Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T22:11:39.653Z Has data issue: false hasContentIssue false

2 - Antigens

Published online by Cambridge University Press:  01 February 2018

Anna Porwit
Affiliation:
Lunds Universitet, Sweden
Marie Christine Béné
Affiliation:
Université de Nantes, France
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Unanue, E.R., Grey, H.M., Rabellino, E., Campbell, P. and Schmidtke, J. Immunoglobulins on the surface of lymphocytes. II. The bone marrow as the main source of lymphocytes with detectable surface-bound immunoglobulin. J Exp Med; 133 (1971):1188–98.Google ScholarPubMed
Jondal, M., Holm, G. and Wigzell, H.. Surface markers on human T and B lymphocytes. I. A large population of lymphocytes forming nonimmune rosettes with sheep red blood cells. J Exp Med; 136 (1972):207215.CrossRefGoogle Scholar
Hoffbrand, A.V., Ganeshaguru, K., Janossy, G., et al. Terminal deoxynucleotidyl-transferase levels and membrane phenotypes in diagnosis of acute leukaemia. Lancet; 2 (1977):520–3.Google ScholarPubMed
Janossy, G. and Greaves, M.F.. Diagnostic use of an antiserum made against acute lymphoid leukemia associated antigen. Bibl Haematol; 45 (1978):156160.Google ScholarPubMed
Köhler, G. and Milstein, C.. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature; 256 (1975):495–7.CrossRefGoogle ScholarPubMed
Sakano, H., Maki, R., Kurosawa, Y., Roeder, W. and Tonegawa, S.. Two types of somatic recombination are necessary for the generation of complete immunoglobulin heavy-chain genes. Nature; 286 (1980):676–83.CrossRefGoogle ScholarPubMed
Bernard, A. and Boumsell, L.. The clusters of differentiation (CD) defined by the First International Workshop on Human Leucocyte Differentiation Antigens. Hum Immunol; 11 (1984):110.CrossRefGoogle ScholarPubMed
Zola, H. and Swart, B.. The human leucocyte differentiation antigens (HLDA) workshops: the evolving role of antibodies in research, diagnosis and therapy. Cell Res; 15 (2005):691–4.CrossRefGoogle ScholarPubMed
Clark, G., Stockinger, H., Balderas, R., et al. Nomenclature of CD molecules from the tenth human leucocyte differentiation antigen workshop. Clin Transl Immunology; 5 (2016):e57.CrossRefGoogle ScholarPubMed
Hashimoto, S., Nagai, S., Sese, J., et al. Gene expression profile in human leukocytes. Blood; 101 (2003):3509–13.CrossRefGoogle ScholarPubMed
Nam, H.J., Poy, F., Saito, H. and Frederick, C.A.. Structural basis for the function and regulation of the receptor protein tyrosine phosphatase CD45. J Exp Med; 201 (2005):441–52.CrossRefGoogle ScholarPubMed
Sutherland, D.R., Anderson, L., Keeney, M., Nayar, R. and Chin-Yee, I.. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother; 5 (1996):213–26.CrossRefGoogle ScholarPubMed
Maynadié, M., Gerland, L., Aho, S., et al. GEIL. Clinical value of the quantitative expression of the three epitopes of CD34 in 300 cases of acute myeloid leukemia. Haematologica; 87 (2002):795803.Google ScholarPubMed
Muramatsu, T. and Muramatsu, H.. Carbohydrate antigens expressed on stem cells and early embryonic cells. Glycoconj J; 21 (2004):41–5.CrossRefGoogle Scholar
Guenova, E., Ignatova, D., Chang, Y.T., et al. Expression of CD164 on Malignant T cells in Sézary Syndrome. Acta Derm Venereol; 96 (2016):464–7.CrossRefGoogle Scholar
Wolanczyk-Medrala, A., Barg, W. and Medrala, W.. CD164 as a basophil activation marker. Curr Pharm Des; 17 (2011):3786–96.CrossRefGoogle ScholarPubMed
