Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-21T17:55:40.714Z Has data issue: false hasContentIssue false

9 - Water and electrolyte balance in newborn infants

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Shanthy Sridhar
Affiliation:
Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY
Stephen Baumgart
Affiliation:
Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Water spaces – life processes

Up to 80% of body weight is water in neonates near term, and even more may be water in premature babies (90%). Cell membranes separate intracellular water (ICW) and extracellular water (ECW) spaces. The ECW is separated further into plasma water and interstitial water across vascular endothelium. The ECW maintains ICW solute concentrations and cell nutrition. The ECW content is regulated physiologically by the heart and the kidneys, and is controlled by several hormone systems.

As shown in Figure 9.1, water coming into the ECW carries mineral solutes, carbohydrates, fats and proteins. Cellular wastes exiting the ECW with water and solutes constitute carbon dioxide (respiratory), urea and fixed acids (renal) and heat dissipation (integument). Also, some water is lost in stool, and a small amount is gained from substrate oxidation. Growth in the newborn also requires water, substrates and solutes for cell proliferation and differentiation. In this chapter, regulation of the cell's ICW, and the interfacing role of the ECW compartment in neonatal water metabolism will be discussed.

Inside the cell membrane – osmotic pressure

Water moves from higher to lower solute concentrations across the cell's membrane. In physiologic solutions, solute concentration is expressed in milliosmoles (mOsm) per kg of water. The movement of water across semipermeable membranes in response to small gradient changes regulates cell volume. Vant Hoff measured physiological osmotic pressure in living cells – determining one milliosmole per liter of water exerts 19.3 mmHg pressure.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Friis-Hansen, B.Body water compartments in children. Pediatrics 1961;28:169–81.Google ScholarPubMed
Costarino, A. T., Baumgart, S. Neonatal water and electrolyte metabolism. In Cowett, R. M., ed. Principles of Perinatal-Neonatal Metabolism. 2nd edn. New York: Springer; 1998.CrossRefGoogle Scholar
Dahlstrom, H.Basal metabolism and extracellular fluid. Acta Physio. Scand. 1950;21:7–80.Google ScholarPubMed
Wedgewood, R. J., Bass, D. E., Klincis, J. A., Kleeman, C. R., Quinn, M.Relationship of body composition to basal metabolic rate in normal man. J. Appl. Physiol. 1953;6:317– 34.CrossRefGoogle Scholar
Astrup, J.Energy-requiring cell functions in the ischemic brain. J. Neuro. Surg. 1982;56:282–97.Google ScholarPubMed
Valtin, H.Renal Function: Mechanisms Preserving Fluid and Solute Balance in Health. Boston: Little Brown; 1973.Google Scholar
Guyton, A. C.Textbook of Medical Physiology 6th edn. Philadelphia, PA: W. B. Saunders; 1981:339.Google Scholar
MacKnight, A. D. C., Leaf, A.Regulation of cellular volume. Physiol. Rev. 1977;57:510–73.CrossRefGoogle ScholarPubMed
Strauss, J.Fluid and electrolyte composition of the fetus and newborn. Pediatr. Clin. N. Am. 1966;13:1077–102.CrossRefGoogle Scholar
MacLaurin, J. C.Changes in body water distribution during the first two weeks of life. Arch. Dis. Child. 1966;41:286–91.CrossRefGoogle ScholarPubMed
