Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-21T10:33:02.796Z Has data issue: false hasContentIssue false

22 - Enteral carbohydrate assimilation

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
C. Lawrence Kien
Affiliation:
Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

Glucose is an important, if not the sole, source of energy metabolism in the fed state for brain and other nervous tissue, red blood cells, renal medulla, and retina. Assimilation of diet-derived glucose is necessary to provide glucose per se for these tissues, to serve as a source of nonprotein energy, and to stimulate normal rates of insulin secretion required to adequately suppress protein degradation and excessive lipolysis, and to stimulate protein synthesis. Carbohydrate contributes approximately 40% of the energy intake in infants ingesting human milk or cow milk-based formulas, and lactose provides perhaps the sole source of diet-derived glucose in human milk and about 50% of the diet-derived glucose in preterm formulas.

Dietary carbohydrate is assimilated via the intestine and colon in humans of all ages, but in the preterm newborn or young infant with defective function of the small intestine, bacterial fermentation of dietary carbohydrate is an especially quantitatively important metabolic pathway for enteral carbohydrate assimilation. This process may have both beneficial and adverse effects on the infant. Figure 22.1 summarizes carbohydrate assimilation by the gut. Lactose, like other dietary sugars fed to newborn infants (such as glucose polymer), is digested in the small intestine but also may undergo some fermentation in the colon. Glucose and galactose, derived from lactose digestion, are absorbed in the small intestine, enter the portal vein, and then undergo uptake by the liver, where galactose is almost quantitatively removed by the combined processes of conversion to glucose or incorporation into glycogen.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cowett, R. M.Pathophysiology, diagnosis, and management of glucose homeostasis in the neonate. Curr. Probl. Pediatr. 1985;15:1–47.Google ScholarPubMed
Ferre, P., Decaux, J. F., Issad, T., Girard, J.Changes in energy metabolism during the suckling and weaning period in the newborn. Reprod. Nutr. Develop. 1986;26:619–31.CrossRefGoogle ScholarPubMed
Cremer, J. E.Substrate utilization and brain development. J. Cereb. Blood Flow Metab. 1982;2:394–407.CrossRefGoogle ScholarPubMed
Doyle, L. W., Nahmias, C., Firnau, G.et al.Regional cerebral glucose metabolism of newborn infants measured by positron emission tomography. Dev. Med. Child Neurol. 1983;25:143–51.CrossRefGoogle ScholarPubMed
Kien, C. L. Carbohydrates. In Nutritional Needs of the Preterm Infant: Scientific Basis and Practical Guidelines. In Tsang, R. C., Zlotkin, S. H., Lucas, A., Uauy, R., eds. Patterson, NY: Caduceus Med Pub; 1993:47–63.Google Scholar
Brand-Miller, J. C., McVeagh, P., McNeil, Y., Messer, M.Digestion of human milk oligosaccharides by healthy infants evaluated by the lactulose hydrogen breath test. J. Pediatr. 1998;133:95–8.CrossRefGoogle ScholarPubMed
Kien, C. L.Digestion, absorption, and fermentation of carbohydrates in the newborn. Clin Perinatol. 1996;23:211–28.CrossRefGoogle ScholarPubMed
