171–204.CrossRefGoogle Scholar
Claeskens, G., and van Keilegom, I.Bootstrap confidence bands for regression curves and their derivatives. Ann. Stat. 31 (2003), 1852–84.Google Scholar
Cohen, A., Daubechies, I., and Vial, P.Wavelets on the interval and fast wavelet transforms. Appl. Comput. Harmon. Anal. 1 (1993), 54–84.CrossRefGoogle Scholar
Coulhon, T., Kerkyacharian, G., and Petrushev, P.Heat kernel generated frames in the setting of Dirichlet spaces. J. Fourier Anal. Appl. 18 (2012), 995–1066.CrossRefGoogle Scholar
Cox, D. D.An analysis of Bayesian inference for nonparametric regression. Ann. Stat. 21 (1993), 903–23.CrossRefGoogle Scholar
Csörgö, M., and Horv;áth, L.Central limit theorems for Lp-norms of density estimators. Z. Wahrscheinlichkeitstheorie Verw. Geb. 80 (1988), 269–91.Google Scholar
Dalalyan, A., and Reiß, M.Asymptotic statistical equivalence for scalar ergodic diffusions. Probability Theory and Related Fields, 134 (2006), 248–82.CrossRefGoogle Scholar
Daubechies, I.Orthonormal bases of compactly supported wavelets. Comm. Pure Appl. Math. 41 (1988), 909–96.CrossRefGoogle Scholar
Daubechies, I.Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, 1992.
Davies, E. B., and Simon, B.Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet Laplacians. J. Funct. Anal. 59 (1984), 335–95.CrossRefGoogle Scholar
Davies, P. L., and Kovac, A.Local extremes, runs, strings and multiresolution. Ann. Stat. 29 (2001), 1–65.CrossRefGoogle Scholar
Davies, P. L., Kovac, A., and Meise, M.Nonparametric regression, confidence regions and regularization. Ann. Stat. 37 (2009), 2597–625.CrossRefGoogle Scholar
de Acosta, A.Small deviations in the functional central limit theorem with applications to functional laws of the iterated logarithm. Ann. Prob. 11 (1983), 78–101.CrossRefGoogle Scholar
DeHardt, J.Generalizations of the Glivenko-Cantelli theorem. Ann. Math. Stat. 42 (1971), 2050–5.CrossRefGoogle Scholar
Deheuvels, P.Uniform limit laws for kernel density estimators on possibly unbounded intervals. In Recent Advances in Reliability Theory: Methodology, Practice and Inference, N., Limnios and M., Nikulin, eds., Birkhäuser, Boston, 2000, pp. 477–92.Google Scholar
de la Peña, V., and Giné, E.Decoupling, from Dependence to Independence. Springer, Berlin, 1999.Google Scholar
DeVore, R., and Lorentz, G. G.Constructive Approximation. Springer, Berlin, 1993.CrossRefGoogle Scholar
Devroye, L. ACourse in Density Estimation. Birkhäuser, Boston, 1987.Google Scholar
Devroye, L.Exponential inequalities in nonparametric estimation. In Nonparametric Functional Estimation and Related Topics, G., Roussas, ed. NATO ASI Series. Kluwer, Dordrecht, 1991, pp. 31–44.Google Scholar
Devroye, L.A note on the usefulness of super kernels in density estimation. Ann. Stat. 20 (1992), 2037–56.CrossRefGoogle Scholar
Devroye, L., and Lugosi, G.Combinatorial Methods in Density Estimation. Springer, New York, 2001.CrossRefGoogle Scholar
Donoho, D. L., and Johnstone, I. M.Adapting to unknown smoothness via wavelet shrinkage, J. Am. Stat. Assoc. 90 (1995), 1200–24.CrossRefGoogle Scholar
Donoho, D. L., and Johnstone, I. M.Minimax estimation via wavelet shrinkage. Ann. Stat. 26 (1998), 879–921.Google Scholar
Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D.Wavelet shrinkage: asymptopia? J. R.Stat. Soc. B 57 (1995), 301–69.Google Scholar
Donoho, D. L., Johnstone, I. M., Kerkyacharian, G., and Picard, D.Density estimation by wavelet thresholding, Ann. Stat. 24 (1996), 508–39.Google Scholar
Donoho, D., and Nussbaum, M.Minimax quadratic estimation of a quadratic functional. J. Complexity 6 (1990), 290–323.CrossRefGoogle Scholar
Donsker, M. D.Justification and extension of Doob's heuristic approach to the Komogorov-Smirnov theorems. Ann. Math. Stat. 23 (1952), 277–81.CrossRefGoogle Scholar
Doob, J. L.Heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Stat. 20 (1949), 393–403.CrossRefGoogle Scholar
Doob, J. L.Application of the theory of martingales. In Le Calcul des Probabilités et ses Applications (1949a), pp. 23–7. Colloques Internationaux du Centre National de la Recherche Scientifique, no. 13, Centre National de la Recherche Scientifique, Paris.Google Scholar
Doss, C., and Wellner, J. Global rates of convergence of the MLEs of logconcave and s-concave densities, arxiv preprint (2015).
Dudley, R. M.Weak convergences of probabilities on nonseparable metric spaces and empirical measures on Euclidean spaces. Illinois J. Math. 10 (1966), 109–26.Google Scholar
Dudley, R.M.The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1 (1967), 290–330.CrossRefGoogle Scholar
Dudley, R. M.Measures on non-separable metric spaces. Illinois J. Math. 11 (1967a), 449–53.Google Scholar
Dudley, R. M.Sample functions of the Gaussian process. Ann. Probab. 1 (1973), 66–103.CrossRefGoogle Scholar
Dudley, R. M.Central limit theorems for empirical processes. Ann. Probab. 6 (1978), 899–929.CrossRefGoogle Scholar
Dudley, R. M.A course on empirical processes. Lecture Notes in Math. 1097 (1984) 1–142.Google Scholar
Dudley, R. M.An extended Wichura theorem, definitions of Donsker class, and weighted empirical distributions, (Probability in Banach spaces, V). Lecture Notes in Math. 1153 (1985), 141–78.Google Scholar
Dudley, R. M.Universal Donsker classes and metric entropy. Ann. Probab. 15 (1987), 1306–26.CrossRefGoogle Scholar
Dudley, R. M.Nonlinear functionals of empirical measures and the bootstrap (Probability in Banach spaces, 7). Progr. Probab. 21 (1990), 63–82.Google Scholar
Dudley, R. M.Fréchet differentiability, p-variation and uniform Donsker classes. Ann. Probab. 20 (1992), 1968–82.CrossRefGoogle Scholar
Dudley, R. M.Uniform Central Limit Theorems (1st ed. 1999), 2nd ed. Cambridge University Press, 2014.Google Scholar
Dudley, R. M.Real Analysis and Probability, 2nd ed. Cambridge University Press, 2002.CrossRefGoogle Scholar
Dudley, R. M., Giné, E., and Zinn, J.Uniform and universal Glivenko-Cantelli classes. J. Theoret. Probab. 4 (1991), 485–510.CrossRefGoogle Scholar
Dudley, R.M., and Kanter, M.Zero-one laws for stable measures. Proc. Am. Math. Soc. 45 (1974), 245–52.CrossRefGoogle Scholar
Dudley, R. M., and Norvaisa, R.Concrete Functional Calculus. Springer, New York, 2011.CrossRefGoogle Scholar
Dudley, R. M., and Philipp, W. Invariance principles for sums of Banach space valued random elements and empirical processes. Z. Wahrsch. Verw. Gebiete 62 (1983), 509–52.CrossRefGoogle Scholar
Dümbgen, L.Optimal confidence bands for shape-restricted curves. Bernoulli 9 (2003), 423–49.CrossRefGoogle Scholar
Dümbgen, L., and Rufibach, K.Maximum likelihood estimation of a log-concave density and its distribution function: basic properties and uniform consistency. Bernoulli 15 (2009), 40–68.CrossRefGoogle Scholar
Dümbgen, L., and Spokoiny, V.Multiscale testing of qualitative hypotheses. Ann. Stat. 29 (2001), 124–52.CrossRefGoogle Scholar