Landis, E. M., Pappenheimer, J. R. Exchange of substances through capillary walls. In Handbook of Physiology. Circulation Section 2, Vol. 2. Washington, DC: American Physiologic Society; 1963:961–1034.Google Scholar
Wiel, M. H., Henning, R. J., Puri, V. K.Colloid oncotic pressure: clinical significance. Crit. Care Med. 1979;3:113–16.CrossRefGoogle Scholar
Webster, H. L.Colloid osmotic pressure: theoretical aspects and background. Clin. Perinatol. 1982;9:505–21.CrossRefGoogle ScholarPubMed
Bhat, R., Javed, S., Malalis, L., Vidyasagar, D.Colloid osmotic pressure in healthy and sick neonates. Crit. Care Med. 1981;9:563–7.CrossRefGoogle ScholarPubMed
Sola, A., Gregory, G. A.Colloid osmotic pressure of normal newborns and premature infants. Crit. Care Med. 1981;9:568–72.CrossRefGoogle ScholarPubMed
Starling, E. H.On the absorption of fluid from the connective tissue spaces. J. Physiol (Lond.) 1896;19:312–26.CrossRefGoogle Scholar
Civetta, J. M.A new look at the Starling equation. Crit. Care Med. 1979;7:84–91.CrossRefGoogle Scholar
Taylor, A. E.Capillary fluid filtration. Circ. Res. 1981;49:557–75.CrossRefGoogle ScholarPubMed
Granger, D. N., Miller, T., Allen, R.et al.Permselectivity of cat liver blood-lymph barrier to endogenous macromolecules. Gastroenterology 1979;77:103–9.Google ScholarPubMed
Nicoll, P. A., Taylor, A. E.Lymph formation and flow. Annu. Rev. Physiol. 1977;39:73–95.CrossRefGoogle Scholar
Robertson, G. L., Berl, T. Water metabolism. In Brenner, B. M., Rector, F. C., eds. The Kidney. Philadelphia, PA: W. B. Saunders; 1986:385–431.Google Scholar
Hall, J. E., Guyton, A. C., Colemean, T. G., Mizelle, H. L., Woods, L. L.Regulation of arterial pressure: role of pressure natriuresis and diuresis. Fed. Proc. 1986;45:2897–903.Google ScholarPubMed
Mann, J. F. E., Johnson, A. K., Gantten, D., Eberhard, R.Thirst and the renin-angiotensin system. Kidney Int. 1987;32:S27–34.Google Scholar
Robertson, G. L., Shelton, R. L., Athar, S.The osmoregulation of vasopressin. Kidney Int. 1976;10:25–37.CrossRefGoogle ScholarPubMed
Spitzer, A. Renal physiology and function development. In Edelman, C. M. Jr. ed. The Kidney and Urinary Tract, Vol. 1. 1978:25–128.Google Scholar
Cleary, G. M., Higgins, S. T., Merton, D. A., et al.Developmental changes in renal artery blood flow velocity during the first three weeks of life in preterm neonates. J. Pediatr. 1996;129:251–7.CrossRefGoogle ScholarPubMed
Bailie, M. D.Development of the endocrine function of the kidney. Clin. Perinat. 1992;19:59–68.CrossRefGoogle ScholarPubMed
Baylen, B. G., Ogata, H., Ikeganim, M.et al.Left ventricular performance and contractility before and after volume infusion: a comparative study in preterm and full-term newborns. Circulation 1986;73:1042–9.CrossRefGoogle Scholar
Robillard, J. E., Matson, J. R., Sessions, C.et al.Maturational changes in the fetal glomerular filtration rate. Am. J. Obstet. Gynecol. 1975;122:601–6.CrossRefGoogle ScholarPubMed
Chung, E. E., Moore, E. S., Cevallos, E. E.et al.The effect of gestational age and arterial pressure on renal function in utero. Pediatr. Res. 1976;10:437.Google Scholar
Leake, R. D., Trygstad, C. W.Glomerular filtration rate during the period of adaptation to extrauterine life. Pediatr. Res. 1977;11:959–62.CrossRefGoogle ScholarPubMed
Aperia, A., Broberger, O., Elinder, G.et al.Postnatal development of renal function in pre-term and full-term infants. Acta Pediatri. Scand. 1981;70:183–7.CrossRefGoogle ScholarPubMed