Kien, C. L., Heitlinger, L. A., Li, B. U., Murray, R. D.Digestion, absorption, and fermentation of carbohydrates. Semin. Perinat. 1989;13:78–87.Google ScholarPubMed
Kien, C. L.Colonic fermentation of carbohydrate in the premature infant: possible relevance to necrotizing enterocolitis. J. Pediatr. 1900;117:S52–8.CrossRefGoogle Scholar
Rocchini, A. P., Key, J., Bondie, D.et al.The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N. Engl. J. Med. 1989;321:580–5.CrossRefGoogle ScholarPubMed
DeHaven, J., Sherwin, R., Hendler, R., Felig, P.Nitrogen and sodium balance and sympathetic-nervous-system activity in obese subjects treated with a low-calorie protein or mixed diet. N. Engl. J. Med. 1980;302:477–82.CrossRefGoogle ScholarPubMed
Fukagawa, N. K., Minaker, K. L., Rowe, J. W.et al.Insulin-mediated reduction of whole body protein breakdown: dose-response effects on leucine metabolism in post-absorptive men. J. Clin. Invest. 1985;76:2306–11.CrossRefGoogle Scholar
Abumrad, N. N., Jefferson, L. S., Rannels, S. R.et al.Role of insulin in the regulation of leucine kinetics in the conscious dog. J. Clin. Invest. 1981;70:1031–41.CrossRefGoogle Scholar
Flakoll, P. J., Kulaylat, M.Frexes-Steed, M.et al.Amino acids augment insulin's suppression of whole body proteolysis. Am. J. Physiol. 1989;257:E839–47.Google ScholarPubMed
Millward, D. J., Odedra, B., Bates, P. C.The role of insulin, corticosterone and other factors in the acute recovery of muscle protein synthesis on refeeding food-deprived rats. Biochem. J. 1983;216:583–7.CrossRefGoogle ScholarPubMed
McNurlan, M. A., Garlick, P. J.Influence of nutrient intake on protein turnover. Diabetes Metab. Rev. 1989;5:165–89.CrossRefGoogle ScholarPubMed
Balsam, A., Ingbar, S. H.The influence of fasting, diabetes, and several pharmacological agents on the pathways of thyroxine metabolism in rat liver. J. Clin. Invest. 1978;62:415–24.CrossRefGoogle ScholarPubMed
Azizi, F.Effect of dietary composition on fasting-induced changes in serum thyroid hormones and thyrotropin. Metabolism 1978;27:935–42.CrossRefGoogle ScholarPubMed
Otten, M. H., Hennemann, G., Docter, R., Visser, T. J.The role of dietary fat in peripheral thyroid hormone metabolism. Metabolism 1980;29:930–5.CrossRefGoogle ScholarPubMed
Snyder, D. K., Clemmons, D. R., Underwood, L. E.Dietary carbohydrate content determines responsiveness to growth hormone in energy-restricted humans. J. Clin. Endocrinol. Metab. 1989;69:745–52.CrossRefGoogle ScholarPubMed
Ziegler, E. E., Fomon, S. J.Lactose enhances mineral absorption in infancy. J. Ped. Gastroenterol. Nutr. 1983;2:288–94.CrossRefGoogle ScholarPubMed
Wirth, F. H. Jr, Numerof, B., Pleban, P., Neylan, M. J.Effect of lactose on mineral absorption in preterm infants. J. Pediatr. 1990;117:283–7.CrossRefGoogle ScholarPubMed
Griessen, M., Speich, P. V., Infante, F.et al.Effect of absorbable and nonabsorbable sugars on intestinal calcium absorption in humans. Gastroenterology 1989;96:864–72.CrossRefGoogle ScholarPubMed
Griessen, M., Cochet, B., Infante, F.et al.Calcium absorption from milk in lactase-deficient subjects. Am. J. Clin. Nutr. 1989;49:377–84.CrossRefGoogle ScholarPubMed
Cochet, B., Jung, A., Griessen, M.et al.Effects of lactose on intestinal calcium absorption in normal and lactase-deficient subjects. Gastroenterology 1983;84:935–40.Google ScholarPubMed
