Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-04T23:57:23.950Z Has data issue: false hasContentIssue false

7 - The Geochemical and Mineralogical Diversity of Mercury

Published online by Cambridge University Press:  10 December 2018

Sean C. Solomon
Affiliation:
Lamont-Doherty Earth Observatory, Columbia University, New York
Larry R. Nittler
Affiliation:
Carnegie Institution of Washington, Washington DC
Brian J. Anderson
Affiliation:
The Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland
Get access

Summary

Geochemical measurements from the MESSENGER mission indicate distinct geochemical terranes on the surface of Mercury. We report chemical compositions and derived mineralogy for four geochemical terranes, as well as Mercury’s average surface composition. The geochemical terranes share higher Mg and S, and lower Al, Ca, and Fe, than terrestrial oceanic basalts. The low Fe and high S concentrations suggest that all terranes formed under highly reducing conditions. All terranes are enriched in plagioclase. Heating melted the silicate shell of Mercury and produced a global magma ocean in which stratification developed during crystallization, with basal ultramafic material grading to incompatible-element-enriched material near the surface. Later differentiation began with partial melting as result of mantle convection and heating from the decay of radioactive elements. These high-Mg, high-temperature partial melts were exceptionally fluid and produced thin, laterally extensive flows. The largest impacts excavated into the upper layers of the mantle and deposited distinctive material, including remnants of a graphite-rich flotation crust from the magma ocean, at the top of the crust. Smooth plains deposits originated as laterally extensive flood basalts that efficiently covered pre-existing layers. Distinct source compositions suggest that convection was insufficient to homogenize the mantle at ~3.8–3.9 Ga.
Type
Chapter
Information
Mercury
The View after MESSENGER
, pp. 176 - 190
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anand, M., Taylor, L. A., Nazarov, M. A., Shu, J., Mao, H.-K. and Hemley, R. (2004). Space weathering on airless planetary bodies: Clues from the lunar mineral hapkeite. Proc. Natl. Acad. Sci., 101, 68476851.CrossRefGoogle ScholarPubMed
Basaltic Volcanism Study Project (1981). Basaltic Volcanism on the Terrestrial Planets. New York: Pergamon, 1286 pp.Google Scholar
Benkhoff, J., van Casteren, J., Hayakawa, H., Fujimoto, M., Laaskso, H., Novara, M., Ferri, P., Middleton, H. R. and Ziethe, R. (2010). BepiColombo – Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci., 58, 220.Google Scholar
Berthet, S., Malavergne, V. and Righter, K. (2009). Melting of the Indarch meteorite (EH4 chondrite) at 1 GPa and variable oxygen fugacity: Implications for early planetary differentiation processes. Geochim. Cosmochim. Acta, 73, 64026420.Google Scholar
Brown, S. M. and Elkins-Tanton, L. T. (2009). Compositions of Mercury’s earliest crust from magma ocean models. Earth Planet. Sci. Lett., 286, 446455.CrossRefGoogle Scholar
Burbine, T. H., McCoy, T. J., Nittler, L. R., Benedix, G. K., Cloutis, E. A. and Dickinson, T. L. (2002). Spectra of extremely reduced assemblages: Implications for Mercury. Meteorit. Planet. Sci., 37, 12331244.Google Scholar
Byrne, P. K., Klimczak, C., Williams, D. A., Hurwitz, D. M., Solomon, S. C., Head, J. W., Preusker, F. and Oberst, J. (2013). An assemblage of lava flow features on Mercury. J. Geophys. Res. Planets, 118, 13031322, doi:10.1002/jgre.20052.Google Scholar