Durot, C., Kulikov, V. N., and Lopuhaä, H. P.The limit distribution of the L8-error of Grenander-type estimators. Ann. Stat. 40 (2012), 1578–608.CrossRefGoogle Scholar
Durrett, R.Probability: Theory and Examples. Duxbury, Pacific Grove, CA, 1996.Google Scholar
Durst, M., and Dudley, R. M.Empirical processes, Vapnik-C? ervonenkis classes and Poisson processes. Probab. Math. Stat. 1 (1981), 109–15.Google Scholar
Dvoretzky, A., Kiefer, J., and Wolfowitz, J.Asymptotic minimax character of a sample distribution function and of the classical multinomial estimator. Ann. Math. Stat. 33 (1956), 642–69.Google Scholar
Edmunds, D. E., and Triebel, H.Function Spaces, Entropy Numbers, Differential Operators. Cambridge University Press, 1996.CrossRefGoogle Scholar
Efroimovich, S. Y.Nonparametric estimation of a density of unknown smoothness. Theory Probability and Applications 30 (1985), 524–34.Google Scholar
Efromovich, S. Y.Adaptive estimation of and oracle inequalities for probability densities and characteristic functions. Ann. Stat. 36 (2008), 1127–55.CrossRefGoogle Scholar
Efroimovich, S. Y., and Pinsker, M. S.Learning algorithm for nonparametric filtering, Automation and Remote Control 11 (1984), 1434–40.Google Scholar
Eggermont, P. P. B., and LaRiccia, V. N.Maximum Penalized Likelihood Estimation, Vol. 1; Density Estimation. Springer, New York, 2000.Google Scholar
Einmahl, U., and Mason, D. M.Some universal results on the behavior of increments of partial sums. Ann. Probab. 24 (1996), 1388–407.Google Scholar
Einmahl, U., and Mason, D. M.An empirical process approach to the uniform consistency of kernel-type function estimators. J. Theoret. Probab. 13 (2000), 1–37.CrossRefGoogle Scholar
Einmahl, U., and Mason, D.Uniform in bandwidth consistency of kernel type function estimators. Ann. Stat. 33 (2005), 1380–403.CrossRefGoogle Scholar
Ermakov, M. S.Minimax detection of a signal in a white Gaussian noise, Theory Probab. Appl. 35 (1990), 667–79.Google Scholar
Fan, J.Global behavior of deconvolution kernel estimates. Stat. Sinica 1 (1991), 541–51.Google Scholar
Fan, J.Adaptively local one-dimensional subproblems with application to a deconvolution problem. Ann. Stat. 21 (1993), 600–10.CrossRefGoogle Scholar
Fernique, X.Une demonstration simple du théorème de R.M. Dudley et M. Kanter sur les lois zéro-un pour les mésures stables. Lecture Notes in Math. 381 (1974), 78–9.Google Scholar
Fernique, X.Regularité des trajectoires des fonctions aléatoires gaussiennes. Lecture Notes in Math. 480 (1975), 1–96.Google Scholar
Fernique, X.Fonctions Aléatoires Gaussiennes, Vecteurs Aléatoires Gaussiens. Les Publications CRM, Montreal, 1997.Google Scholar
Figiel, T., Lindenstrauss, J., and Milman, V. D.The dimension of almost spherical sections of convex bodies. Acta Math. 139 (1977), 53–94.CrossRefGoogle Scholar
Fisher, R. A.On the mathematical foundations of theoretical statistics. Philos. Trans. R. Soc. A. 222 (1922), 309–68.CrossRefGoogle Scholar
Fisher, R. A.Theory of statistical estimation. Proc. Cambridge Philos. Soc. 22 (1925a), 700–25.CrossRefGoogle Scholar
Fisher, R.A.Statistical Methods for Research Workers. Oliver and Body, Edinburgh, 1925b.Google Scholar
Folland, G. B.Real Analysis: Modern Techniques and Their Applications. Wiley, New York, 1999.Google Scholar
Frazier, M., Jawerth, B., and Weiss, G.Littlewood-Paley Theory and the Study of Function Spaces. AMS monographs, Providence, RI, 1991.CrossRefGoogle Scholar
Freedman, D. A.On the asymptotic behavior of Bayes’ estimates in the discrete case. Ann. Math. Stat. 34 (1963), 1386–403.CrossRefGoogle Scholar
Freedman, D. A.On the Bernstein-von Mises theorem with infinite-dimensional parameters. Ann. Stat. 27 (1999), 1119–40.Google Scholar
Fromont, M., and Laurent, B.Adaptive goodness-of-fit tests in a density model. Ann. Stat. 34 (2006), 680–720.CrossRefGoogle Scholar
Gach, F., and Pötscher, B. M.Nonparametric maximum likelihood density estimation and simulation-based minimum distance estimators. Math. Methods Stat. 20 (2011), 288–326.CrossRefGoogle Scholar
Gänssler, P., and Stute, W.Empirical processes: a survey of results for independent and identically distributed random variables. Ann. Probab. 7 (1979), 193–243.Google Scholar
Gayraud, G., and Pouet, C.Adaptive minimax testing in the discrete regression scheme. Probab. Theory Related Fields 133 (2005), 531–58.CrossRefGoogle Scholar
Gardner, R. J.The Brunn-Minkowski inequality. Bull AMS 39 (2002), 355–405.CrossRefGoogle Scholar
Gauß, C. F.Theoria Motus Corporum Coelestium. Perthes, Hamburg, 1809; reprint of the original at Cambridge University Press, 2011.Google Scholar
Gelfand, I. M., and Vilenkin, N. Y.Les distributions, Tome 4: Applications de l'analyse harmonique. Dunod, Paris, 1967 (translated from Russian).Google Scholar
Geller, D., and Pesenson, I. Z.Band-limited localized parseval frames and Besov spaces on compact homogeneous manifolds. J. Geom. Anal. 21 (2011), 334–71.CrossRefGoogle Scholar
Genovese, C., and Wasserman, L.Adaptive confidence bands. Ann. Stat. 36 (2008), 875–905.CrossRefGoogle Scholar
Ghosal, S.The Dirichlet process, related priors and posterior asymptotics. In Bayesian Nonparametrics, Cambridge University Press, 2010, pp. 35–79.Google Scholar
Ghosal, S., Ghosh, J. K., and van der Vaart, A. W.Convergence rates for posterior distributions. Ann. Stat. 28 (2000), 500–31.CrossRefGoogle Scholar
Ghosal, S., and van der Vaart, A.W.Convergence rates of posterior distributions for non-i.i.d. observations. Ann. Stat. 35 (2007), 192–223.CrossRefGoogle Scholar
Giné, E.Invariant tests for uniformity on compact Riemannian manifolds based on Sobolev norms. Ann. Stat. 3 (1975), 1243–66.Google Scholar
Giné, E.Empirical processes and applications: an overview. Bernoulli 2 (1996), 1–28.Google Scholar
Giné, E., and Guillou, A.On consistency of kernel density estimators for randomly censored data: rates holding uniformly over adaptive intervalsAnn. Inst. H. Poincaré Probab. Stat. 37 (2001), 503–22.CrossRefGoogle Scholar
Giné, E., and Guillou, A.Rates of strong uniform consistency for multivariate kernel density estimators. Ann. Inst. H. Poincaré Prob. Stat. 38 (2002), 907–21.CrossRefGoogle Scholar
Giné, E., Güntürk, C. S., and Madych, W. R.On the periodized square of L2 cardinal splines. Exp. Math. 20 (2011), 177–88.CrossRefGoogle Scholar
Giné, E., and Koltchinskii, V.Concentration inequalities and asymptotic results for ratio type empirical processes. Ann. Probab. 34 (2006), 1143–216.CrossRefGoogle Scholar
Giné, E., Koltchinskii, V., and Sakhanenko, L.Kernel density estimators: convergence in distribution for weighted sup-norms. Probab. Theory Related Fields 130 (2004), 167–98.CrossRefGoogle Scholar
Giné, E., Koltchinskii, V., and Wellner, J.Ratio limit theorems for empirical processes. In Stochastic Inequalities and Applications, Vol. 56. Birkhäuser, Basel, 2003, pp. 249–78.CrossRefGoogle Scholar
Giné, E., Koltchinskii, V., and Zinn, J.Weighted uniform consistency of kernel density estimators. Ann. Probab. 32 (2004), 2570–605.Google Scholar