Li, Z.. CD133: a stem cell biomarker and beyond. Exp Hematol Oncol; 2 (2013):17.CrossRefGoogle ScholarPubMed
Huang, S. and Terstappen, L.W.. Lymphoid and myeloid differentiation of single human CD34+, HLA-DR+, CD38− hematopoietic stem cells. Blood; 83 (1994):1515–26.CrossRefGoogle ScholarPubMed
Ferrero, E. and Malavasi, F.. The metamorphosis of a molecule: from soluble enzyme to the leukocyte receptor CD38. J Leukoc Biol; 65 (1999):151–61.CrossRefGoogle Scholar
Miettinen, M. and Lasota, J.. KIT (CD117): a review on expression in normal and neoplastic tissues, and mutations and their clinicopathologic correlation. Appl Immunohistochem Mol Morphol; 13 (2005):205–20.CrossRefGoogle ScholarPubMed
De Jong, M.O., Wagemaker, G. and Wognum, A.W.. Separation of myeloid and erythroid progenitors based on expression of CD34 and c-kit. Blood; 86 (1995):4076–85.CrossRefGoogle Scholar
Ribatti, D.. The development of human mast cells. An historical reappraisal. Exp Cell Res; 342 (2016):210–15.Google ScholarPubMed
Kelm, S., Schauer, R. and Crocker, R.R.. The Sialoadhesins – a family of sialic acid-dependent cellular recognition molecules within the immunoglobulin superfamily. Glycoconj J; 13 (1996):913–26.CrossRefGoogle Scholar
Mina-Osorio, P.. The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med; 14 (2008):361–71.CrossRefGoogle ScholarPubMed
Gahmberg, C.G., Tolvanen, M. and Kotovuori, P.. Leukocyte adhesion – structure and function of human leukocyte beta2-integrins and their cellular ligands. Eur J Biochem; 245 (1997):215–32.CrossRefGoogle ScholarPubMed
Kansas, G.S., Muirhead, M.J. and Dailey, M.O.. Expression of the CD11/CD18, leukocyte adhesion molecule 1, and CD44 adhesion molecules during normal myeloid and erythroid differentiation in humans. Blood; 76 (1990):2483–92.CrossRefGoogle ScholarPubMed
Stelter, F., Pfister, M., Bernheiden, M., et al. The myeloid differentiation antigen CD14 is N- and O-glycosylated. Contribution of N-linked glycosylation to different soluble CD14 isoforms. Eur J Biochem; 236 (1996):457–64.CrossRefGoogle ScholarPubMed
Park, Y.M.. CD36, a scavenger receptor implicated in atherosclerosis. Exp Mol Med; 46 (2014):e99.CrossRefGoogle ScholarPubMed
Tamm, A. and Schmidt, R.E.. IgG binding sites on human Fc gamma receptors. Int Rev Immunol; 16 (1997):5785.CrossRefGoogle ScholarPubMed
Wong, K.L., Yeap, W.H., Tai, J.J., et al. The three human monocyte subsets: implications for health and disease. Immunol Res; 53 (2012):4157.CrossRefGoogle ScholarPubMed
Elghetany, M.T.. Surface antigen changes during normal neutrophilic development: a critical review. Blood Cells Mol Dis; 28 (2002):260–74.CrossRefGoogle ScholarPubMed
Tetteroo, P. and Geurts van Kessel, A.D.. Expression of CD15 (FAL) on myeloid cells and chromosomal localization of the gene. Histochem J; 24 (1992):777–82.CrossRefGoogle ScholarPubMed
Noguchi, M., Sato, N., Sugimori, H., Mori, K. and Oshimi, K.. A minor E-selectin ligand, CD65, is critical for extravascular infiltration of acute myeloid leukemia cells. Leuk Res; 25 (2001):847–53.CrossRefGoogle ScholarPubMed
Ayre, C., Pallegar, N.K., Fairbridge, N.A., et al. Analysis of the structure, evolution, and expression of CD24, an important regulator of cell fate. Gene; 590 (2016):324–37.CrossRefGoogle Scholar
Domagała, A. and Kurpisz, M.. CD52 antigen--a review. Med Sci Monit; 7 (2001):325–31.Google Scholar
Valent, P.. Immunophenotypic characterization of human basophils and mast cells. Chem Immunol; 61 (1995):3448.Google ScholarPubMed