Charlier, B., Grove, T. L. and Zuber, M. T. (2013). Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth. Planet. Sci. Lett., 363, 5060.Google Scholar
Cross, W., Iddings, J. P., Pirsson, L. V. and Washington, H. S. (1903). Quantitative Classification of Igneous Rocks. Chicago, IL: University of Chicago Press, 315 pp.Google Scholar
Davis, P. A. and Spudis, P. D. (1985). Petrologic province map of the lunar highlands derived from orbital geochemical data. Proc. 16th Lunar Planet. Sci. Conf., J. Geophys. Res., 90, D61D74.Google Scholar
Denevi, B. W., Robinson, M. S., Solomon, S. C., Murchie, S. L., Blewett, D. T., Domingue, D. L., McCoy, T. J., Ernst, C. M., Head, J. W., Watters, T. R. and Chabot, N. L. (2009). The evolution of Mercury’s crust: A global perspective from MESSENGER. Science, 324, 613618.Google Scholar
Denevi, B. W., Ernst, C. M., Meyer, H. M., Robinson, M. S., Murchie, S. L., Whitten, J. L., Head, J. W., Watters, T. R., Solomon, S. C., Ostrach, L. R., Chapman, C. R., Byrne, P. K., Klimczak, C. and Peplowski, P. N. (2013). The distribution and origin of smooth plains on Mercury. Icarus, 118, 891907.Google Scholar
Ernst, C. M., Denevi, B. W., Barnouin, O. S., Klimczak, C., Chabot, N. L., Head, J. W., Murchie, S. L., Neumann, G. A., Prockter, L. M., Robinson, M. S., Solomon, S. C. and Watters, T. R. (2015). Stratigraphy of the Caloris basin, Mercury: Implications for volcanic history and basin impact melt. Icarus, 250, 413429.Google Scholar
Evans, L. G., Peplowski, P. N., Rhodes, E. A., Lawrence, D. J., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Stockstill-Cahill, K. R., Starr, R. D., Weider, S. Z., Boynton, W. V., Hamara, D. K. and Goldsten, J. O. (2012). Major-element abundances on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L07, doi:10.1029/2012JE004178.Google Scholar
Evans, L. G., Peplowski, P. N., McCubbin, F. M., McCoy, T. J., Nittler, L. R., Zolotov, M. Yu., Ebel, D. S., Lawrence, D. J., Starr, R. D., Weider, S. Z. and Solomon, S. C. (2015). Chlorine on the surface of Mercury: MESSENGER gamma-ray measurements and implications for the planet’s formation and evolution. Icarus, 257, 417427, doi:10.1016/j.icarus.2015.04.039.Google Scholar
Frank, E. A., Potter, R. W. K., Abramov, O., James, P. B., Klima, R. L., Mojzsis, S. J. and Nittler, L. R. (2017). Evaluating an impact origin for Mercury’s high-magnesium region. J. Geophys. Res. Planets, 122, 614632, doi:10.1002/2016JE005244.Google Scholar
Gasnault, O., d’Uston, C., Feldman, W. C. and Maurice, S. (2000). Lunar fast neutron leakage flux calculation and its elemental abundance dependence. J. Geophys. Res., 105, 42634263.CrossRefGoogle Scholar
Gualda, G. A. R. and Ghiorso, M. S. (2015). MELTS_Excel: A Microsoft Excel-based MELTS interface for research and teaching of magma properties and evolution. Geochem. Geophys. Geosyst., 16, 315324.Google Scholar
Hauck, S. A. II, Margot, J.-L., Solomon, S. C., Phillips, R. J., Johnson, C. L, Lemoine, F. G., Mazarico, E., McCoy, T. J., Padovan, S., Peale, S. J., Perry, M. E., Smith, D. E. and Zuber, M. T. (2013). The curious case of Mercury’s internal structure. J. Geophys. Res. Planets, 118, 12041220, doi:10.1002/jgre.20091.CrossRefGoogle Scholar