Giné, E., Latala, R., and Zinn, J.Exponential and moment inequalities for U-statistics. In High Dimensional Probability, Vol. 2. Birkhäuser, Boston, 2000, pp. 13–38.CrossRefGoogle Scholar
Giné, E., and Madych, W.On wavelet projection kernels and the integrated squared error in density estimation. Probab. Lett. 91 (2014), 32–40.Google Scholar
Giné, E., and Mason, D. M.On the LIL for self-normalized sums of i.i.d. random variables. J. Theoret. Probab. 11 (1998), 351–70.CrossRefGoogle Scholar
Giné, E., and Mason, D. M.On local U-statistic processes and the estimation of densities of functions of several sample variables. Ann. Stat. 35 (2007), 1105–45.CrossRefGoogle Scholar
Giné, E., Mason, D., and Zaitsev, A.The L1-norm density estimator process. Ann. Probab. 31 (2003), 719–68.Google Scholar
Giné, E., and Nickl, R.Uniform central limit theorems for kernel density estimators. Probab. Theory Relat. Fields 141 (2008), 333–87.CrossRefGoogle Scholar
Giné, E., and Nickl, R. Asimple adaptive estimator of the integrated square of a density. Bernoulli 14 (2008a), 47–61.CrossRefGoogle Scholar
Giné, E., and Nickl, R.Uniform limit theorems for wavelet density estimators. Ann. Probab. 37 (2009), 1605–46.CrossRefGoogle Scholar
Giné, E., and Nickl, R.An exponential inequality for the distribution function of the kernel density estimator, with applications to adaptive estimation. Probab. Theory Related Fields 143 (2009a), 569–96.CrossRefGoogle Scholar
Giné, E., and Nickl, R.Confidence bands in density estimation. Ann. Stat. 38 (2010), 1122–70.CrossRefGoogle Scholar
Giné, E., and Nickl, R.Adaptive estimation of a distribution function and its density in sup-norm loss by wavelet and spline projections. Bernoulli 16 (2010a), 1137–63.CrossRefGoogle Scholar
Giné, E., and Nickl, R.Rates of contraction for posterior distributions in Lr-metrics, 1 = r=8. Ann. Stat. 39 (2011), 2883–911.CrossRefGoogle Scholar
Giné, E., and Zinn, J.Central limit theorems and weak laws of large numbers in certain Banach spaces. Z. Warscheinlichkeitstheorie Verw. Geb. 62 (1983), 323–54.Google Scholar
Giné, E., and Zinn, J.Some limit theorems for empirical processes. Ann. Probab. 12 (1984), 929–89.CrossRefGoogle Scholar
Giné, E., and Zinn, J.Lectures on the central limit theorem for empirical processes (probability and Banach spaces). Lecture Notes in Math. 1221 (1986), 50–113.Google Scholar
Giné, E., and Zinn, J.Empirical processes indexed by Lipschitz functions. Ann. Probab. 14 (1986a), 1329–38.CrossRefGoogle Scholar
Giné, E., and Zinn, J.Bootstrapping general empirical measures. Ann. Probab. 18 (1990), 851–69.CrossRefGoogle Scholar
Giné, E., and Zinn, J.Gaussian characterization of uniform Donsker classes of functions. Ann. Probab. 19 (1991), 758–82.
Glivenko, V. I.Sulla determiniazione empirica delle leggi di probabilit;á. Giorn. Ist. Ital. Attuari 4 (1933), 92–9.Google Scholar
Goldenshluger, A., and Lepski, O. V.Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann. Stat. 39 (2011), 1608–32.CrossRefGoogle Scholar
Goldenshluger, A., and Lepski, O. V.On adaptive minimax density estimation on Rd. Probab. Theory Relat. Fields 159 (2014), 479–543.CrossRefGoogle Scholar
Golubev, G. K.Adaptive asymptotically minimax estimates of smooth signals, Prob. Inf. Transm. 23 (1987), 57–67.Google Scholar
Golubev, G. K.Nonparametric estimation of smooth densities of a distribution in L2. Problems of Information Transmission, 28 (1992), 44–54.Google Scholar
Golubev, G. K., and Nussbaum, M.Adaptive spline estimates in a nonparametric regression model. Theory Prob. Appl. 37 (1992), 521–9.Google Scholar
Golubev, G. K., Nussbaum, M., and Zhou, H. H.Asymptotic equivalence of spectral density estimation and Gaussian white noise. Ann. Stat. 38 (2010), 181–214.CrossRefGoogle Scholar
Grama, I., and Nussbaum, M.Asymptotic equivalence for nonparametric regression. Math. Methods Stat. 11 (2002), 1–36.Google Scholar
Grenander, U.On the theory of mortality measurement. Scand. Actuarial J. 2 (1956), 125–53.Google Scholar
Groeneboom, P.Estimating a monotone density. In Proceedings of the Berkeley Conference in Honor of Jerzy Neyman and Jack Kiefer, Vol. II. Berkeley, CA, 1985, pp. 539–55.Google Scholar
Groeneboom, P., Jongbloed, G., and Wellner, J. A.Estimation of a convex function: characterizations and asymptotic theory. Ann. Stat. 29 (2001), 1653–98.Google Scholar
Gross, L.Abstract Wiener spaces. In Proceedings of the Fifth Berkeley Symposium on Mathematics Statistics, and Probability, Vol. II: Contributions to Probability Theory, Part 1. University of California Press, Berkeley, 1967, pp. 31–42.Google Scholar
Gross, L.Logarithmic Sobolev inequalities. Am. J. Math. 97 (1975), 1061–83.CrossRefGoogle Scholar
Haagerup, U.The best constants in the Khintchine inequality. Studia Math. 70 (1982), 231–83.Google Scholar
Haar, A.Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69 (1910), 331–71.CrossRefGoogle Scholar
Hall, P.The rate of convergence of normal extremes. J. Appl. Probab. 16 (1979), 433–9.CrossRefGoogle Scholar
Hall, P.Central limit theorem for integrated square error of multivariate nonparametric density estimators. J. Multivariate Analysis 14 (1984), 1–16.CrossRefGoogle Scholar
Hall, P.Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Stat. 20 (1992), 675–94.CrossRefGoogle Scholar
Hanson, D. L., and Wright, F. T.A bound on tail probabilities for quadratic forms in independent random variables. Ann. Math. Stat. 42 (1971), 1079–83.CrossRefGoogle Scholar
Härdle, W., Kerkyacharian, G., Picard, D., and Tsybakov, A.Wavelets, Approximation and Statistical Applications (Springer Lecture Notes in Statistics 129), Springer, New York, 1998.CrossRefGoogle Scholar
Hardy, G. H., Littlewood, J. E., and Pölya, G.Inequalities. Cambridge University Press, 1967.Google Scholar
Haussler, D.Sphere packing numbers for subsets of the Boolean n-cube with bounded Vapnik-C? ervonenkis dimension. J. Comb. Theory 69 (1995), 217–32.CrossRefGoogle Scholar
Hoeffding, V.Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58 (1963), 13–30.CrossRefGoogle Scholar
Hoffmann, M., and Lepski, O. V.Random rates in anisotropic regression. Ann. Stat. 30 (2002), 325–96 (with discussion).CrossRefGoogle Scholar
Hoffmann, M., and Nickl, R.On adaptive inference and confidence bands, Ann. Stat. 39 (2011), 2383–409.CrossRefGoogle Scholar
Hoffmann, M., Rousseau, J., and Schmidt-Hieber, J.On adaptive posterior concentration rates. Ann. Stat. (2015) (in press).CrossRefGoogle Scholar
Hoffmann-Jørgensen, J.Sums of independent Banach space valued random variables. Studia Math. 52 (1974), 159–86.CrossRefGoogle Scholar
Hoffmann-Jørgensen, J.The law of large numbers for non-measurable and non-separable random elements. Asterisque 131 (1985), 299–356.Google Scholar
Hoffmann-Jørgensen, J.Stochastic Processes on Polish Spaces (Various Publications Series 39). Aarhus Universitet, Mathematisk Institute, 1991, Aarhus, Denmark.