Guignard, J. P., Torrado, A., Mazouni, S. M., Gautier, E.Renal function in respiratory distress syndrome. J. Pediatr. 1976;88:845–50.CrossRefGoogle ScholarPubMed
Seitel, H., Scopes, J.Rates of creatinine clearance in babies less than one week of age. Arch. Dis. Child. 1973;48:717–20.Google Scholar
Gaycock, G. B., Aperia, A.Salt and the newborn kidney. Pediatr. Nephrol. 1991;5:65–70.Google Scholar
Aperia, A., Holtback, U., Syren, M. L.et al.Activation/deactivation of renal Na+, K+ adenosine triphosphatease: a final common pathway for regulation of natriuresis. FASEB J. 1994;8:436– 9.CrossRefGoogle Scholar
Celsi, G., Wang, Z. M., Akusjarvi, G., Aperia, A.Sensitive periods for glucocorticoids' regulation of Na+, K+adenosine triphosphateasemRNA in the developing lung and kidney. Pediatr. Res. 1993;33:5–9.CrossRefGoogle Scholar
Norton, M. E., Merrill, J., Cooper, B. A. B.et al.Neonatal complications after the administration of indomethacin for preterm labor. N. Engl. J. Med. 1993;329:1602–7.CrossRefGoogle ScholarPubMed
Anker, J. N., Hop, W. C. J., Groot, R.et al.Effects of prenatal exposure to betamethasone and indomethacin on the glomerular filtration rate in the preterm infant. Pediatr. Res. 1994;36:578–81.CrossRefGoogle ScholarPubMed
Leake, R. D., Zakanddin, S., Trygstad, C. W.et al.The effects of large-volume intravenous fluid infusion on neonatal renal function. J. Pediatr. 1976;89:968–72.CrossRefGoogle ScholarPubMed
Imbert-Teboul, M., Chabardes, D., Cligue, A.et al.Ontogenesis of hormone-dependent adenylate cyclase in isolated rat nephron segments. Am. J. Physiol. 1984;247:F316–25.Google ScholarPubMed
Aperia, A., Broberger, O., Thodenius, K.et al.Development of renal control of salt and fluid homeostasis during the first year of life. Acta Pediatr. Scand. 1975;64:393–98.CrossRefGoogle ScholarPubMed
Edelman, C. M., Barnett, H. L.Role of kidney in water metabolism in young infants. J. Pediatr. 1960;56:154–79.CrossRefGoogle Scholar
Gruskay, J. A., Costarino, A. T., Polin, R. A., Baumgart, S.Non-oliguric hyperkalemia in the premature infant less than 1000 grams. J. Pediatr. 1988;113:381–6.CrossRefGoogle Scholar
Spitzer, A.The role of the kidney in sodium homeostasis during maturation. Kidney Int. 1982;21:539–45.CrossRefGoogle ScholarPubMed
Aperia, A., Elinder, G.Distal tubular sodium reabsorption in the developing rat kidney. Am. J. Physiol. 1981;29:F487–91.Google Scholar
Robillard, J. E., Sessions, C., Kennedy, R. L.et al.Interrelationships between glomerular filtration rate and renal transport of sodium and chloride during fetal life. Am. J. Obstet. Gynecol. 1977;128:727–33.CrossRefGoogle Scholar
Aperia, A., Zetterstrom, R.Renal control of fluid homeostasis in the newborn infant. Clin. Perinatol. 1982;9:523–33.CrossRefGoogle ScholarPubMed
DeFronzo, R. A., Bia, M., Smith, D.Clinical disorders of hyperkalemia. Annu. Rev. Med. 1982;33:521–54.CrossRefGoogle ScholarPubMed
Stefano, J. L., Norman, M. E., Morales, M. C.et al.Decreased erythrocyte Na+, K+ adenosine triphosphatease activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. J. Pediatr. 1993;122:276–84.CrossRefGoogle Scholar
Stefano, J. L., Norman, M. E.Nitrogen balance in extremely low birth weight infants with nonoliguric hyperkalemia. J. Pediatr. 1993;123:632–5.CrossRefGoogle ScholarPubMed
Brion, L. P., Fleischman, A. R., Schwartz, G. J.Hyperkalemia in very low birthweight infants with non-oliguric renal failure. Pediatr. Res. 1985;19:336A.Google Scholar