Schuette, S. A., Knowles, J. B., Ford, H. E.Effect of lactose or its component sugars on jejunal calcium absorption in adult man. Am. J. Clin. Nutr. 1989;50:1084–7.CrossRefGoogle ScholarPubMed
Moya, M., Cortes, E., Ballester, M. I., Vento, M., Juste, M.Short-term polycose substitution for lactose reduces calcium absorption in healthy term babies. J. Pediatr. Gastroenterol. Nutr. 1992;14:57–61.CrossRefGoogle ScholarPubMed
Stathos, T. H., Shulman, R. J., Schanler, R. J., Abrams, S. A.Effect of carbohydrates on calcium absorption in premature infants. Pediatr. Res. 1996;39:666–70.CrossRefGoogle ScholarPubMed
Askanazi, J., Rosenbaum, S. H., Hyman, A. I.et al.Respiratory changes induced by the large glucose loads of total parenteral nutrition. J. Am. Med. Assoc. 1980;243:1444–7.CrossRefGoogle ScholarPubMed
Hillman, R. E., Ege, M., Hillman, L. S.Increase in oxalate excretion with lipid infusion-evidence for the presence of the glyoxylate shunt in humans. Pediatr. Res. 1991;29:296A.Google Scholar
Davis, W. L., Jones, R. G., Farmer, G. R., Matthews, J. L., Goodman, D. B.Glyoxylate cycle in the epiphyseal growth plate: isocitrate lyase and malate synthase identified in mammalian cartilage. Anat. Rec. 1989;223:357–62.CrossRefGoogle ScholarPubMed
Klein, C. J.Nutrient requirements for preterm infant formulas. J. Nutr. 2002;132:1395S–577S.CrossRefGoogle ScholarPubMed
Kalhan, S. C., Kilic, I.Carbohydrate as nutrient in the infant and child: range of acceptable intake. Eur. J. Clin. Nutr. 1999;53:S94–100.CrossRefGoogle ScholarPubMed
Cowett, R. M., Oh, W., Schwartz, R.Persistent glucose production during glucose infusion in the neonate. J. Clin. Invest. 1983;71:467–75.CrossRefGoogle ScholarPubMed
Lafeber, H. N., Sulkers, E. J., Chapman, T. E., Sauer, P. J. J.Glucose production and oxidation in preterm infants during total parenteral nutrition. Pediatr. Res. 1990;28:153–7.Google ScholarPubMed
Bougneres, P. F., Castano, L., Rocchicioli, F.et al.Medium-chain fatty acids increase glucose production in normal and low birth weight newborns. Am. J. Physiol. 1989;256:E692–7.Google ScholarPubMed
Kalhan, S. C., Bier, D. M., Savin, S. M., Adam, P. A.Estimation of glucose turnover and 13C recycling in the human newborn by simultaneous [1-13C] glucose and [6,6-2H2] glucose tracers. J. Clin. Endocrinol. Metab. 1980;50:456–60.CrossRefGoogle ScholarPubMed
Bier, D. M., Leake, R. D., Haymond, M. W.et al.Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideuteroglucose. Diabetes 1977;26:1016–23.CrossRefGoogle ScholarPubMed
Denne, S. C., Kalhan, S. C.Glucose carbon recycling and oxidation in human newborns. Am. J. Physiol. 1986;251:E71–7.Google ScholarPubMed
Kalhan, S. C., Oliven, A., King, K. C., Lucero, C.Role of glucose in the regulation of endogenous glucose production in the human newborn. Pediatr. Res. 1986;20:49–52.CrossRefGoogle ScholarPubMed
Kalhan, S. C., Savin, S. M., Adam, P. A.Measurement of glucose turnover in the human newborn with glucose 1-13C. J. Clin. Endocrinol. Metab. 1976;43:704–7.CrossRefGoogle ScholarPubMed
Zarlengo, K. M., Battaglia, F. C., Fennessey, P., Hay, W. W.Relationship between glucose utilization rate and glucose concentration in preterm infants. Biol. Neonate. 1986;49:181–9.CrossRefGoogle ScholarPubMed