Head, J. W., Chapman, C. R., Strom, R. G., Fassett, C. I., Denevi, B. W, Blewett, D. T., Ernst, C. M., Watters, T. R., Solomon, S. C., Murchie, S. L., Prockter, L. M., Chabot, N. L., Gillis-Davis, J. J., Whitten, J. L., Goudge, T. A., Baker, D. M. H., Hurwitz, D. M., Ostrach, L. R., Xiao, Z., Merline, W. J., Kerber, L., Dickson, J. L., Oberst, J., Byrne, P. K., Klimczak, C. and Nittler, L. R. (2011). Flood volcanism in the northern high latitudes of Mercury revealed by MESSENGER. Science, 333, 18531856.Google Scholar
Jolliff, B. L., Gillis, J. J., Haskin, L. A., Korotev, R. L. and Wieczorek, M. A. (2000). Major lunar crustal terranes: Surface expressions and crust–mantle origins. J. Geophys. Res., 105, 41974216.Google Scholar
Keil, K. (1989). Enstatite meteorites and their parent bodies. Meteoritics, 24, 195208.Google Scholar
Lawrence, D. J., Feldman, W. C., Goldsten, J. O., McCoy, T. J., Blewett, D. T., Boynton, W. V., Evans, L. G., Nittler, L. R., Rhodes, E. A. and Solomon, S. C. (2010). Identification and measurement of neutron-absorbing elements on Mercury’s surface. Icarus, 209, 195209.CrossRefGoogle Scholar
Lawrence, D. J., Peplowski, P. N., Beck, A. W., Feldman, W. C., Frank, E. A., McCoy, T. J., Nittler, L. R. and Solomon, S. C. (2017). Compositional terranes on Mercury: New information from fast neutrons. Icarus, 281, 3245.Google Scholar
Le Bas, M. J. (2000). IUGS reclassification of the high-Mg and picritic volcanic rocks. J. Petrol., 41, 14671470.CrossRefGoogle Scholar
Le Bas, M. J. and Streckeisen, A. L. (1991). The IUGS systematics of igneous rocks. J. Geol. Soc. London, 148, 825833.CrossRefGoogle Scholar
Lodders, L. and Fegley, B. (1998). The Planetary Scientist’s Companion. New York: Oxford University Press.Google Scholar
McCoy, T. J., Dickinson, T. L. and Lofgren, G. E. (1999). Partial melting of the Indarch (EH4) meteorite: A textural, chemical, and phase relations view of melting and melt migration. Meteorit. Planet. Sci., 34, 735746.Google Scholar
McCubbin, F. M., Riner, M. A., Vander Kaaden, K. E. and Burkemper, L. K. (2012). Is Mercury a volatile-rich planet? Geophys. Res. Lett., 39, L09202, doi:10.1029/2012GL051711.CrossRefGoogle Scholar
Michel, N. C., Hauck, S. A. II, Solomon, S. C., Phillips, R. J., Roberts, J. H. and Zuber, M. T. (2013). Thermal evolution of Mercury as constrained by MESSENGER observations. J. Geophys. Res. Planets, 118, 10331044.Google Scholar
Murchie, S. L., Watters, T. R., Robinson, M. S., Head, J. W., Strom, R. G., Chapman, C. R., Solomon, S. C., McClintock, W. E., Prockter, L. M., Domingue, D. L. and Blewett, D. T. (2008). Geology of the Caloris basin, Mercury: A view from MESSENGER. Science, 321, 7376.CrossRefGoogle ScholarPubMed
Murchie, S. L., Klima, R. L., Denevi, B. W., Ernst, C. M., Keller, M. R., Domingue, D. L., Blewett, D. T., Chabot, N. L., Hash, C. D., Malaret, E., Izenberg, N. R., Vilas, F., Nittler, L. R., Gillis-Davis, J. J., Head, J. W. and Solomon, S. C. (2015). Orbital multispectral mapping of Mercury with the MESSENGER Mercury Dual Imagining System: Evidence for the origins of plains units and low-reflectance material. Icarus, 254, 287305.Google Scholar
Namur, O., Collinet, M., Charlier, B., Grove, T. L., Holt, F. and McCammon, C. (2016). Melting processes and mantle sources of lavas on Mercury. Earth Planet. Sci. Lett., 439, 117128.Google Scholar
Nittler, L. R., Starr, R. D., Weider, S. Z., McCoy, T. J., Boynton, W. V, Ebel, D. S., Ernst, C. M., Evans, L. G., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Schlemm, C. E., Solomon, S. C. and Sprague, A. L. (2011). The major-element composition of Mercury’s surface from MESSENGER X-ray spectrometry. Science, 333, 18471850, doi:10.1126/science.1211567.Google Scholar
