Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T13:06:16.614Z Has data issue: false hasContentIssue false

10 - Acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS)

Published online by Cambridge University Press:  12 January 2010

Scott L. Schissel
Affiliation:
Brigham and Women's Hospital and Harvard Medical School, Boston, MA
Bruce D. Levy
Affiliation:
Brigham and Women's Hospital and Harvard Medical School Boston, MA
Michael F. Lubin
Affiliation:
Emory University, Atlanta
Robert B. Smith
Affiliation:
Emory University, Atlanta
Thomas F. Dodson
Affiliation:
Emory University, Atlanta
Nathan O. Spell
Affiliation:
Emory University, Atlanta
H. Kenneth Walker
Affiliation:
Emory University, Atlanta
Get access

Summary

Introduction and definitions

Acute lung injury (ALI) is a devastating disorder caused by many underlying medical and surgical diseases; and, when complicated by severe hypoxemia, is termed the acute respiratory distress syndrome (ARDS). In 1967, Ashbaugh and colleagues first described some key features of ARDS, including: (a) respiratory distress and tachypnea (b) severe hypoxemia (c) diffuse alveolar infiltrates on chest radiography and (d) decreased lung compliance, all occurring in the setting of an acute medical or surgical illness. While this descriptive definition lacks specificity, it encompasses the fundamental concept that ALI is diffuse lung injury caused either by a direct (e.g., aspiration of gastric contents) or an indirect (e.g., sepsis) pulmonary insult.

In hopes of standardizing clinical care and research studies, attempts have been made to apply more strict criteria to the definition of ARDS. Murray and colleagues in 1988 proposed a comprehensive definition of ARDS, including details on: the severity of lung injury, the mechanism of lung injury, and the presence of non-pulmonary organ dysfunction. Lung injury was quantified based on the severity of 4 parameters and termed the Lung Injury Score (LIS); it includes: (a) the ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen (PaO2/FiO2), (b) the level of positive end-expiratory pressure (PEEP) applied during mechanical ventilation, (c) the static lung compliance, and (d) the extent of alveolar infiltrates on chest radiographs.

Type
Chapter
Information
Medical Management of the Surgical Patient
A Textbook of Perioperative Medicine
, pp. 142 - 157
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bernard, G. R., Artigas, A., Brigham, K. L.et al. The American–European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am. J. Respir. Crit. Care Med. 1994; 149(3 Pt 1): 818–824.CrossRefGoogle ScholarPubMed
Ashbaugh, D. G., Bigelow, D. B., Petty, T. L.et al. Acute respiratory distress in adults. Lancet 1967; 2(7511): 319–323.CrossRefGoogle ScholarPubMed
Murray, J. F., Matthay, M. A., Luce, J. M.et al. An expanded definition of the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1988; 138(3): 720–723.CrossRefGoogle ScholarPubMed
Luhr, O. R., Antonsen, K., Karlsson, M.et al. Incidence and mortality after acute respiratory failure and acute respiratory distress syndrome in Sweden, Denmark, and Iceland. The ARF Study Group. Am. J. Respir. Crit. Care Med. 1999; 159(6): 1849–1861.CrossRefGoogle ScholarPubMed
Pepe, P. E., Potkin, R. T., Reus, D. H.et al. Clinical predictors of the adult respiratory distress syndrome. Am. J. Surg. 1982; 144(1): 124–130.CrossRefGoogle ScholarPubMed