Cowett, R. M., Susa, J. B., Oh, W., Schwartz, R.Glucose kinetics in glucose-infused small for gestational age infants. Pediatr. Res. 1984;18:74–9.Google ScholarPubMed
Cowett, R. M., Andersen, G. E., Maguire, C. A., Oh, W.Ontogeny of glucose homeostasis in low birth weight infants. J. Pediatr. 1988;112:462–5.CrossRefGoogle ScholarPubMed
Kien, C. L., McClead, R. E., Cordero, L. Jr.In vivo lactose digestion in preterm infants. Am. J. Clin. Nutr. 1996;64:700–5.CrossRefGoogle ScholarPubMed
Griffin, M. P., Hansen, J. W.Can the elimination of lactose from formula improve feeding tolerance in premature infants?J. Pediatr. 1999;135:587–92.CrossRefGoogle ScholarPubMed
Kien, C. L.Lactose in formulas for preterm infants. J. Pediatr. 2001;138:148–9.CrossRefGoogle ScholarPubMed
Miller, J. B., McVeagh, P.Human milk oligosaccharides: 130 reasons to breast-feed. Br. J. Nutr. 1999;82:333–5.CrossRefGoogle ScholarPubMed
Coppa, G. V., Pierani, P., Zampini, L.et al.Oligosaccharides in human milk during different phases of lactation. Acta Paediatr. Suppl. 1999;88:89–94.CrossRefGoogle ScholarPubMed
Fomon, S. J., Filer, L. J. Milks, and formulas. In Fomon, S. J., ed. Infant Nutrition. Philadelphia, PA: W. B. Saunders Co., 1974: 359–407.Google Scholar
Committee on Nutrition of the Preterm Infant, ESPGN. Nutrition and Feeding of Preterm Infants. Oxford: Blackwell Scientific; 1987:62–7.
Lepage, G., Collet, S., Bougle, D.et al.The composition of preterm milk in relation to the degree of prematurity. Am. J. Clin. Nutr. 1984;40:1042–9.CrossRefGoogle Scholar
Williams, P. R. Comparison of glucose tolerance and insulin response of full-term and preterm infants fed glucose polymers. In Sauls, H. S., Benson, J. D., eds. Meeting Nutritional Goals for Low-Birth-Weight Infants, Proceedings of the Second Ross Clinical Research Conference. Columbus, OH: Ross Laboratories; 1982:87–9.Google Scholar
Antonowicz, I., Lebenthal, E.Developmental pattern of small intestinal enterokinase and disaccharidase activities in the human fetus. Gastroenterology. 1977;72:1299–303.Google ScholarPubMed
Keene, M. F. L., Hewer, E. E.Digestive enzymes of the human fetus. Lancet 1929:1:767–9.CrossRefGoogle Scholar
Track, N. S., Creutzfeldt, C., Bockermann, M.Enzymatic, functional and ultrastructural development of the exocrine pancreas. Comp. Biochem. Physiol. 1975;51:95–100.CrossRefGoogle ScholarPubMed
Davis, M. M., Hodes, M. E., Munsick, R. A.Pancreatic amylase expression in human development. Hybridoma 1986;5:137–45.CrossRefGoogle Scholar
Jirsova, V., Koldovsky, O., Heringova, A.The development of the functions of the small intestine of the human fetus. Biol. Neonate. 1965;9:44–9.CrossRefGoogle ScholarPubMed
McNeish, A. S., Mayne, A., Ducker, D. A., Hughes, C. A.Development of D-glucose absorption in the perinatal period. J. Ped. Gastroenterol. Nutr. 1983;2:S222–6.CrossRefGoogle ScholarPubMed
Barr, R. G., Hanley, J., Patterson, D. K., Wooldridge, J.Breath hydrogen excretion in normal newborn infants in response to usual feeding patterns: evidence for “functional lactase insufficiency” beyond the first month of life. J. Pediatr. 1984;104:527–33.CrossRefGoogle ScholarPubMed
Gray, G. M.Starch digestion and absorption in nonruminants. J. Nutr. 1992;122:172–7.CrossRefGoogle ScholarPubMed