Ostrach, L. R., Robinson, M. S., Whitten, J. L., Fassett, C. I., Strom, R. G., Head, J. W. and Solomon, S. C. (2015). Extent, age, and resurfacing history of the northern smooth plains on Mercury from MESSENGER observations. Icarus, 250, 602622.Google Scholar
Papike, J. J., Ryder, G. and Shearer, C. K. (1998). Lunar samples. In Planetary Materials, ed. Papike, J. J.. Reviews in Mineralogy, 36. Washington, DC: Mineralogical Society of America, pp. 5-1–5-234.Google Scholar
Peplowski, P. N., Evans, L. G., Hauck, S. A. II, McCoy, T. J., Boynton, W. V., Gillis-Davis, J. J., Ebel, D. S., Goldsten, J. O., Hamara, D. K., Lawrence, D. J., McNutt, R. L. Jr., Nittler, L. R., Solomon, S. C., Rhodes, E. A., Sprague, A. L., Starr, R. D. and Stockstill-Cahill, K. R. (2011). Radioactive elements on Mercury’s surface from MESSENGER: Implications for the planet’s formation and evolution. Science, 333, 18501852.CrossRefGoogle ScholarPubMed
Peplowski, P. N., Lawrence, D. J., Rhodes, E. A., Sprague, A. L., McCoy, T. J., Denevi, B. W., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C., Stockstill-Cahill, K. R. and Weider, S. Z. (2012). Variations in the abundances of potassium and thorium on the surface of Mercury: Results from the MESSENGER Gamma-Ray Spectrometer. J. Geophys. Res., 117, E00L04, doi:10.1029/2012JE004141.Google Scholar
Peplowski, P. N., Evans, L. G., Stockstill-Cahill, K. R., Lawrence, D. J., Goldsten, J. O., McCoy, T. J., Nittler, L. R., Solomon, S. C., Sprague, A. L., Starr, R. D. and Weider, S. Z. (2014). Enhanced sodium abundance in Mercury’s north polar region revealed by the MESSENGER Gamma-Ray Spectrometer. Icarus, 228, 8695.CrossRefGoogle Scholar
Peplowski, P. N., Lawrence, D. J., Feldman, W. C., Goldsten, J. O., Bazell, D., Evans, L. G., Head, J. W., Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2015). Geochemical terranes of Mercury’s northern hemisphere as revealed by MESSENGER neutron measurements. Icarus, 253, 346363.CrossRefGoogle Scholar
Peplowski, P. N., Klima, R. L., Lawrence, D. J., Ernst, C. M., Denevi, B. W., Goldsten, J. O., Murchie, S. L., Nittler, L. R. and Solomon, S. C. (2016). Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nature Geosci., 9, 273276.Google Scholar
Riner, M. A., Lucey, P. G., Desch, S. J. and McCubbin, F. M. (2009). Nature of opaque components on Mercury: Insights into a Mercurian magma ocean. Geophys. Res. Lett., 36, L02201, doi:10.1029/2008GL036128.Google Scholar
Roberts, J. H. and Barnouin, O. S. (2012). The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res., 117, E02007, doi:10.1029/2011JE003876.Google Scholar
Schubert, G., Ross, M. N., Stevenson, D. J. and Spohn, T. (1988). Mercury’s thermal history and the generation of its magnetic field. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 622650.Google Scholar
Shaw, H. R. (1972). Viscosities of magmatic silicate liquids: An empirical method of prediction. Amer. J. Sci., 272, 870893.CrossRefGoogle Scholar
Solomon, S. C., McNutt, R. L. Jr., Watters, T. R., Lawrence, D. J., Feldman, W. C., Head, J. W., Krimigis, S. M., Murchie, S. L., Phillips, R. J., Slavin, J. A. and Zuber, M. T. (2008). Return to Mercury: A global perspective on MESSENGER’s first Mercury flyby. Science, 321, 5962, doi:10.1126/science.1159706.Google Scholar