Monchi, M., Bellenfant, F., Cariou, A.et al. Early predictive factors of survival in the acute respiratory distress syndrome. A multivariate analysis. Am. J. Respir. Crit. Care Med. 1998; 158(4): 1076–1081.CrossRefGoogle ScholarPubMed
Doyle, R. L., Szaflarski, N., Modin, G. W.et al. Identification of patients with acute lung injury. Predictors of mortality. Am. J. Respir. Crit. Care Med. 1995; 152(6 Pt 1): 1818–1824.CrossRefGoogle ScholarPubMed
The Acute Respiratory Distress Syndrome Network. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N. Engl. J. Med. 2000; 342(18): 1301–1308.CrossRef
Thomsen, G. E. & Morris, A. H.Incidence of the adult respiratory distress syndrome in the state of Utah. Am. J. Respir. Crit. Care Med. 1995; 152(3): 965–971.CrossRefGoogle ScholarPubMed
Villar, J. & Slutsky, A. S.The incidence of the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1989; 140(3): 814–816.CrossRefGoogle ScholarPubMed
Ware, L. B. & Matthay, M. A.The acute respiratory distress syndrome. N. Engl. J. Med. 2000; 342(18): 1334–1349.CrossRefGoogle ScholarPubMed
Moss, M., Bucher, B., Moore, F. A.et al. The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. JAMA 1996; 275(1): 50–54.CrossRefGoogle ScholarPubMed
Hudson, L. D., Milberg, J. A., Anardi, D.et al. Clinical risks for development of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1995; 151(2 Pt 1): 293–301.CrossRefGoogle ScholarPubMed
Matuschak, G. M., Pinsky, M. R., Klein, E. C.et al. Effects of D-galactosamine-induced acute liver injury on mortality and pulmonary responses to Escherichia coli lipopolysaccharide. Modulation by arachidonic acid metabolites. Am. Rev. Respir. Dis. 1990; 141(5 Pt 1): 1296–1306.CrossRefGoogle ScholarPubMed
Bell, R. C., Coalson, J. J., Smith, J. D.et al. Multiple organ system failure and infection in adult respiratory distress syndrome. Ann. Intern. Med. 1983; 99(3): 293–298.CrossRefGoogle ScholarPubMed
Montgomery, A. B., Stager, M. A., Carrico, C. J.et al. Causes of mortality in patients with the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1985; 132(3): 485–489.Google ScholarPubMed
Milberg, J. A., Davis, D. R., Steinberg, K. P.et al. Improved survival of patients with acute respiratory distress syndrome (ARDS): 1983–1993. JAMA 1995; 273(4): 306–309.CrossRefGoogle ScholarPubMed
Nuckton, T. J., Alonso, J. A., Kallet, R. H.et al. Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N. Engl. J. Med. 2002; 346(17): 1281–1286.CrossRefGoogle ScholarPubMed
Suchyta, M. R., Clemmer, T. P., Elliott, C. G.et al. The adult respiratory distress syndrome. A report of survival and modifying factors. Chest 1992; 101(4): 1074–1079.CrossRefGoogle ScholarPubMed
Slutsky, A. S. & Tremblay, L. N.Multiple system organ failure. Is mechanical ventilation a contributing factor?Am. J. Respir. Crit. Care Med. 1998; 157(6 Pt 1): 1721–1725.CrossRefGoogle ScholarPubMed
Pugin, J., Verghese, G., Widmer, M. C.et al. The alveolar space is the site of intense inflammatory and profibrotic reactions in the early phase of acute respiratory distress syndrome. Crit. Care Med. 1999; 27(2): 304–312.CrossRefGoogle ScholarPubMed
Tomashefski, J. F. Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin. Chest Med. 2000; 21(3): 435–466.CrossRefGoogle ScholarPubMed
Tomashefski, J. F. Jr., Davies, P., Boggis, C.et al. The pulmonary vascular lesions of the adult respiratory distress syndrome. Am. J. Pathol. 1983; 112(1): 112–126.Google ScholarPubMed
Lewis, J. F. & Jobe, A. H.Surfactant and the adult respiratory distress syndrome. Am. Rev. Respir. Dis. 1993; 147(1): 218–233.CrossRefGoogle ScholarPubMed