Kapsenberg, M.L., Hilkens, C.M., Wierenga, E.A. and Kalinski, P.. The paradigm of type 1 and type 2 antigen-presenting cells. Implications for atopic allergy. Clin Exp Allergy; 29 (1999):33–6.CrossRefGoogle ScholarPubMed
Testa, U., Pelosi, E. and Frankel, A.. CD 123 is a membrane biomarker and a therapeutic target in hematologic malignancies. Biomark Res; 2 (2014):4.CrossRefGoogle Scholar
Patel, V.I. and Metcalf, J.P.. Identification and characterization of human dendritic cell subsets in the steady state: a review of our current knowledge. J Investig Med; 64 (2016):833–47.CrossRefGoogle Scholar
Laribi, K., Denizon, N., Besançon, A., et al. Blastic plasmacytoid dendritic cell neoplasm: from origin of the cell to targeted therapies. Biol Blood Marrow Transplant; 22 (2016):1357–67.CrossRefGoogle Scholar
Dzionek, A., Fuchs, A., Schmidt, P., et al. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol; 165 (2000):6037–46.CrossRefGoogle ScholarPubMed
Krych-Goldberg, M. and Atkinson, J.P.. Structure function of complement receptor type I. Immunol Rev; 180 (2001):112–22.CrossRefGoogle Scholar
Fajtova, M., Kovarikova, A., Svec, P., Kankuri, E. and Sedlak, J.. Immunophenotypic profile of nucleated erythroid progenitors during maturation in regenerating bone marrow. Leuk Lymphoma; 54 (2013):2523–30.CrossRefGoogle ScholarPubMed
Aisen, P.. Transferrin receptor 1. Int J Biochem Cell Biol; 36 (2004):2137–43.CrossRefGoogle ScholarPubMed
Shipkova, M. and Wieland, E.. Surface markers of lymphocyte activation and markers of cell proliferation. Clin Chim Acta; 413 (2012):1338–49.CrossRefGoogle ScholarPubMed
Nassiri, F., Cusimano, M.D., Scheithauer, B.W., et al. Endoglin (CD105): a review of its role in angiogenesis and tumor diagnosis, progression and therapy. Anticancer Res; 31 (2011):2283–90.Google ScholarPubMed
Cartron, J.P. and Rahuel, C.. Human erythrocyte glycophorins: protein and gene structure analyses. Transfus Med Rev; 6 (1992):6392.CrossRefGoogle ScholarPubMed
Giger, K., Habib, I., Ritchie, K. and Low, P.S.. Diffusion of glycophorin A in human erythrocytes. Biochim Biophys Acta; 1858 (2016):2839–45.CrossRefGoogle ScholarPubMed
Matassi, G., Chérif-Zahar, B., Raynal, V., Rouger, P. and Cartron, J.P.. Organization of the human RH50A gene (RHAG) and evolution of base composition of the RH gene family. Genomics; 47 (1998):286–93.CrossRefGoogle ScholarPubMed
Badens, C. and Guizouarn, H.. Advances in understanding the pathogenesis of the red cell volume disorders. Brit J Haematol; 174 (2016):674–85.CrossRefGoogle ScholarPubMed
Bennett, J.S.. Regulation of integrins in platelets. Biopolymers; 104 (2015):323–33.CrossRefGoogle ScholarPubMed
Gardiner, E.E. and Andrews, R.K.. Structure and function of platelet receptors initiating blood clotting. Adv Exp Med Biol; 844 (2014):263–75.CrossRefGoogle ScholarPubMed
Clemetson, K.J. and Clemetson, J.M.. Molecular abnormalities in Glanzmann's thrombasthenia, Bernard-Soulier syndrome, and platelet-type von Willebrand's disease. Curr Opin Hematol; 1 (1994):388–93.Google ScholarPubMed
Nofer, J.R. and van Eck, M.. HDL scavenger receptor class B type I and platelet function. Curr Opin Lipidol; 22 (2011):277–82.CrossRefGoogle Scholar
Lam, K.P. and Rajewsky, K. Rapid elimination of mature autoreactive B cells demonstrated by Cre-induced change in B cell antigen receptor specificity in vivo. Proc Natl Acad Sci U S A; 27 (1998):13171–75.Google Scholar