Hoffmann-Jørgensen, J., Shepp, L. A., and Dudley, R. M.On the lower tail of Gaussian seminorms. Ann. Probab. 7 (1979), 319–42.CrossRefGoogle Scholar
Houdré, C., and Reynaud-Bouret, P.Exponential inequalities with constants for U-statistics of order two. In Stochastic Inequalities and Applications (Progress in Probability 56). Birkhäuser, Boston, 2003, pp. 55–69.Google Scholar
Ibragimov, I. A., and Khasminskii, R. Z.On the estimation of an infinite-dimensional parameter in Gaussian white noise. Sov. Math. Dokl. 18 (1977), 1307–8.Google Scholar
Ibragimov, I. A., and Khasminskii, R. Z.On the nonparametric estimation of functionals. In Symposium in Asymptotic Statistics, J., Kozesnik, ed. Reidel, Dordrecht, 1978, pp. 42–52.Google Scholar
Ibragimov, I. A., and Khasminskii, R. Z.Statistical Estimation. Asymptotic Theory. Springer, New York, 1981.CrossRefGoogle Scholar
Ibragimov, I. A., and Khasminskii, R. Z.Bounds for the risks of nonparametric regression estimates. Theory of Probability and its Applications, 27 (1982), 84–99.CrossRefGoogle Scholar
Ibragimov, I. A., Nemirovskii, A. S., and Khasminskii, R. Z.Some problems of nonparametric estimation in Gaussian white noise. Theory of Probability and its Applications, 31 (1987), 391–406.CrossRefGoogle Scholar
Ingster, Y. I.On the minimax nonparametric detection of a signal with Gaussian white noise. Prob. Inform. Transm. 28 (1982), 61–73 (in Russia).Google Scholar
Ingster, Y. I.Minimax testing of nonparametric hypotheses on a distribution density in the Lp-metrics, Theory Probab. Appl. 31 (1986), 333–7.Google Scholar
Ingster, Y. I.Asymptotically minimax hypothesis testing for nonparametric alternatives, Part I, II, and III. Math. Methods Stat. 2 (1993), 85–114, 171–89, 249–68.Google Scholar
Ingster, Y. I., and Suslina, I. A.Nonparametric Goodness-of-Fit Testing under Gaussian Models (Lecture Notes in Statistics). Springer, New York, 2003.CrossRefGoogle Scholar
Jaffard, S.On the Frisch-Parisi conjecture. J. Math. Pures Appl. 79 (2000), 525–52.CrossRefGoogle Scholar
Jain, N. C., and Marcus, M. B.Central limit theorems for C(S)-valued random variables. J. Funct. Anal. 19 (1975), 216–31.CrossRefGoogle Scholar
Johnson, W. B., Schechtman, G., and Zinn, J.Best constants in moment inequalities for linear combinations of independent and exchangeable random variables. Ann. Probab. 13 (1985), 234–53.CrossRefGoogle Scholar
Juditsky, A., and Lambert-Lacroix, S.Nonparametric confidence set estimation. Math. Methods Stat. 12 (2003), 410–28.Google Scholar
Juditsky, A., Rigollet, P., and Tsybakov, A. B. Learning by mirror averaging, Ann. Stat. 36 (2008), 2183–206.CrossRefGoogle Scholar
Kahane, J. P.Sur les sommes vectorielles Σ±un. Comptes Rendus Acad. Sci. Paris 259 (1964), 2577–80.Google Scholar
Kahane, J. P.Some Random Series of Functions. D. C. Heath, Lexington, MA, 1968.Google Scholar
Kakutani, S.On equivalence of infinite product measures. Ann. Math. 49 (1948), 214–24.CrossRefGoogle Scholar
Kallianpur, G.AbstractWiener processes and their reproducing kernel Hilbert spaces. Zeits. Wahrsch. Verb. Geb. 17 (1971), 113–23.Google Scholar
Karhunen, K.Über lineare Methoden in der Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fennicae. Ser. A. I. Math.-Phys. 37 (1947), 1–79.Google Scholar
Katz, M. F., and Rootzén, H.On the rate of convergence for extremes of mean square differentiable stationary normal processes. J. Appl. Probab. 34 (1997), 908–23.Google Scholar
Kerkyacharian, G., Nickl, R., and Picard, D.Concentration inequalities and confidence bands for needlet density estimators on compact homogeneous manifolds. Probab. Theory Related Fields 153 (2012), 363–404.CrossRefGoogle Scholar
Kerkyacharian, G., and Picard, D.Density estimation in Besov spaces. Stat. Probab. Letters 13 (1992), 15–24.CrossRefGoogle Scholar
Khatri, C. G.On certain inequalities for normal distributions and their applications to simultaneous confidence bounds. Ann. Math. Stat. 38 (1967), 1853–67.CrossRefGoogle Scholar
Khinchin, A.Uber dyadische Brüche. Math. Zeits. 18 (1923), 109–16.Google Scholar
Kiefer, J., and Wolfowitz, J.Asymptotically minimax estimation of concave and convex distribution functions. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 34 (1976), 73–85.CrossRefGoogle Scholar
Klein, T.Une inégalité de concentration à gauche pour les processus empiriques. C. R. Math. Acad. Sci. Paris 334 (2002), 501–4.CrossRefGoogle Scholar
Klein, T., and Rio, E.Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 (2005), 1060–77.CrossRefGoogle Scholar
Klemelä, J.Sharp adaptive estimation of quadratic functionals. Probab. Theory Relat. Fields 134 (2006), 539–64.CrossRefGoogle Scholar
Kolmogorov, A. N.Grundbegriffe der Wahrscheinlichkeitstheorie. Springer, Berlin, 1933.CrossRefGoogle Scholar
Kolmogorov, A. N.Sulla determiniazione empirica di una legge di distribuzione. Giorn. Ist. Ital. Attuari 4 (1933a), 83–91.Google Scholar
Kolmogorov, A. N., and Tikhomirov, V. M.The ε-entropy and ε-capacity of sets in functional spaces. Am. Math. Soc. Trans 17 (1961), 277–364.Google Scholar
Koltchinskii, V. I.On the central limit theorem for empirical measures. Theor. Probab. Math. Stat. 24 (1981), 63–75.Google Scholar
Koltchinskii, V.Rademacher penalties and structural risk minimization. IEEE Trans. Inform. Theory 47 (2001), 1902–14.CrossRefGoogle Scholar
Koltchinskii, V.Local Rademacher complexities and oracle inequalities in risk minimization. Ann. Stat. 34 (2006), 2593–656.Google Scholar
Konstant, D. G., and Piterbarg, V. I.Extreme values of the cyclostationary Gaussian processes. J. Appl. Probab. 30 (1993), 82–97.CrossRefGoogle Scholar
Korostelev, A. P., and Tsybakov, A. B.Minimax Theory of Image Reconstruction (Lecture Notes in Statistics 82). Springer, New York, 1993.CrossRefGoogle Scholar
Kuelbs, J., and Li, W.Metric entropy and the small ball problem for Gaussian measures. J. Funct. Anal. 116 (1993), 133–57.CrossRefGoogle Scholar
Kuelbs, J., Li, W., and Linde, W.The Gaussian measure of shifted balls. Probab. Theory Related Fields 98 (1994), 143–62.CrossRefGoogle Scholar
Kullback, S.A lower bound for discrimination information in terms of variation. IEEE Trans. Inform. Theory 13 (1967), 126–7.CrossRefGoogle Scholar
Kwapień, S., and Woyczynski, W.Random Series and Stochastic Integrals: Single and Multiple. Birkhäuser, Boston, 1992.