Gattinoni, L., Bombino, M., Pelosi, P.et al. Lung structure and function in different stages of severe adult respiratory distress syndrome. JAMA 1994; 271(22): 1772–1779.CrossRefGoogle ScholarPubMed
Anderson, W. R. & Thielen, K.Correlative study of adult respiratory distress syndrome by light, scanning, and transmission electron microscopy. Ultrastruct. Pathol. 1992; 16(6): 615–628.CrossRefGoogle ScholarPubMed
Goodman, P. C.Radiographic findings in patients with acute respiratory distress syndrome. Clin. Chest Med. 2000; 21(3): 419–433.CrossRefGoogle ScholarPubMed
Puybasset, L., Cluzel, P., Chao, N.et al. A computed tomography scan assessment of regional lung volume in acute lung injury. The CT Scan ARDS Study Group. Am. J. Respir. Crit. Care Med. 1998; 158(5 Pt 1): 1644–1655.CrossRefGoogle ScholarPubMed
Zapol, W. M., Trelstad, R. L., Coffey, J. W.et al. Pulmonary fibrosis in severe acute respiratory failure. Am. Rev. Respir. Dis. 1979; 119(4): 547–554.Google ScholarPubMed
Chesnutt, A. N., Matthay, M. A., Tibayan, F. A.et al. Early detection of type III procollagen peptide in acute lung injury. Pathogenetic and prognostic significance. Am. J. Respir. Crit. Care Med. 1997; 156(3 Pt 1): 840–845.CrossRefGoogle ScholarPubMed
Ghio, A. J., Elliott, C. G., Crapo, R. O.et al. Impairment after adult respiratory distress syndrome. An evaluation based on American Thoracic Society recommendations. Am. Rev. Respir. Dis. 1989; 139(5): 1158–1162.CrossRefGoogle ScholarPubMed
McHugh, L. G., Milberg, J. A., Whitcomb, M. E.et al. Recovery of function in survivors of the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1994; 150(1): 90–94.CrossRefGoogle ScholarPubMed
Martin, C., Papazian, L., Payan, M. J.et al. Pulmonary fibrosis correlates with outcome in adult respiratory distress syndrome. A study in mechanically ventilated patients. Chest 1995; 107(1): 196–200.CrossRefGoogle ScholarPubMed
Tobin, M.Advances in mechanical ventilation. N. Engl. J. Med. 2001; 344(26): 1986–1996.CrossRefGoogle ScholarPubMed
Webb, H. H. & Tierney, D. F.Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am. Rev. Respir. Dis. 1974; 110(5): 556–565.Google ScholarPubMed
Dreyfuss, D., Soler, P., Basset, G.et al. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am. Rev. Respir. Dis. 1988; 137(5): 1159–1164.CrossRefGoogle ScholarPubMed
Dreyfuss, D., Soler, P., & Saumon, G.Mechanical ventilation-induced pulmonary edema. Interaction with previous lung alterations. Am. J. Respir. Crit. Care Med. 1995; 151(5): 1568–1575.CrossRefGoogle ScholarPubMed
Amato, M. B., Barbas, C. S., Medeiros, D. M.et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N. Engl. J. Med. 1998; 338(6): 347–354.CrossRefGoogle ScholarPubMed
Brochard, L., Roudot-Thoraval, F., Roupie, E.et al. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trial Group on Tidal Volume reduction in ARDS. Am. J. Respir. Crit. Care Med. 1998; 158(6): 1831–1838.CrossRefGoogle ScholarPubMed
Stewart, T. E., Meade, M. O., Cook, D. J.et al. Evaluation of a ventilation strategy to prevent barotrauma in patients at high risk for acute respiratory distress syndrome. Pressure- and Volume-Limited Ventilation Strategy Group. N. Engl. J. Med. 1998; 338(6): 355–361.CrossRefGoogle ScholarPubMed
Weigelt, J. A., Mitchell, R. A., & Snyder, W. H., 3rd. Early positive end-expiratory pressure in the adult respiratory distress syndrome. Arch. Surg. 1979; 114(4): 497–501.CrossRefGoogle ScholarPubMed