Wang, K., Wei, G. and Liu, D.. CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Exp Hematol Oncol; 1 (2012):36.CrossRefGoogle ScholarPubMed
Fuentes-Pananá, E.M., Bannish, G., Karnell, F.G., Treml, J.F. and Monroe, J.G.. Analysis of the individual contributions of Igalpha (CD79a)- and Igbeta (CD79b)-mediated tonic signaling for bone marrow B cell development and peripheral B cell maturation. J Immunol; 177 (2006):7913–22.CrossRefGoogle Scholar
Hashimoto, M., Yamashita, Y. and Mori, N.. Immunohistochemical detection of CD79a expression in precursor T cell lymphoblastic lymphoma/leukaemias. J Pathol; 197 (2002):341–7.CrossRefGoogle ScholarPubMed
Lai, R., Juco, J., Lee, S.F., Nahirniak, S. and Etches, W.S.. Flow cytometric detection of CD79a expression in T-cell acute lymphoblastic leukemias. Am J Clin Pathol; 113 (2000):823–30.CrossRefGoogle ScholarPubMed
Johnson, R.C., Ma, L., Cherry, A.M., Arber, D.A. and George, T.I.. B-cell transcription factor expression and immunoglobulin gene rearrangement frequency in acute myeloid leukemia with t(8;21)(q22;q22). Am J Clin Pathol; 140 (2013):355–62.CrossRefGoogle Scholar
Riley, J.K. and Sliwkowski, M.X.. CD20: a gene in search of a function. Semin Oncol; 27 (2000):1724.Google ScholarPubMed
Boross, P. and Leusen, J.H.W.. Mechanisms of action of CD20 antibodies. Amer J Cancer Res; 2 (2012); 676–90.Google ScholarPubMed
Hannan, J.P.. The structure-function relationships of complement receptor type 2 (CR2; CD21). Curr Protein Pept Sci; 17 (2016):463–87.Google ScholarPubMed
Levy, E., Ambrus, J., Kahl, L., et al. T lymphocyte expression of complement receptor 2 (CR2/CD21): a role in adhesive cell-cell interactions and dysregulation in a patient with systemic lupus erythematosus (SLE). Clin Exp Immunol; 90 (1992):235–44.Google Scholar
Sato, S., Tuscano, J.M., Inaoki, M. and Tedder, T.F.. CD22 negatively and positively regulates signal transduction through the B lymphocyte antigen receptor. Semin Immunol; 10 (1998):287–97.CrossRefGoogle ScholarPubMed
Bonnefoy, J.Y., Lecoanet-Henchoz, S., Gauchat, J.F., et al. Structure and functions of CD23. Int Rev Immunol; 16 (1997):113–28.CrossRefGoogle ScholarPubMed
Zimmerman, B., Kelly, B., McMillan, B.J., et al. Crystal Structure of a full-length human tetraspanin reveals a cholesterol-binding pocket. Cell; 167 (2016):1041–51.CrossRefGoogle ScholarPubMed
Barrena, S., Almeida, J., Yunta, M., et al. Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia; 19 (2005):1376–83.CrossRefGoogle ScholarPubMed
Maguer-Satta, V., Besançon, R. and Bachelard-Cascales, E.. Concise review: neutral endopeptidase (CD10): a multifaceted environment actor in stem cells, physiological mechanisms, and cancer. Stem Cells; 29 (2011):389–96.CrossRefGoogle ScholarPubMed
Bernfield, M., Götte, M., Park, P.W., et al. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem; 68 (1999):729–77.CrossRefGoogle Scholar
Guglielmi, P. and Preud'homme, J.L.. Immunoglobulin expression in human lymphoblastoid cell lines with early B cell features. Scand J Immunol; 13 (1981):303–11.CrossRefGoogle ScholarPubMed
Brouet, J.C., Preud'homme, J.L., Penit, C., et al. Acute lymphoblastic leukemia with pre-B-cell characteristics. Blood; 54 (1979):269–73.CrossRefGoogle ScholarPubMed
Übelhart, R., Werner, M. and Jumaa, H.. Assembly and function of the precursor B-cell receptor. Curr Top Microbiol Immunol; 393 (2016):325.Google ScholarPubMed