Latała, R.Estimation of moments of sums of independent random variables. Ann. Probab. 25 (1997), 1502–13.Google Scholar
Latała, R.Estimates of moments and tails of Gaussian chaoses. Ann. Probab. 34 (2006), 2315–31.CrossRefGoogle Scholar
Latała, R., and Oleskiewicz, K.On the best constant in the Khinchin-Kahane inequality. Studia Math. 109 (1994), 101–4.Google Scholar
Laurent, B.Efficient estimation of integral functionals of a density. Ann. Stat. 24 (1996), 659–81.Google Scholar
Leadbetter, M. R., Lindgren, G., and Rootzén, H.Extremes and Related Properties of Random Sequences and Processes. Springer, New York, 1983.CrossRefGoogle Scholar
Leahu, H.On the Bernstein–von Mises phenomenon in the Gaussian white noise model. Elect. J. Stat. 5 (2011), 474–4.Google Scholar
Le Cam, L. M.On some asymptotic properties of maximum likelihood estimates and related Bayes’ estimates. Univ. California Publ. Stat. 1 (1953), 277–329.Google Scholar
Le Cam, L. M.Convergence of estimates under dimensionality restrictions. Ann. Stat. 1 (1973), 38–53.Google Scholar
Le Cam, L.Asymptotic Methods in Statistical Decision Theory. Springer, New York, 1986.CrossRefGoogle Scholar
Le Cam, L., and Yang, G. L.Asymptotics in Statistics: Some Basic Concepts. Springer, New York, 1990.CrossRefGoogle Scholar
Ledoux, M.Isoperimetry and Gaussian analysis. Lecture Notes in Math. Lecture Notes in Statistics (1996), 165–294.Google Scholar
Ledoux, M.On Talagrand's deviation inequalities for product measures. ESAIM: Probab. Stat. 1 (1997), 63–87.Google Scholar
Ledoux, M.The Concentration of Measure Phenomenon. American Math. Soc., Providence, RI, 2001.Google Scholar
Ledoux, M., and Talagrand, M.Conditions d'integrabilité pour les multiplicateurs dans le TLC banachique. Ann. Probab. 14 (1986), 916–21.CrossRefGoogle Scholar
Ledoux, M., and Talagrand, M.Comparison theorems, random geometry and some limit theorems for empirical processes. Ann. Probab. 17 (1989), 596–631.CrossRefGoogle Scholar
Ledoux, M., and Talagrand, M.Probability in Banach Spaces. Springer-Verlag, Berlin, 1991.CrossRefGoogle Scholar
Leindler, L.On a certain converse of Hölder's inequality. Acta Sci. Math. 34 (1973), 335–43.Google Scholar
Lepski, O. V.On a problem of adaptive estimation in Gaussian white noise, Theory Prob. Appl. 35 (1990), 454–66.Google Scholar
Lepski, O. V.How to improve the accuracy of estimation. Math. Meth. Stat. 8 (1999), 441–86.Google Scholar
Lepski, O. V.Multivariate density estimation under sup-norm loss: oracle approach, adaptation and independence structure. Ann. Stat. 41 (2013), 1005–34.CrossRefGoogle Scholar
Lepski, O. V., Mammen, E., and Spokoiny, V.Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimators with variable bandwidth selectors. Ann. Stat. 25 (1997), 929–47.Google Scholar
Lepski, O. V., and Tsybakov, A. B.Asymptotically exact nonparametric hypothesis testing in sup-norm and at a fixed point. Probab. Theory Related Fields 117 (2000), 17–48.CrossRefGoogle Scholar
Levit, B. Ya.Asymptotically efficient estimation of nonlinear functionals. Prob. Inform. Transm. 14 (1978), 204–9.Google Scholar
Lévy, P.Problémes concrets d'analyse fonctionelle. Gauthier-Villars, Paris, 1951.Google Scholar
Li, K. C.Honest confidence regions for nonparametric regression, Ann. Stat. 17 (1989), 1001–8.CrossRefGoogle Scholar
Li, W., and Linde, W.Approximation, metric entropy and small ball estimates for Gaussian measures. Ann. Probab. 27 (1999), 1556–78.Google Scholar
Li, W. V., and Shao, Q|-M.Gaussian processes: inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods (Handbook of Statistics), Vol. 19, C. R. Rao and D. Shanbhag, eds. Elsevier, New York, 2001, pp. 533–98.Google Scholar
Lijoi, A., and Prünster, I.Models beyond the Dirichlet process. In Bayesian Nonparametrics. 35–79, (Camb. Ser. Stat. Probab. Math.). Cambridge University Press, 2010, pp. 35–79.Google Scholar
Littlewood, J. E.On bounded bilinear forms in an infinite number of variables. Q. J. Math., Oxford Ser. 1 (1930), 164–74.Google Scholar
Littlewood, J. E., and Paley, R. E. A. C.Theorems on Fourier series and power series I, II.J. Lond. Math. Soc. 6 (1931), 230–3 (I); Proc. Lond. Math. Soc. 42 (1936), 52–89 (II).Google Scholar
Loéve, M.Probability Theory (Graduate Texts in Mathematics 46), Vol. II, 4th ed. Springer-Verlag, Berlin, 1978.Google Scholar
Lorentz, G. G., Golitscheck, M. V., and Makovoz, Y.Constructive Approximation: Advanced Problems. Springer, Berlin, 1996.CrossRefGoogle Scholar
Lounici, K., and Nickl, R.Global uniform risk bounds for wavelet deconvolution estimators. Ann. Stat. 39 (2011) 201–31.CrossRefGoogle Scholar
Love, E. R., and Young, L. C.Sur une classe de fonctionelles linéaires. Fund. Math. 28 (1937), 243–57.Google Scholar
Low, M. G.On nonparametric confidence intervals, Ann. Stat. 25 (1997), 2547–54.Google Scholar
Mallat, S.Multiresolution approximation and wavelet orthonormal bases of L2(R). Trans. Am. Math. Soc. 315 (1989), 69–87.Google Scholar
Marcus, D. J.Relationships between Donsker classes and Sobolev spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 69 (1985), 323–30.CrossRefGoogle Scholar
Marcus, M. B., and Shepp, L. A.Sample behavior of Gaussian processes. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970–1971), Vol. II: Probability Theory. University California Press, Berkeley, 1972, pp. 423–41.Google Scholar
Massart, P.The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990), 1269–83.CrossRefGoogle Scholar
Massart, P.About the constants in Talagrand's concentration inequalities for empirical processes. Ann. Probab. 28 (2000), 863–84.Google Scholar
Massart, P.Some applications of concentration inequalities in statistics. Ann. Fac. Sci. Toulouse Math. 9 (2000), 245–303.CrossRefGoogle Scholar