Valdes, M. E., Powers, S. R. Jr., Shah, D. M.et al. Continuous positive airway pressure in prophylaxis of adult respiratory distress syndrome in trauma patients. Surg. Forum 1978; 29: 187–189.Google ScholarPubMed
Schmidt, G. B., Bombeck, C. T., Bennett, E. J.et al. Continuous positive airway pressure in the prophylaxis of the adult respiratory distress syndrome (ARDS). Langenbecks Arch. Chir. 1975; Suppl: 439–442.Google Scholar
Pepe, P. E., Hudson, L. D., & Carrico, C. J.Early application of positive end-expiratory pressure in patients at risk for the adult respiratory-distress syndrome. N. Engl. J. Med. 1984; 311(5): 281–286.CrossRefGoogle ScholarPubMed
The Acute Respiratory Distress Syndrome Network. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N. Engl. J. Med. 2004; 351(4): 327–336.CrossRef
Bryan, A. C.Comments of a devil's advocate. Am. Rev. Respir. Dis. 1974; 110: 143–144.Google ScholarPubMed
Piehl, M. A. & Brown, R. S.Use of extreme position changes in acute respiratory failure. Crit. Care Med. 1976; 4(1): 13–14.CrossRefGoogle ScholarPubMed
Langer, M., Mascheroni, D., Marcolin, R.et al. The prone position in ARDS patients. A clinical study. Chest 1988; 94(1): 103–107.CrossRefGoogle ScholarPubMed
Douglas, W. W., Rehder, K., Beynen, F. M.et al. Improved oxygenation in patients with acute respiratory failure: the prone position. Am. Rev. Respir. Dis. 1977; 115(4): 559–566.Google ScholarPubMed
Pappert, D., Rossaint, R., Slama, K.et al. Influence of positioning on ventilation–perfusion relationships in severe adult respiratory distress syndrome. Chest 1994; 106(5): 1511–1516.CrossRefGoogle ScholarPubMed
Albert, R. K.Prone ventilation. Clin. Chest Med. 2000; 21(3): 511–517.CrossRefGoogle ScholarPubMed
Pelosi, P., Tubiolo, D., Mascheroni, D.et al. Effects of the prone position on respiratory mechanics and gas exchange during acute lung injury. Am. J. Respir. Crit. Care Med. 1998; 157(2): 387–393.CrossRefGoogle ScholarPubMed
Gattinoni, L., Tognoni, G., Pesenti, A.et al. Effect of prone positioning on the survival of patients with acute respiratory failure. N. Engl. J. Med. 2001; 345(8): 568–573.CrossRefGoogle ScholarPubMed
Slutsky, A. S. & Drazen, J. M.Ventilation with small tidal volumes. N. Engl. J. Med. 2002; 347(9): 630–631.CrossRefGoogle ScholarPubMed
Fort, P., Farmer, C., Westerman, J.et al. High-frequency oscillatory ventilation for adult respiratory distress syndrome – a pilot study. Crit. Care Med. 1997; 25(6): 937–947.CrossRefGoogle ScholarPubMed
Derdak, S., Mehta, S., Stewart, T. E.et al. High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am. J. Respir. Crit. Care Med. 2002; 166(6): 801–808.CrossRefGoogle ScholarPubMed
Bartlett, R. H.Extracorporeal life support in the management of severe respiratory failure. Clin. Chest Med. 2000; 21(3): 555–561.CrossRefGoogle ScholarPubMed
Bartlett, R. H., Roloff, D. W., Cornell, R. G.et al. Extracorporeal circulation in neonatal respiratory failure: a prospective randomized study. Pediatrics 1985; 76(4): 479–487.Google ScholarPubMed
O'Rourke, P. P., Crone, R. K., Vacanti, J. P.et al. Extracorporeal membrane oxygenation and conventional medical therapy in neonates with persistent pulmonary hypertension of the newborn: a prospective randomized study. Pediatrics 1989; 84(6): 957–963.Google ScholarPubMed
Gattinoni, L., Pesenti, A., Mascheroni, D.et al. Low-frequency positive-pressure ventilation with extracorporeal CO2 removal in severe acute respiratory failure. JAMA 1986; 256(7): 881–886.CrossRefGoogle ScholarPubMed