Mather, E.L., Nelson, K.J., Haimovich, J. and Perry, R.P.. Mode of regulation of immunoglobulin mu- and delta-chain expression varies during B-lymphocyte maturation. Cell; 36 (1984):329–38.CrossRefGoogle ScholarPubMed
Sayre, P. and Reinherz, E.L.. Structure and function of the erythrocyte receptor CD2 on human T lymphocytes: a review. Scand J Rheumatol; 76 (1988):131–44.Google Scholar
Wucherpfennig, K.W.. The first structures of T cell receptors bound to peptide-MHC. J Immunol; 185 (2010):6391–3.CrossRefGoogle ScholarPubMed
Call, M.E., Wucherpfennig, K.W. and Chou, J.J.. The structural basis for intramembrane assembly of an activating immunoreceptor complex. Nat Immunol; 11 (2010):1023–9.CrossRefGoogle ScholarPubMed
Weiss, A. and Littman, D.R.. Signal transduction by lymphocyte antigen receptors. Cell; 76 (1994):263–74.CrossRefGoogle ScholarPubMed
Lanier, L.L., Chang, C., Spits, H. and Phillips, J.H.. Expression of cytoplasmic CD3 epsilon proteins in activated human adult natural killer (NK) cells and CD3 gamma, delta, epsilon complexes in fetal NK cells. Implications for the relationship of NK and T lymphocytes. J Immunol; 149 (1992):1876–80.CrossRefGoogle ScholarPubMed
Leahy, D.J.. A structural view of CD4 and CD8. FASEB J; 9 (1995):1725.CrossRefGoogle ScholarPubMed
Gorczyca, W., Sun, Z.Y., Cronin, W., et al. Immunophenotypic pattern of myeloid populations by flow cytometry analysis. Methods Cell Biol; 103 (2011):221–66.CrossRefGoogle ScholarPubMed
Tabbekh, M., Mokrani-Hammani, M., Bismuth, G. and Mami-Chouaib, F.. T-cell modulatory properties of CD5 and its role in antitumor immune responses. Oncoimmunology; 2 (2013):e22841.CrossRefGoogle ScholarPubMed
Berland, R. and Wortis, H.H.. Origins and functions of B-1 cells with notes on the role of CD5. Ann Rev Immunol; 20 (2002):253300.CrossRefGoogle ScholarPubMed
Ware, R.E., Scearce, R.M., Dietz, M.A., et al. Characterization of the surface topography and putative tertiary structure of the human CD7 molecule. J Immunol; 143 (1989):3632–40.CrossRefGoogle ScholarPubMed
Barral, D.C. and Brenner, M.B.. CD1 antigen presentation: how it works. Nat Rev Immunol; 7 (2007):929–41.CrossRefGoogle ScholarPubMed
Spits, H., Blom, B., Jaleco, A.C., et al. Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol Rev; 165 (1998):7586.CrossRefGoogle Scholar
Elder, J.T., Reynolds, N.J., Cooper, K.D., et al. CD1 gene expression in human skin. J Dermatol Sci; 6 (1993):206–13.CrossRefGoogle ScholarPubMed
Pegram, H.J., Andrews, D.M., Smyth, M.J., Darcy, P.K. and Kershaw, M.H.. Activating and inhibitory receptors of natural killer cells. Immunol Cell Bio; 89 (2011):216–24.Google Scholar
Poli, A., Michel, T., Thérésine, M., et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology; 126 (2009):458–65.CrossRefGoogle ScholarPubMed
Kared, H., Martelli, S., Ng, T.P., et al. CD57 in human natural killer cells and T-lymphocytes. Cancer Immunol Immunother; 65 (2016):441–52.CrossRefGoogle ScholarPubMed
Varbanova, V., Naumova, E. and Mihaylova, A.. Killer-cell immunoglobulin-like receptor genes and ligands and their role in hematologic malignancies. Cancer Immunol Immunother; 65 (2016):427–40.CrossRefGoogle ScholarPubMed
Morita, I., Kakuda, S., Takeuchi, Y., Kawasaki, T. and Oka, S.. HNK-1 (human natural killer-1) glyco-epitope is essential for normal spine morphogenesis in developing hippocampal neurons. Neuroscience; 164 (2009):1685–94.CrossRefGoogle ScholarPubMed