Massart, P.Concentration Inequalities and Model Selection (Lectures from the 33rd Summer School on Probability Theory Held in Saint-Flour, July 6–23, 2003; Lecture Notes in Mathematics 1896). Springer, Berlin, 2007.Google Scholar
Meister, A.Deconvolution Problems in Nonparametric Statistics (Lecture Notes in Statistics 193). Springer, Berlin, 2009.CrossRefGoogle Scholar
Maurer, A.Thermodynamics and concentration. Bernoulli 18 (2012), 434–54.CrossRefGoogle Scholar
Mattila, P.Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, 1995.CrossRefGoogle Scholar
McDiarmid, C.On the method of bounded differences. In Surveys in Combinatorics. Cambridge University Press, 1989, pp. 148–88.Google Scholar
McDiarmid, C.Concentration. In Probabilistic Methods for Algorithmic DiscreteMathematics (Algorithms Combin, 16). Springer, Berlin, 1998, pp. 195–248.Google Scholar
Meyer, Y.Wavelets and Operators. Cambridge University Press, 1992.Google Scholar
Meyer, Y., Sellan, F., and Taqqu, M. S.Wavelets, generalized white noise and fractional integration: the synthesis of fractional Brownian motion.J. Fourier Anal. Appl. 5 (1999), 465–94.CrossRefGoogle Scholar
Montgomery-Smith, S.Comparison of sums of independent identically distributed random variables. Prob. Math. Stat. 14 (1994), 281–5.Google Scholar
Mourier, E.Lois de grandes nombres et théorie ergodique. C. R. Acad. Sci. Paris 232 (1951), 923–5.Google Scholar
Nadaraya, E. A.On estimating regression. Theory Probab. Appl., 9 (1964), 141–2.CrossRefGoogle Scholar
Nemirovskii, A. S.Nonparametric estimation of smooth regression functions. Soviet J. of Computer and Systems Sciences, 23 (1985), 1–11.Google Scholar
Nemirovskii, A. S.On necessary conditions for the efficient estimation of functionals of a nonparametric signal which is observed in white noise. Theory of Probability and its Applications, 35 (1990), 94–103.Google Scholar
Nemirovski, A.Topics in Non-parametric Statistics. Ecole d'Ete de Probabilités de Saint-Flour XXVIII – 1998. Lecture Notes in Mathematics, v. 1738. Springer, New York (2000).Google Scholar
Nemirovskii A, S., Polyak, B. T., and Tsybakov, A. B.Rate of convergence of nonparametric estimators of maximum-likelihood type. Problems of Information Transmission, 21 (1985), 258–72.Google Scholar
Nickl, R.Empirical and Gaussian processes on Besov classes. In High Dimensional Probability IV (IMS Lecture Notes 51), E. Giné, V. Koltchinskii, W. Li, and J. Zinn, eds. Springer, Berlin, 2006, pp. 185–95.Google Scholar
Nickl, R.Donsker-type theorem for nonparametric maximum likelihood estimators. Probab. Theory Related Fields 138 (2007), 411–49; erratum (2008) ibid.CrossRefGoogle Scholar
Nickl, R.Uniform central limit theorems for sieved maximum likelihood and trigonometric series estimators on the unit circle. In High Dimensional Probability V. Birkhaeuser, Boston, 2009, pp. 338–56.Google Scholar
Nickl, R., and Pötscher, B. M.Bracketing metric entropy rates and empirical central limit theorems for function classes of Besov- and Sobolev-type. J. Theoret. Probab. 20 (2007), 177–99.CrossRefGoogle Scholar
Nickl, R., and Reiß, M.A Donsker theorem for Lévy measures. J. Funct. Anal. 263 (2012), 3306–32.CrossRefGoogle Scholar
Nickl, R., Reiß, M., Söhl, J., and Trabs, M.High-frequency Donsker theorems for Lévy measures. Probab. Theory Related Fields (2015).Google Scholar
Nickl, R., and Szabó|B. A sharp adaptive confidence ball for self-similar functions. Stoch. Proc. Appl., in press (2015).
Nickl, R., and van de Geer, S.Confidence sets in sparse regression, Ann. Stat. 41 (2013), 2852–76.CrossRefGoogle Scholar
Nolan, ,D., and Pollard, D.U-processes: rates of convergence. Ann. Stat. 15 (1987), 780–99.CrossRefGoogle Scholar
Nussbaum, M.Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Stat. 24 (1996), 2399–430.Google Scholar
Ossiander, M.A central limit theorem under metric entropy with L2 bracketing. Ann. Probab. 15 (1987), 897–919.CrossRefGoogle Scholar
Ottaviani, G.Sulla teoria astratta del calcolo delle probabilitá proposita dal Cantelli. Giorn. Ist. Ital. Attuari 10 (1939), 10–40.Google Scholar
Oxtoby, J. C., and Ulam, S.On the existence of a measure invariant under a transformation. Ann. Math. 40 (1939), 560–6.CrossRefGoogle Scholar
Paley, R. E. A. C., and Zygmund, A.On some series of functions, part 1. Proc. Cambridge Philos. Soc. 28 (1930), 266–72.Google Scholar
Paley, R. E. A. C., and Zygmund, A.A note on analytic functions on the unit circle. Proc. Cambridge Philos. Soc. 28 (1932), 266–72.CrossRefGoogle Scholar
Parzen, E.On estimation of a probability density function and mode. Ann. Math. Stat. 33 (1962), 1065–76.CrossRefGoogle Scholar
Pearson, K.On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Series 5 50 (1900), 157–75.Google Scholar
Peetre, J.New Thoughts on Besov Spaces (Duke University Math. Series). Duke University Press, Durham, NC, 1976.Google Scholar
Pensky, M., and Vidakovic, B.Adaptive wavelet estimator for nonparametric density deconvolution. Ann. Stat. 27 (1999), 2033–53.Google Scholar
Picard, D., and Tribouley, K.Adaptive confidence interval for pointwise curve estimation. Ann. Stat. 28 (2000), 298–335.Google Scholar
Pickands, J., III. Asymptotic properties of the maximum in a stationary Gaussian process. Trans. Am. Math. Soc. 145 (1969), 75–86.Google Scholar
Pinelis, I.Optimum bounds for the distributions of martingales in Banach spaces. Ann. Probab. 22 (1994), 1679–706.CrossRefGoogle Scholar
Pinsker, M. S.Information and Information Stability of Random Variables and Processes. Holden-Day, San Francisco, 1964.Google Scholar
Pisier, G.Remarques sur un résultat non publié de B. Maurey. In Séminaire d'Analyse Fonctionelle 1980–1981, Vols. 1–12. École Polytechnique, Palaiseau, France.Google Scholar
Pisier, G.Some applications of the metric entropy condition to harmonic analysis. Lecture Notes in Math. Vol. 995. Springer, Berlin, pp. 123–54.
