Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-03T14:47:10.668Z Has data issue: false hasContentIssue false

2 - Capacity limits of MIMO systems

Published online by Cambridge University Press:  15 December 2009

Ezio Biglieri
Affiliation:
Universitat Pompeu Fabra, Barcelona
Robert Calderbank
Affiliation:
Princeton University, New Jersey
Anthony Constantinides
Affiliation:
Imperial College of Science, Technology and Medicine, London
Andrea Goldsmith
Affiliation:
Stanford University, California
Arogyaswami Paulraj
Affiliation:
Stanford University, California
H. Vincent Poor
Affiliation:
Princeton University, New Jersey
Get access

Summary

Introduction

Chapter 1 introduced the basic concepts behind multiple-input multiple-output (MIMO) communications along with their performance advantages. In particular, we saw that MIMO systems provide tremendous capacity gains, which has spurred significant activity to develop transmitter and receiver techniques that realize these capacity benefits and exploit diversitymultiplexing trade-offs. In this chapter we will explore in more detail the Shannon capacity limits of single- and multi-user MIMO systems. These fundamental limits dictate the maximum data rates that can be transmitted over the MIMO channel to one or more users (not in outage) with asymptotically small error probability, assuming no constraints on the delay or the complexity of the encoder and decoder. Much of the initial excitement about MIMO systems was due to pioneering work by Foschini and Telatar predicting remarkable capacity growth for wireless systems with multiple antennas when the channel exhibits rich scattering and its variations can be accurately tracked. This promise of exceptional spectral efficiency almost “for free,” also studied in earlier work by Winters, resulted in an explosion of research and commercial activity to characterize the theoretical and practical issues associated with MIMO systems. However, these predictions are based on somewhat unrealistic assumptions about the underlying time-varying channel model and how well it can be tracked at the receiver as well as at the transmitter. More realistic assumptions can dramatically impact the potential capacity gains of MIMO techniques. This chapter provides a comprehensive summary of MIMO Shannon capacity for both single- and multi-user systems with and without fading under different assumptions about what is known at the transmitter(s) and receiver(s).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×