Laragh, J. H.Atrial natriuretic hormone, the renin aldosterone axis and blood pressure – electrolyte homeostasis. N. Engl. J. Med. 1985;313:1330–40.Google ScholarPubMed
Kotchen, T. A., Strickland, A. L., Rice, M. S., Walters, D. R.A study of the renin-angiotensin system in newborn infants. J. Peds. 1972;80:938–46.CrossRefGoogle ScholarPubMed
Richer, C., Hornych, H., Amiel-Tison, C.Plasma renin activity and its postnatal development in preterm infants. Biol. Neonate 1977;31:301–4.CrossRefGoogle ScholarPubMed
Csaba, I., Ertyl, T., Nemeth, M.et al.Postnatal development of renin-angiotensin-aldosterone system, Raas, in relation to electrolyte balance in premature infants. Ped. Res. 1979;13:817–20.Google Scholar
Pipkin, F. B., Phil, D., Smales, O. R. C.A study of factors affecting blood pressure and angiotensin II in newborn infants. J. Peds. 1977;91:113–19.CrossRefGoogle Scholar
Godard, C., Geering, J. M., Geering, K., Vallotton, M. B.Plasma renin activity related to sodium balance, renal function and urinary vasopressin in the newborn infant. Pediat. Res. 1979;13:742–5.CrossRefGoogle ScholarPubMed
Bender, J. W., Davitt, M. K., Jose, P.Angiotensin-I converting enzyme activity in term and premature infants. Biol. Neonate. 1978;34:19–23.CrossRefGoogle ScholarPubMed
Schubert, F., George, J. M., Rao, M. B.Vasopressin and oxytocin content of human fetal brain at different stages of gestation. Brain Res. 1981;213:111–17.CrossRefGoogle Scholar
Wiriyathian, S., Rosenfeld, C. R., Arant, B. S.et al.Urinary arginine vasopressin: Pattern of excretion in the neonatal period. Pediatr. Res. 1986;20:103–8.CrossRefGoogle ScholarPubMed
Stern, P., LaRochelle, F. T., Little, G. A.Vasopressin and pneumothorax in the neonate. Pediatrics 1981;68:499–503.Google ScholarPubMed
Leslie, G. I., Philips, J. B., Work, J., Ram, S., Cassady, G.The effect of assisted ventilation on creatinine clearance and hormonal control of electrolyte balance in very low birth weight infants. Pediatr. Res. 1986;20:447–52.CrossRefGoogle ScholarPubMed
Kovacs, L., Sulyok, E., Lichardus, B., Mihajlovskij, N., Bircak, J.Renal response to arginine vasopressin in premature infants with late hyponatraemia. Arch. Dis. Child. 1986;61:1030–2.CrossRefGoogle ScholarPubMed
Svenningsen, N. W., Aronson, A. S.Postnatal development of renal concentration capacity as estimated by DDAVP-test in normal and asphyxiated neonates. Biol. Neonate 1974;25:230–41.CrossRefGoogle ScholarPubMed
Edelman, C. M., Barnett, H. L., Stark, H.Effect of urea on concentration of urinary nonurea solute in premature infants. J. Appl. Physiol. 1966;21:1021–5.CrossRefGoogle Scholar
Sulyok, E., Kovacs, L., Lichardus, B.et al.Late hyponatremia in premature infants: role of aldosterone and arginine vasopressin. J. Pediatr. 1985;106:990–4.CrossRefGoogle ScholarPubMed
Richards, A. M., Ikram, H., Yanckle, T. G.et al.Renal, hemodynamic, and hormonal effects of human alpha atrial natriuretic peptide in healthy volunteers. Lancet. 1985;1:545–8.CrossRefGoogle ScholarPubMed
Costarino, A. T., Baumgart, S., Norman, M. E., Polin, R. A.Renal adaptation to extrauterine life in patients with respiratory distress syndrome. Am. J. Dis. Child. 1985;139:1060–3.Google ScholarPubMed
Ekblad, H., Kero, P., Vuolteenaho, O.et al.Atrial natriuretic peptide in the preterm infant: lack of correlation with natriuresis and diuresis. 1992;81:978–82.Google ScholarPubMed