Tucker, N. T., Hodge, C., Choi, T.et al.Postprandial glucose and insulin responses to glucose polymers by premature infants. Biol. Neonate. 1987;52:198–204.CrossRefGoogle ScholarPubMed
Kien, C. L., Sumners, J. E., Stetina, J. S., Heimler, R., Grausz, J. P.A method for assessing carbohydrate energy absorption and its application to premature infants. Am. J. Clin. Nutr. 1982;36:910–6.CrossRefGoogle ScholarPubMed
Shulman, R. J., Feste, A., Ou, C.Absorption of lactose, glucose polymers, or combination in premature infants. J. Pediatr. 1995;127:626–31.CrossRefGoogle ScholarPubMed
Auricchio, S., Rubino, A., Murset, G.Intestinal glycosidase activities in the human embryo, fetus, and newborn. Pediatrics 1963;35:944–54.Google Scholar
Antonowicz, I., Chang, S. K., Grand, R. J.Development and distribution of lysosomal enzymes and disaccharidases in human fetal intestine. Gastroenterology 1974;67:51–8.Google ScholarPubMed
Mobassaleh, M., Montgomery, R. K., Biller, J. A., Grand, R. J.Development of carbohydrate absorption in the fetus and neonate. Pediatrics 1985;75:160–6.Google ScholarPubMed
Kien, C. L., Liechty, E. A., Myerberg, D. Z., Mullett, M. D.Dietary carbohydrate assimilation in the premature infant: evidence for a nutritionally significant bacterial ecosystem in the colon. Am. J. Clin. Nutr. 1987;46:456–60.CrossRefGoogle ScholarPubMed
Kien, C. L., Liechty, E. A., Mullett, M. D.Effects of lactose intake on nutritional status in premature infants. J. Pediatr. 1990;116:446–9.CrossRefGoogle ScholarPubMed
Shulman, R. J., Schanler, R. J., Lau, C.et al.Early feeding, feeding tolerance, and lactase activity in preterm infants. J Pediatr. 1998;133:645–9.CrossRefGoogle ScholarPubMed
Kien, C. L., McClead, R. E., Cordero, L. Jr.Effects of lactose intake on lactose digestion and colonic fermentation in preterm infants. J. Pediatr. 1998;133:401–5.CrossRefGoogle ScholarPubMed
Layer, P., Peschel, S., Schlesinger, T., Goebell, H.Human pancreatic secretion and intestinal motility: effects of ileal nutrient perfusion. Am. J. Physiol. Gastrointest. Liver Physiol. 1990;258:G196–201.CrossRefGoogle ScholarPubMed
Wen, J., Phillips, S. F., Sarr, M. G., Kost, L. J., Holst, J. J.PYY and GLP-1 contribute to feedback inhibition from the canine ileum and colon. Am. J. Physiol. Gastrointest. Liver Physiol. 1995;269:G945–52.CrossRefGoogle ScholarPubMed
Longo, W. E., Ballantyne, G. H., Savoca, P. E.et al.Short-chain fatty acid release of peptide YY in the isolated rabbit distal colon. Scand. J. Gastroenterol. 1991;26:442–8.CrossRefGoogle ScholarPubMed
Piche, T., Zerbib, F., Varannes, S. B.et al.Modulation by colonic fermentation of lower esophageal sphincter function in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2000;278:G578–84.CrossRefGoogle ScholarPubMed
Cicco, R., Holzman, I. R., Brown, D. R., Becker, D. J.Glucose polymer tolerance in premature infants. Pediatrics 1981;67:498–501.Google ScholarPubMed
Boellner, S. W., Beard, A. G., Panos, T. C.Impairment of intestinal hydrolysis of lactose in newborn infants. Pediatries. 1965;36:542–9.Google ScholarPubMed
Jarrett, E. C., Holman, G. H.Lactose absorption in the premature infant. Arch. Dis. Child. 1966;41:525–7.CrossRefGoogle ScholarPubMed