Pisier, G.Probabilistic methods in the geometry of Banach spaces. Lecture Notes in Math., Vol. 1206. Springer, Berlin, 1986, 105–136.Google Scholar
Pisier, G.The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press, 1989.CrossRefGoogle Scholar
Piterbarg, V. I.Asymptotic Methods in the Theory of Gaussian Processes and Fields (Translations of Math. Monographs 148). AMS, Providence, RI, 1996.Google Scholar
Piterbarg, V. I., and Seleznjev, O.Linear interpolation of random processes and extremes of a sequence of Gaussian non-stationary processes. Technical report, Center for Stochastic Processes, North Carolina University; Chapel Hill, NC, 1994, p. 446.Google Scholar
Plackett, R. L.The discovery of the method of least squares. Biometrika 59 (1972), 239–51.CrossRefGoogle Scholar
Pollard, D.Limit theorems for empirical processes. Z. Wahrsch. Verw. Gebiete 57 (1981), 181–95.CrossRefGoogle Scholar
Pollard, D.A central limit theorem for empirical processes. J. Austral. Math. Soc., Ser. A 33 (1982), 235–48.CrossRefGoogle Scholar
Pouet, C.Test asymptotiquement minimax pour une hypothése nulle composite dans le modéle de densité. C.R. Math. Acad. Sci. Paris 334 (2002), 913–16.CrossRefGoogle Scholar
Prakasa Rao, B. L. S.Estimation of a unimodal density. Sankhya Ser. A 31 (1969), 23–36.Google Scholar
Prékopa, A.On logarithmically concave measures and functions. Acta Sci. Math. 33 (1972), 217–23.Google Scholar
Radulović, D., and Wegkamp, M.Uniform central limit theorems for pregaussian classes of functions. In High Dimensional Probability V: The Luminy Volume (Inst. Math. Stat. Collect. 5). IMS, Beachwood, OH, 2009, pp. 84–102.Google Scholar
Ray, K.Random Fourier series with applications to statistics. Part III Essay in Mathematics, University of Cambridge, 2010.Google Scholar
Ray, K.Bayesian inverse problems with non-conjugate priors, Elect. J. Stat. 7 (2013), 2516–49.Google Scholar
Ray, K. Bernstein–von Mises theorems for adaptive Bayesian nonparametric procedures, Preprint (2014), arxiv 1407.3397.
Reiß, M.Asymptotic equivalence for nonparametric regression with multivariate and random design. Ann. Stat. 36 (2008), 1957–82.CrossRefGoogle Scholar
Rhee, WanSoo, T.Central limit theorem and increment conditions. Stat. Probab. Lett. 4 (1986), 191–5.Google Scholar
Rio, E.Local invariance principles and their application to density estimation. Probab. Theory Related Fields 98 (1994), 21–45.CrossRefGoogle Scholar
Rio, E.Inégalités de concentration pour les processus empiriques de classes de parties. Probab. Theory Related. Fields 119 (2001), 163–75.CrossRefGoogle Scholar
Rio, E.Une inégalité de Bennett pour les maxima de processus empiriques. Ann. I. H. Poincaré Prob. 38 (2002), 1053–7.Google Scholar
Rio, E.Inegalités exponentielles et inegalités de concentration. Lectures at University Bordeaux Sud-Ouest, 2009.Google Scholar
Rio, E.Sur la function de taux dans les inegalités de Talagrand pour les processus empiriques. C. R. Acad. Sci. Paris Ser. I 350 (2012), 303–5.CrossRefGoogle Scholar
Robins, J., and van der Vaart, A. W.Adaptive nonparametric confidence sets. Ann. Stat. 34 (2006), 229–53.CrossRefGoogle Scholar
Rootzén, H.The rate of convergence of extremes of stationary normal sequences. Adv. Appl. Probab. 15 (1983), 54–80.CrossRefGoogle Scholar
Rosenblatt, M.Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27 (1956), 832–7.CrossRefGoogle Scholar
Salem, R., and Zygmund, A.Some properties of trigonometric series whose terms have random signs. Acta Math. 91 (1954), 245–301.CrossRefGoogle Scholar
Samson, P. -M.Concentration of measure inequalities for Markov chains and φ-mixing processes. Ann. Probab. 28 (2000), 416–61.Google Scholar
Sauer, N.On the density of families of sets. J. Comb. Theory 13 (1972), 145–7.CrossRefGoogle Scholar
Schmidt, E.Die Brunn-Minkowskische Ungleichung und ihr Spiegelbild sowie die isoperimetrische Eigenschaft der Kugel in der euklidischen und nichteuklidischen Geometrie. Math. Nachr. 1 (1948), 81–157.CrossRefGoogle Scholar
Schwartz, L.On Bayes procedures. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1965), 10–26.Google Scholar
Shannon, C. E.Communication in the presence of noise, Proc. Institute of Radio Engineers 37 (1949), 10–21.Google Scholar
Sheehy, A., and Wellner, J.Uniform Donsker classes of functions. Ann. Probab. 20 (1992), 1983–2030.CrossRefGoogle Scholar
Shelah, S.A combinatorial problem: stability and order for models and theories in infinitary languages. Pacific J. Math. 41 (1992), 247–61.Google Scholar
Shen, X., and Wasserman, L.Rates of convergence of posterior distributions. Ann. Stat. 29 (2001), 687–714.Google Scholar
Sidak, Z.Rectangular confidence regions for the means of multivariate normal distributions. J. Am. Stat. Assoc. 62 (1967), 626–33.Google Scholar
Sidak, Z.On multivariate normal probabilities of rectangles: their dependence on correlations. Ann. Math. Stat. 39 (1968), 1425–34.CrossRefGoogle Scholar
Slepian, D.The one sided barrier problem for Gaussian noise. Bell Systems Tech. J. 41 (1962), 463–501.CrossRefGoogle Scholar
Smirnov, N. V.Estimation of the deviation between empirical distribution curves of two independent samples. Bull. Univ. Moscow 2 (1939), 3–14 (in Russian).Google Scholar
Smirnov, N. V.On the construction of confidence regions for the density of distribution of random variables. Dokl. Akad. Nauk SSSR 74, (1950), 184–91 (in Russian).Google Scholar
Sobolev, S. L.The Cauchy problem in a functional space. Dokl. Akad. Nauk SSSR 3 (1935), 291–4 (in Russian).Google Scholar
Sobolev, S. L.On a theorem of functional analysis. Mat. Sb. 4 (1938), 471–97 (in Russian).Google Scholar
Söhl, J.Uniform central limit theorems for the Grenander estimator. Elect. J. Stat. 9 (2015) 1404–23.Google Scholar
Spokoiny, V.Adaptive hypothesis testing using wavelets. Ann. Stat. 24 (y), 2477–98.
Stefanski, L. A., and Carroll, R. J.Deconvoluting kernel density estimators. Stat. 21 (1990), 169–84.Google Scholar
Stigler, S. M.Gauss and the invention of least squares. Ann. Stat. 9 (1981), 465–74.CrossRefGoogle Scholar
Stolz, W.Une méthode elementaire pour l'evaluation de petities boules browniennes. C. R. Acad. Sci. Paris 316 (1994), 1217–20.Google Scholar
Stone, C. J.Optimal rates of convergence for nonparametric estimators, Ann. Stat. 8 (1980), 1348–60.CrossRefGoogle Scholar
Stone, C. J.Optimal global rates of convergence for nonparametric regression, Ann. Stat. 10 (1982), 1040–53.CrossRefGoogle Scholar
Strassen, V., and Dudley, R|M.The central limit theorem and epsilon-entropy. In Probability and Information Theory (Lecture Notes in Math. 1247). Springer, Berlin, 1969, pp. 224–31.