Morris, A. H., Wallace, C. J., Menlove, R. L.et al. Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1994; 149(2 Pt 1): 295–305.CrossRefGoogle ScholarPubMed
Wiedemann, H. P.Partial liquid ventilation for acute respiratory distress syndrome. Clin. Chest Med. 2000; 21(3): 543–554.CrossRefGoogle ScholarPubMed
Hirschl, R. B., Pranikoff, T., Wise, C.et al. Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome. JAMA 1996; 275(5): 383–389.CrossRefGoogle ScholarPubMed
Bartlett, R. H., Croce, M., & Hirschl, R. B.A phase II randomized, controlled trial of partial liquid ventilation (PLV) in adult patients with acute hypoxemic respiratory failure (AHRF). Crit. Care Med. 1997; 25(Suppl): A35.Google Scholar
Mitchell, J. P., Schuller, D., Calandrino, F. S.et al. Improved outcome based on fluid management in critically ill patients requiring pulmonary artery catheterization. Am. Rev. Respir. Dis. 1992; 145(5): 990–998.CrossRefGoogle ScholarPubMed
Bone, R. C.Treatment of adult respiratory distress syndrome with diuretics, dialysis, and positive end-expiratory pressure. Crit. Care Med. 1978; 6: 136–139.CrossRefGoogle ScholarPubMed
Humphrey, H., Hall, J., Sznajder, I.et al. Improved survival in ARDS patients associated with a reduction in pulmonary capillary wedge pressure. Chest 1990; 97(5): 1176–1180.CrossRefGoogle ScholarPubMed
Luce, J. M.Corticosteroids in ARDS. An evidence-based review. Crit. Care Clin. 2002; 18(1): 79–89, vii.CrossRefGoogle ScholarPubMed
Bernard, G. R., Luce, J. M., Sprung, C. L.et al. High-dose corticosteroids in patients with the adult respiratory distress syndrome. N. Engl. J. Med. 1987; 317(25): 1565–1570.CrossRefGoogle ScholarPubMed
Weigelt, J. A., Norcross, J. F., & Borman, K. R.Early steroid therapy for respiratory failure. Arch. Surg. 1985; 120: 536–540.CrossRefGoogle ScholarPubMed
Meduri, G. U., Belenchia, J. M., Estes, R. J.et al. Fibroproliferative phase of ARDS. Clinical findings and effects of corticosteroids. Chest 1991; 100(4): 943–952.CrossRefGoogle ScholarPubMed
Meduri, G. U., Chinn, A. J., Leeper, K. V.et al. Corticosteroid rescue treatment of progressive fibroproliferation in late ARDS. Patterns of response and predictors of outcome. Chest 1994; 105(5): 1516–1527.CrossRefGoogle ScholarPubMed
Meduri, G. U., Headley, A. S., Golden, E.et al. Effect of prolonged methylprednisolone therapy in unresolving acute respiratory distress syndrome: a randomized controlled trial. J. Am. Med. Assoc. 1998; 280(2): 159–165.CrossRefGoogle ScholarPubMed
Spragg, R. G.Surfactant replacement therapy. Clin. Chest Med. 2000; 21(3): 531–541, ix.CrossRefGoogle ScholarPubMed
Long, W., Thompson, T., Sundell, H.et al. The American Exosurf Neonatal Study Group I. Effects of two rescue doses of a synthetic surfactant on mortality rate and survival without bronchopulmonary dysplasia in 700- to 1350-gram infants with respiratory distress syndrome. J. Pediatr. 1991; 118(4 (Pt 1)): 595–605.CrossRefGoogle ScholarPubMed
Gregory, T. J., Longmore, W. J., Moxley, M. A.et al. Surfactant chemical composition and biophysical activity in acute respiratory distress syndrome. J. Clin. Invest. 1991; 88(6): 1976–1981.CrossRefGoogle ScholarPubMed
Anzueto, A., Baughman, R. P., Guntupalli, K. K.et al. Aerosolized surfactant in adults with sepsis-induced acute respiratory distress syndrome. Exosurf Acute Respiratory Distress Syndrome Sepsis Study Group. N. Engl. J. Med. 1996; 334(22): 1417–1421.CrossRefGoogle ScholarPubMed