Fosbrooke, A. S., Wharton, B. A.‘Added lactose’ and ‘added sucrose’ cow's milk formulae in nutrition of low birthweight babies. Arch. Dis. Child. 1975;50:409–18.CrossRefGoogle Scholar
Kien, C. L., Liechty, E. A., Myerberg, D. Z., Mullett, M. D.Effects in premature infants of normalizing breath H2 concentrations with CO2: increased H2 concentration and reduced interaliquot variation. J. Pediatr. Gastroenterol. Nutr. 1987;6:286–89.CrossRefGoogle ScholarPubMed
MacLean, W. C. Jr, Fink, B. B.Lactose malabsorption by premature infants: magnitude and clinical significance. J. Pediatr. 1980;97:383–8.CrossRefGoogle ScholarPubMed
Modler, S., Kerner, J. A. Jr, Castillo, R. O., Vreman, H. J., Stevenson, D. K.Relationship between breath and total body hydrogen excretion rates in neonates. J. Pediatr. Gastroenterol. Nutr. 1988;7:554–8.CrossRefGoogle ScholarPubMed
Kien, C. L., Ault, K., McClead, R. E.In vivo estimation of lactose hydrolysis in premature infants using a dual stable tracer technique. Am. J. Physiol. 1992;263:E1002–9.Google ScholarPubMed
Weaver, L. T., Laker, M. F., Nelson, R.Neonatal intestinal lactase activity. Arch. Dis. Child. 1986;61:896–9.CrossRefGoogle ScholarPubMed
Murray, R. D., Ailabouni, A. H., Powers, P. A.et al.Absorption of lactose from the colon of newborn piglet. Am. J. Physiol. 1991;261:G1–8.Google ScholarPubMed
Kien, C. L., Murray, R. D., Ailabouni, A. H., Habash, D. L., Powers, P. A.Measurement of the rate of entry of intact colon-derived lactose into the circulation: a model for assessing gut uptake of molecules not endogenously synthesized. J. Pediatr. Gastroenterol. Nutr. 1997;25:68–73.CrossRefGoogle Scholar
Shulman, R. J.In vivo measurements of glucose absorption in preterm infants. Biol. Neonate 1999;76:10–18.CrossRefGoogle ScholarPubMed
Zittermann, A., Bock, P., Drummer, C.et al.Lactose does not enhance calcium bioavailability in lactose-tolerant, healthy adults. Am. J. Clin. Nutr. 2000;71:931–6.CrossRefGoogle Scholar
Moya, M., Lifschitz, C., Ameen, V., Euler, A. R.A metabolic balance study in term infants fed lactose-containing or lactose-free formula. Acta Paediatr. 1999;88:1211–15.CrossRefGoogle ScholarPubMed
Saunders, D. R., Wiggins, H. S.Conservation of mannitol, lactulose, and raffinose by the human colon. Am. J. Physiol. 1981;241:G397–402.Google ScholarPubMed
Reilly, K. H., Rombeau, J. L.Metabolism and potential clinical applications of short-chain fatty acids. Clin. Nutr. 1993;12:97–105.CrossRefGoogle Scholar
Bergman, E. N., Wolff, J. E.Metabolism of volatile fatty acids by liver and portal-drained viscera in sheep. Am. J. Physiol. 1971;221:586–92.Google Scholar
Cummings, J. H.Short chain fatty acids in the human colon. Gut 1981; 22:763–79.CrossRefGoogle ScholarPubMed
Bugaut, M., Bentejac, M.Biological effects of short-chain fatty acids in nonruminant mammals. Ann. Rev. Nutr. 1993;13:217–41.CrossRefGoogle ScholarPubMed
Frankel, W. L., Zhang, W., Singh, A.et al.Mediation of the trophic effects of short-chain fatty acids on the rat jejunum and colon. Gastroenterology 1994;106:375–80.CrossRefGoogle ScholarPubMed
Roediger, W. E.Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 1982;83:424–9.Google ScholarPubMed
Harig, J. M., Soergel, K. H., Komorowski, R. A., Wood, C. M.Treatment of diversion colitis with short-chain-fatty acid irrigation. N. Engl. J. Med. 1989;320:23–8.CrossRefGoogle ScholarPubMed