Cassidy, S.A., Cheent, K.S. and Khakoo, S.I.. Effects of peptide on NK cell-mediated MHC I recognition. Front Immunol; 5 (2014):133.CrossRefGoogle ScholarPubMed
Purdy, A.K. and Campbell, K.S.. Natural killer cells and cancer: regulation by the killer cell Ig-like receptors (KIR). Cancer Biol Ther; 8 (2009):2211–20.CrossRefGoogle ScholarPubMed
Le Bouteiller, P., Tabiasco, J., Polgar, B., et al. CD160: a unique activating NK cell receptor. Immunol Lett; 138 (2011):93–6.CrossRefGoogle ScholarPubMed
Liu, F.T., Giustiniani, J., Farren, T., et al. CD160 signaling mediates PI3K-dependent survival and growth signals in chronic lymphocytic leukemia. Blood; 115 (2010):3079–88.CrossRefGoogle ScholarPubMed
Llibre, A., Klenerman, P. and Willberg, C.B.. Multi-functional lectin-like transcript-1: a new player in human immune regulation. Immunol Lett; 177 (2016):62–9.CrossRefGoogle ScholarPubMed
Morimoto, C. and Schlossman, S.F.. The structure and function of CD26 in the T-cell immune response. Immunol Rev; 161 (1998):5570.CrossRefGoogle ScholarPubMed
Metzemaekers, M., Van Damme, J., Mortier, A. and Proost, P.. Regulation of chemokine activity – a focus on the role of dipeptidyl peptidase IV/CD26. Front Immunol; 7 (2016):483.CrossRefGoogle ScholarPubMed
van Kooten, C. and Banchereau, J.. CD40-CD40 ligand. J Leukoc Biol; 67 (2000):217.CrossRefGoogle ScholarPubMed
Pedreza-Alva, G. and Rosenstein, Y.. CD43 – one molecule, many tales to recount. Signal Trans; 7 (2007):372–85.Google Scholar
Futosi, K., Fodor, S. and Mócsai, A.. Neutrophil cell surface receptors and their intracellular signal transduction pathways. Int Immunopharmacol; 17 (2013):638–50.Google ScholarPubMed
Ridger, V.C., Wagner, B.E., Wallace, W.A. and Hellewell, P.G.. Differential effects of CD18, CD29, and CD49 integrin subunit inhibition on neutrophil migration in pulmonary inflammation. J Immunol; 166 (2001):3484–90.CrossRefGoogle Scholar
Wang, J.H., Smolyar, A., Tan, K., et al. Structure of a heterophilic adhesion complex between the human CD2 and CD58 (LFA-3) counter receptors. Cell; 97 (1999):791803.CrossRefGoogle Scholar
Wipfler, D., Srinivasan, G.V., Sadick, H., et al. Differentially regulated expression of 9-O-acetyl GD3 (CD60b) and 7-O-acetyl-GD3 (CD60c) during differentiation and maturation of human T and B lymphocytes. Glycobiology; 21 (2011):1161–72.CrossRefGoogle ScholarPubMed
Kuroki, M., Abe, H., Imakiirei, T., et al. Identification and comparison of residues critical for cell-adhesion activities of two neutrophil CD66 antigens, CEACAM6 and CEACAM8. J Leukoc Biol; 70 (2001):543–50.CrossRefGoogle Scholar
Nielsen, M.J., Møller, H.J. and Moestrup, S.K.. Hemoglobin and heme scavenger receptors. Antioxid Redox Signal; 12 (2010):261–73.CrossRefGoogle ScholarPubMed
Bolhassani, A. and Rafati, S.. Mini-chaperones: potential immuno-stimulators in vaccine design. Hum Vaccine Immunother; 9 (2013):153–61.CrossRefGoogle ScholarPubMed
Siegmund, D., Lang, I. and Wajant, H.. Cell death-independent activities of the death receptors CD95, TRAILR1, and TRAILR2. FEBS J; 8 (2017):1131–59.Google Scholar
Verstraete, K., Vandriessche, G., Januar, M., et al. Structural insights into the extracellular assembly of the hematopoietic Flt3 signaling complex. Blood; 118 (2011):60–8.CrossRefGoogle ScholarPubMed
Abd El-Ghaffar, A.A., El-Gamal, R.A., Mostafa, N.N. and Abou Shady, N.M.. FLT3 (CD135) and interleukin-2 receptor alpha-chain (CD25) expression in acute myeloid leukemia: improving the correspondence to FLT3 – internal tandem duplication mutation. Int J Lab Hematol; 38 (2016):e6972.CrossRefGoogle ScholarPubMed