Strobl, F.On the reversed submartingale property of empirical discrepancies in arbitrary sample spaces. J. Theoret. Probab. 8 (1995), 825–31.CrossRefGoogle Scholar
Stute, W.The oscillation behavior of empirical processes. Ann. Probab. 10 (1982), 86–107.CrossRefGoogle Scholar
Stute, W.The oscillation behavior of empirical processes: the multivariate case. Ann. Probab. 12 (1984), 361–79.CrossRefGoogle Scholar
Sudakov, V. N.Gaussian measures, Cauchy measures and ε-entropy. Soviet Math. Dokl. 10 (1969), 310–13.Google Scholar
Sudakov, V. N.A remark on the criterion of continuity of Gaussian sample functions. Lecture Notes in Math. 330 (1973), 444–54.Google Scholar
Sudakov, V. N., and Tsirelson, B. S.Extremal properties of half-spaces for spherically invariant measures. Zap. Naucn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14–24.Google Scholar
Szabó, B., A. W., van der Vaart, and J. H., van ZantenFrequentist coverage of adaptive nonparametric Bayesian credible sets (with discussion). Ann. Stat. 43 (2015), 1391–428.Google Scholar
Szarek, S. J.On the best constants in the Khinchin inequality. Studia Math. 58 (1976), 197–208.CrossRefGoogle Scholar
Talagrand, M.Donsker classes and random geometry. Ann. Probab. 15 (1987), 1327–38.CrossRefGoogle Scholar
Talagrand, M.Regularity of Gaussian processes. Acta Math. 159 (1987a), 99–149.CrossRefGoogle Scholar
Talagrand, M.Donsker classes of sets. Probab. Theory Related Fields 78 (1988), 169–91.CrossRefGoogle Scholar
Talagrand, M.An isoperimetric theorem on the cube and the Kintchine-Kahane inequalities. Proc. Am. Math. Soc. 104 (1988a), 905–9.CrossRefGoogle Scholar
Talagrand, M.Isoperimetry and integrability of the sum of independent Banach space valued random variables. Ann. Probab. 17 (1989), 1546–70.CrossRefGoogle Scholar
Talagrand, M.Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22 (1994), 28–76.CrossRefGoogle Scholar
Talagrand, M.The supremum of some canonical processes. Am. J. Math. 116 (1994a), 283–325.CrossRefGoogle Scholar
Talagrand, M.Concentration of measure and isoperimetric inequalities in product spaces. Inst. Hautes Études Sci. Publ. Math. 81 (1995), 73–205.CrossRefGoogle Scholar
Talagrand, M.New concentration inequalities in product spaces. Invent. Math. 126 (1996), 505–63.CrossRefGoogle Scholar
Talagrand, M.The Generic Chaining. Springer, Berlin, 2005.Google Scholar
Teh, Y. W., and Jordan, M. I.Hierarchical Bayesian nonparametric models with applications. In Bayesian Nonparametrics, (Camb. Ser. Stat. Probab. Math.)Cambridge University Press, 2010, pp. 35–79.Google Scholar
Triebel, H.Theory of Function Spaces. Birkhäuser, Basel, 1983.Google Scholar
Tsybakov, A. B.Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes. Annals of Statistics, 26 (1998), 2420–69.Google Scholar
Tsybakov, A. B.Optimal rates of aggregation. Computational Learning Theory and Kernel Machines. Proc. 16th Annual Conference on Learning Theory (COLT), B. Scholkopf and M. Warmuth, eds. Lecture Notes in Artificial Intelligence, v.2777. Springer, Heidelberg, 303–13 (2003).Google Scholar
Tsybakov, A. B.Introduction to Nonparametric Estimation, Springer Series in Statistics, Springer, New York (2009).CrossRefGoogle Scholar
van de Geer, S.The entropy bound for monotone functions. Report TW91–10, University of Leiden, 1991.Google Scholar
S., van de GeerHellinger-consistency of certain nonparametric maximum likelihood estimators. Ann. Stat. 21 (1993), 14–44.Google Scholar
van de Geer, S.The method of sieves and minimum contrast estimators, Math. Methods Stat. 4 (1995), 20–28.Google Scholar
van de Geer, S.Empirical Processes in M-Estimation. Cambridge University Press, 2000.Google Scholar
van der Vaart, A. W.Weak convergence of smoothed empirical processes. Scand. J. Stat. 21 (1994), 501–4.Google Scholar
van der Vaart, A. W.Asymptotic Statistics. Cambridge University Press, 1998.CrossRefGoogle Scholar
van der Vaart, A. W., and van Zanten, J. H.Rates of contraction of posterior distributions based on Gaussian process priors. Ann. Stat. 36 (2008), 1435–63.CrossRefGoogle Scholar
van der Vaart, A. W., and van Zanten, J. H.Reproducing kernel Hilbert spaces of Gaussian priors. IMS Collections: Pushing the Limits of Contemporary Statistics: Contributions in honor of Jayantha K. Ghosh 3 (2008a), 200–22.Google Scholar
van der Vaart, A. W., and Wellner, J.Weak convergence and empirical processes. With Applications to Statistics. Springer, New York, 1996.Google Scholar
van der Vaart, A. W., and Wellner, J. Alocal maximal inequality under uniform entropy. Electronic J. Stat. 5 (2011), 192–203.CrossRefGoogle ScholarPubMed
Vapnik, V. N., and Cervonenkis, A. Ya.On the uniform convergence of frequencies of occurrence of events to their probabilities. Probab. Theory Appl. 26 (1968), 264–80.Google Scholar
Vapnik, V. N., and Cervonenkis, A. Ya.Necessary and sufficient conditions for the uniform convergence of means to their expectations. Theory Probab. Appl. 16 (1971), 264–80.Google Scholar
Vapnik, V. N., and Cervonenkis, A. Ya.Theory of Pattern Recognition: Statistical Problems on Learning. Nauka, Moscow, 1974 (in Russian).Google Scholar
Watson, G. S.Smooth regression analysis. Sankhya, Ser. A 26 (1964), 359–72.Google Scholar
Wong, W. H., and Severini, T. A.On maximum likelihood estimation in infinite dimensional parameter spaces. Ann. Stat. 19 (1991), 603–32.CrossRefGoogle Scholar
Wong, W. H., and Shen, X.Probability inequalities for likelihood ratios and convergence rates of sieve MLEs. Ann. Stat. 23 (1995), 33–362.CrossRefGoogle Scholar
Yukich, J.Weak convergence of smoothed empirical processes. Scand. J. Stat. 19 (1992), 271–9.Google Scholar
Zhao, L. H.Bayesian aspects of some nonparametric problems. Ann. Stat. 28 532–52.
Zygmund, A.Smooth functions. Duke Math. J. 12 (1945), 47–76.CrossRefGoogle Scholar
Zygmund, A.Trigonometric Series Vols. I and II, 3rd edn. Cambridge University Press, 2002.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Evarist Giné, University of Connecticut, Richard Nickl, University of Cambridge
  • Book: Mathematical Foundations of Infinite-Dimensional Statistical Models
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337862.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Evarist Giné, University of Connecticut, Richard Nickl, University of Cambridge
  • Book: Mathematical Foundations of Infinite-Dimensional Statistical Models
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337862.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Evarist Giné, University of Connecticut, Richard Nickl, University of Cambridge
  • Book: Mathematical Foundations of Infinite-Dimensional Statistical Models
  • Online publication: 05 December 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781107337862.010
Available formats
×