Sakata, T., Tamate, H.Rumen epithelial cell proliferation accelerated by rapid increase in intraruminal butyrate. J. Dairy Sci. 1978;61:1109–13.CrossRefGoogle ScholarPubMed
Argenzio, R. A., Meuten, D. J.Short-chain fatty acids induce reversible injury of porcine colon. Dig. Dis. Sci. 1991;36:1459–68.CrossRefGoogle ScholarPubMed
Butel, M. J., Roland, N., Hibert, A.et al.Clostridial pathogenicity in experimental necrotising enterocolitis in gnotobiotic quails and protective role of bifidobacteria. J. Med. Microbiol. 1998;47:391–9.CrossRefGoogle ScholarPubMed
Szylit, O., Maurage, C., Gasqui, P.et al.Fecal short-chain fatty acids predict digestive disorders in premature infants. J. Parenter. Enteral Nutr. 1998;22:136–41.CrossRefGoogle ScholarPubMed
Mackie, R. I., Sghir, A., Gaskins, H. R.Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr. 1999;69:1035S–45S.CrossRefGoogle ScholarPubMed
Schanler, R. J., Shulman, R. J., Lau, C.Feeding strategies for premature infants: beneficial outcomes of feeding fortified human milk versus preterm formula. Pediatrics 1999;103:1150–7.CrossRefGoogle ScholarPubMed
Martin, A., Rambal, C., Berger, V., Perier, S., Louisot, P.Availability of specific sugars for glycoconjugate biosynthesis: a need for further investigations in man. Biochimie 1998;80:75–86.CrossRefGoogle ScholarPubMed
Kliegman, R. M., Sparks, J. W.Perinatal galactose metabolism. J. Pediatr. 1985;107:831–41.CrossRefGoogle ScholarPubMed
Hay, W. W.Fetal and neonatal glucose homeostasis and their relation to the small for gestational age infant. Semin. Perinatol. 1984;8:101–16.Google ScholarPubMed
Kaempf, J. W., Li, H.-Q., Groothuis, J. R.et al.Galactose, glucose, and lactate concentrations in the portal venous and arterial circulations of newborn lambs after nursing. Pediatr. Res. 1988;23:598–602.CrossRefGoogle ScholarPubMed
Kliegman, R. M., Morton, S.Sequential intrahepatic metabolic effects of enteric galactose alimentation in newborn rats. Pediatr Res. 1988;24:302–7.CrossRefGoogle ScholarPubMed
Kunst, C., Kliegman, R., Trindade, C.The glucose-galactose paradox in neonatal murine hepatic glycogen synthesis. Am. J. Physiol. 1989;257:E697–703.Google ScholarPubMed
Kliegman, R. M., Miettinen, E. L., Kalhan, S. C., Adam, P. A. J.The effect of enteric galactose on neonatal canine carbohydrate metabolism. Metabolism 1981;30:1109–18.CrossRefGoogle ScholarPubMed
Kliegman, R. M., Miettinen, E. L., Morton, S.Potential role of galactokinase in neonatal carbohydrate assimilation. Science 1983; 220:302–4.CrossRefGoogle ScholarPubMed
Sparks, J. W., Avery, G. B., Fletcher, A. B., Simmons, M. A., Glinsmann, W. H.Parenteral galactose therapy in the glucose-intolerant premature infant. Pediatrics 1982;100:255–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Enteral carbohydrate assimilation
    • By C. Lawrence Kien, Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Enteral carbohydrate assimilation
    • By C. Lawrence Kien, Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Enteral carbohydrate assimilation
    • By C. Lawrence Kien, Department of Pediatrics, University of Texas Medical Branch at Galveston, Galveston, TX
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.023
Available formats
×