Sprague, A. L., Donaldson Hanna, K. L., Kozlowski, R. W. H., Helbert, J., Maturilli, A., Warell, J. B. and Hora, J. L. (2009). Spectral emissivity measurements of Mercury’s surface indicate Mg- and Ca-rich mineralogy, K-spar, Na-rich plagioclase, rutile, with possible perovskite, and garnet. Planet. Space Sci., 57, 364383.Google Scholar
Stockstill-Cahill, K. R., McCoy, T. J., Nittler, L. R., Weider, S. Z. and Hauck, S. A. II (2012). Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. J. Geophys. Res., 117, E00L15, doi:10.1029/2012JE004140.Google Scholar
Taylor, G. J., Boynton, W., Brückner, J., Wänke, H., Dreibus, G., Kerry, K., Keller, J., Reedy, R., Evans, L., Starr, R., Squyres, S., Karunatillake, S., Gasnault, O., Maurice, S., d’Uston, C., Englert, P., Dohm, J., Baker, V., Hamara, D., James, D., Sprague, A., Kim, K. and Drake, D. (2006). Bulk composition and early differentiation of Mars. J. Geophys. Res., 111, E03S10, doi:10.1029/2005JE002645.CrossRefGoogle Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2015). Exotic crust formation on Mercury: Cosequences of a shallow, FeO-poor mantle. J. Geophys. Res. Planets, 120, 195209.Google Scholar
Vander Kaaden, K. E. and McCubbin, F. M. (2016). The origin of boninites on Mercury: An experimental study of the northern volcanic plains lavas. Geochim. Cosmochim. Acta, 173, 246263.CrossRefGoogle Scholar
Vander Kaaden, K. E., McCubbin, F. M., Nittler, L. R., Peplowksi, P. N., Weider, S. Z., Frank, E. A. and McCoy, T. J. (2017). Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285, 155168, doi:10.1016/j.icarus.2016.11.041.CrossRefGoogle Scholar
Wasson, J. T. (1988), The building stones of the planets. In Mercury, ed. Vilas, F., Chapman, C. R. and Matthews, M. S.. Tucson, AZ: University of Arizona Press, pp. 622650.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J., Stockstill-Cahill, K. R., Byrne, P. K., Denevi, B. W., Head, J. W. and Solomon, S. C. (2012). Chemical heterogeneity on Mercury’s surface revealed by the MESSENGER X-Ray Spectrometer. J. Geophys. Res., 117, E00L05, doi:10.1029/2012JE004153.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., McCoy, T. J. and Solomon, S. C. (2014). Variations in the abundance of iron on Mercury’s surface from MESSENGER X-Ray Spectrometer observations. Icarus, 235, 170186.Google Scholar
Weider, S. Z., Nittler, L. R., Starr, R. D., Crapster-Pregont, E. J., Peplowski, P. N., Denevi, B. W., Head, J. W., Byrne, P. K., Hauck, S. A. II, Ebel, D. S. and Solomon, S. C. (2015). Evidence for geochemical terranes on Mercury: Global mapping of major elements with MESSENGER’s X-Ray Spectrometer. Earth Planet. Sci. Lett., 416, 109120, doi:10.1016/j.epsl.2015.01.023.Google Scholar
Weider, S. Z., Nittler, L. R., Murchie, S. L., Peplowski, P. N., Ernst, C. M., McCoy, T. J., Goudge, T. A., Kerber, L., Starr, R. D., Izenberg, N. R., Klima, R. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2016). Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys. Res. Lett., 43, 36533661.Google Scholar
Whitten, J. L., Head, J. W., Denevi, B. W. and Solomon, S. C. (2014). Intercrater plains on Mercury: Insight into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241, 97113.Google Scholar
Zolotov, M. Yu., Sprague, A. L., Hauck, S. A. II, Nittler, L. R., Solomon, S. C. and Weider, S. Z. (2013). The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets, 118, 138146.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×