Skrzypczynska, K.M., Zhu, J.W. and Weiss, A.. Positive regulation of lyn kinase by CD148 is required for B cell receptor signaling in B1 but not B2 B Cells. Immunity; 45 (2016):1232–44.CrossRefGoogle Scholar
Teft, W.A., Kirchhof, M.G. and Madrenas, J.. A molecular perspective of CTLA-4 function. Annu Rev Immunol; 24 (2006):6597.CrossRefGoogle Scholar
Kowal, K., Silver, R., Sławińska, E., et al. CD163 and its role in inflammation. Folia Histochem Cytobiol; 49 (2011):365–74.CrossRefGoogle ScholarPubMed
Divanovic, S., Trompette, A., Petiniot, L.K., et al. Regulation of TLR4 signaling and the host interface with pathogens and danger: the role of RP105. J Leukoc Biol; 82 (2007):265–71.CrossRefGoogle ScholarPubMed
Ortiz-Suarez, M.L. and Bond, P.J.. The structural basis for lipid and endotoxin binding in RP105-MD-1, and consequences for regulation of host lipopolysaccharide sensitivity. Structure; 24 (2016):200–11.CrossRefGoogle Scholar
Solari, R. and Pease, J.E.. Targeting chemokine receptors in disease – a case study of CCR4. Eur J Pharmacol; 763 (2015):169–77.CrossRefGoogle ScholarPubMed
Mishan, M.A., Ahmadiankia, N. and Bahrami, A.N.. CXCR4 and CCR7: two eligible targets in targeted cancer therapy. Cell Biol Int; 40 (2016):955–67.CrossRefGoogle ScholarPubMed
Florian, S., Sonneck, K., Czerny, M., et al. Detection of novel leukocyte differentiation antigens on basophils and mast cells by HLDA8 antibodies. Allergy; 61 (2006):1054–62.CrossRefGoogle ScholarPubMed
Hatherley, D., Lea, S.M., Johnson, S. and Barclay, A.N.. Structures of CD200/CD200 receptor family and implications for topology, regulation, and evolution. Structure; 21 (2013):820–32.CrossRefGoogle ScholarPubMed
Romero, X., Zapater, N., Calvo, M., et al. CD229 (Ly9) lymphocyte cell surface receptor interacts homophilically through its N-terminal domain and relocalizes to the immunological synapse. J Immunol; 174 (2005):7033–42.CrossRefGoogle Scholar
Acosta, Y.Y., Zafra, M.P., Ojeda, G., et al. Biased binding of class IA phosphatidyl inositol 3-kinase subunits to inducible costimulator (CD278). Cell Mol Life Sci; 68 (2011):3065–79.CrossRefGoogle Scholar
Bardhan, K., Anagnostou, T. and Boussiotis, V.A.. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol; 7 (2016):550.CrossRefGoogle ScholarPubMed
Borrego, F.. The CD300 molecules: an emerging family of regulators of the immune system. Blood; 121 (2013):1951–60.CrossRefGoogle ScholarPubMed
Evans, D.Y., Serra-Moreno, R., Singh, R.K. and Guatelli, J.C.. BST-2/tetherin: a new component of the innate immune response to enveloped viruses. Trends Microbiol; 18 (2010):388–96.CrossRefGoogle ScholarPubMed
Li, X., Zhang, G., Chen, Q., et al. CD317 Promotes the survival of cancer cells through apoptosis-inducing factor. J Exp Clin Cancer Res; 35 (2016):117.CrossRefGoogle ScholarPubMed
Lee, J.K., Mathew, S.O., Vaidya, S.V., Kumaresan, P.R. and Mathew, P.A.. CS1 (CRACC, CD319) induces proliferation and autocrine cytokine expression on human B lymphocytes. J Immunol; 179 (2007):4672–8.CrossRefGoogle ScholarPubMed
Yamasaki, S.. Clec12a: quieting the dead. Immunity; 40 (2014):309–11.CrossRefGoogle ScholarPubMed
Toft-Petersen, M., Nederby, L., Kjeldsen, E., et al. Unravelling the relevance of CLEC12A as a cancer stem cell marker in myelodysplastic syndrome. Br J Haematol; 175 (2016):393401.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×