Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-c9gpj Total loading time: 0 Render date: 2024-07-16T02:22:04.354Z Has data issue: false hasContentIssue false

Chapter 14 - Ion permeation and channel structure

Published online by Cambridge University Press:  24 May 2010

Meyer B. Jackson
Affiliation:
University of Wisconsin, Madison
Get access

Summary

Pure lipid bilayers have extremely low permeabilities to inorganic ions. Adding proteinaceous ion channels can increase the permeability by a factor of more than 108, allowing ions to flow across membranes and produce rapid changes in voltage. One can draw a strong analogy with enzymes. Both ion flow and the chemical reaction catalyzed by an enzyme have a favorable free energy that enables each to proceed in the absence of its respective catalyst, but at a very slow rate. Ion channels and enzymes both enhance these rates dramatically, and this enhancement is highly specific. In the case of an enzyme, small differences in the structure of a substrate can make a huge difference in catalytic efficiency. Likewise, ion channels can discriminate very effectively between different ions.

At first glance, an ion channel appears to have an easier task than an enzyme. It simply forms a water-filled pore so that ions see a continuous aqueous path through the membrane. However, a simple aqueous pore will not be specific for one particular ion. The diameter of K+ is 1.33 Å and the diameter of Na+ is 0.95 Å. Although this difference is small, some channels show selectivities between Na+ and K+ of more than 1000. Understanding this specificity is the real challenge in the study of ion channel permeation. Ion permeation depends not just on the water filling the pore but also on the detailed molecular structure of the protein that forms the channel.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×