MacIntyre, N. R., Coleman, R. E., Schuller, F. S.et al. Efficiency of the delivery of aerosolized artificial surfactant in intubated patients with the adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1994; 149(Suppl.): A125.Google Scholar
Payen, D. M.Inhaled nitric oxide and acute lung injury. Clin. Chest Med. 2000; 21(3): 519–529, ix.CrossRefGoogle ScholarPubMed
Rossaint, R., Falke, K. J., Lopez, F.et al. Inhaled nitric oxide for the adult respiratory distress syndrome. N. Engl. J. Med. 1993; 328(6): 399–405.CrossRefGoogle ScholarPubMed
Dellinger, R. P., Zimmerman, J. L., Taylor, R. W.et al. Effects of inhaled nitric oxide in patients with acute respiratory distress syndrome: results of a randomized phase II trial. Inhaled Nitric Oxide in ARDS Study Group. Crit. Care Med. 1998; 26(1): 15–23.CrossRefGoogle ScholarPubMed
Lundin, S., Mang, H., Smithies, M.et al. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. The European Study Group of Inhaled Nitric Oxide. Intens. Care Med. 1999; 25(9): 911–919.CrossRefGoogle Scholar
Troncy, E., Collet, J. P., Shapiro, S.et al. Inhaled nitric oxide in acute respiratory distress syndrome: a pilot randomized controlled study. Am. J. Respir. Crit. Care Med. 1998; 157(5 Pt 1): 1483–1488.CrossRefGoogle ScholarPubMed
Winn, R., Harlan, J., Nadir, B.et al. Thromboxane A2 mediates lung vasoconstriction but not permeability after endotoxin. J. Clin. Invest. 1983; 72(3): 911–918.CrossRefGoogle Scholar
Conner, B. D. & Bernard, G. R.Acute respiratory distress syndrome. Potential pharmacologic interventions. Clin. Chest Med. 2000; 21(3): 563–587.CrossRefGoogle ScholarPubMed
Abraham, E., Baughman, R., Fletcher, E.et al. Liposomal prostaglandin E1 (TLC C-53) in acute respiratory distress syndrome: a controlled, randomized, double-blind, multicenter clinical trial. TLC C-53 ARDS Study Group. Crit. Care Med. 1999; 27(8): 1478–1485.CrossRefGoogle ScholarPubMed
Slotman, G. J., Burchard, K. W., D'Arezzo, A.et al. Ketoconazole prevents acute respiratory failure in critically ill surgical patients. J. Trauma 1988; 28(5): 648–654.CrossRefGoogle ScholarPubMed
Yu, M. & Tomasa, G.A double-blind, prospective, randomized trial of ketoconazole, a thromboxane synthetase inhibitor, in the prophylaxis of the adult respiratory distress syndrome. Crit. Care Med. 1993; 21(11): 1635–1642.CrossRefGoogle ScholarPubMed
The ARDS Network. Ketoconazole for early treatment of acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 2000; 283(15): 1995–2002.CrossRef
Rinaldo, J. E. & Pennock, B.Effects of ibuprofen on endotoxin-induced alveolitis: biphasic dose response and dissociation between inflammation and hypoxemia. Am. J. Med. Sci. 1986; 291(1): 29–38.CrossRefGoogle ScholarPubMed
Levy, B. D., Sanctis, G. T., Devchand, P. R.et al. Multi-pronged inhibition of airway hyper-responsiveness and inflammation by lipoxin A(4). Nat. Med. 2002; 8(9): 1018–1023.CrossRefGoogle Scholar
Davidson, T. A., Caldwell, E. S., Curtis, J. R.et al. Reduced quality of life in survivors of acute respiratory distress syndrome compared with critically ill control patients. JAMA 1999; 281(4): 354–360.CrossRefGoogle ScholarPubMed
Weinert, C. R., Gross, C. R., Kangas, J. R.et al. Health-related quality of life after acute lung injury. Am. J. Respir. Crit. Care Med. 1997; 156(4 Pt 1): 1120–1128.CrossRefGoogle ScholarPubMed
Stoll, C., Schelling, G., Bullinger, M.et al. Quality of life after prolonged intensive care treatment for acute lung failure. Qual. Life Res. 1995; 4: 491–492.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×