Kojuma, T., , Hirata Y., Fukuda, Y., Iwase, S., Kobayashi, Y.Plasma atrial natriuretic peptide and spontaneous diuresis in sick neonates. Arch. Dis. Child. 1987;62:667–70.CrossRefGoogle Scholar
Ronconi, M., Fortunato, A., Soffiati, G.et al.Vasopressin, atrial natriuretic factor and renal water homeostasis in premature newborn infants with respiratory distress syndrome. J. Perinat. Med. 1995;23d:307–14.CrossRefGoogle Scholar
Rozycki, H. J., Baumgart, S.Atrial natriuretic factor and renal function during diuresis in preterm infants. Clin. Res. 1987;35:556A.Google Scholar
Arant, B. S., Jr. Functional immaturity of the newborn kidney: paradox or prostaglandin? In Strauss, J., ed. Homeostasis, Nephrotoxicity and Renal Anomalies in the Newborn. Boston: Nihjoff; 1984:271.Google Scholar
el-Dhar, S. S.Development biology of the renal kallikrein-kinin system. Pediatr. Nephrol. 1994;8:624–31.CrossRefGoogle Scholar
Jefferies, A. L., Coates, G., O'Brodovich, H. Pulmonary epithelial permeability in hyaline membrane disease. N. Engl. J. Med. 1984;31:1075–80.CrossRefGoogle Scholar
Abman, S. H., Groothus, J. R.et al.Pathophysiology and treatment of broncho-pulmonary dysplasia, current issues. Pediatr. Clin. N. Am. 1994;41:277.CrossRefGoogle Scholar
Palta, M., Babbert, D., Weinstein, M. R., Peters, M. E.Multivariate assessment of traditional risk factors for chronic lung disease in very low birth weight neonates. J. Pediatr. 1991;119:285–92.CrossRefGoogle ScholarPubMed
Marter, L. J., Pagano, M., Allred, E. N., Leviton, A., Kuban, K. C. K.Rate of bronchopulmonary dysplasia as a function of neonatal intensive care practices. J. Pediatr. 1992;120:938–46.CrossRefGoogle ScholarPubMed
Bell, E. F., Warburton, D., Stonestreet, B. S., Oh, W.Effect of fluid administration on the development of symptomatic patent ductus arteriosus and congestive heart failure in premature infants. N. Engl. J. Med. 1980;302:598–604.CrossRefGoogle ScholarPubMed
Langman, C. B., Engle, W. D., Baumgart, S., Fox, W. W., Polin, R. A.The diuretic phase of respiratory distress syndrome and its relationship to oxygenation. J. Pediatr. 1981;98:462–6.CrossRefGoogle ScholarPubMed
Spitzer, A. R., Fox, W. W., Delivoria-Papadopoulos, M.et al.Maximum diuresis. A factor predicting recovery for RDS and development of broncho-pulmonary dysplasia. J. Pediatr. 1981;98:476–9.CrossRefGoogle Scholar
Heaf, D. P., Belik, J., Spitzer, A. R., Gewitz, M. H., Fox, W. W.Changes in pulmonary function during the diuretic phase of respiratory distress syndrome. J. Pediatr. 1982;101:103–7.CrossRefGoogle ScholarPubMed
Huet, F., Semama, D., Grimaldi, M.et al.Effects of theophylline on renal insufficiency in neonates with respiratory distress syndrome. Int. Care Med. 1995;21:511–14.CrossRefGoogle ScholarPubMed
Kurzner, S. I., Garg, M., Bautista, B.et al.Growth failure in bronchopulmonary dysplasia: elevated metabolic rates and pulmonary mechanics. J. Pediatr. 1988;112:73–80.CrossRefGoogle ScholarPubMed
Periera, G. R., Baumgart, S., Bennett, M. J.et al.Use of high fat formula for premature infants with bronchopulmonary dysplasia, metabolic, pulmonary and nutritional studies. J. Pediatr. 1994;124:605–11.CrossRefGoogle Scholar
Ballard, P. L., Ballard, R. A.Scientific basis and therapeutic regimens for use of antenatal glucocorticoids. Am. J. Obstet. Gynecol. 1995;173:254–62.CrossRefGoogle ScholarPubMed
Padbury, J. F., Ervin, G., Polk, D. H.Extra pulmonary effects of antenatal administered steroids. J. Pediatr. 1996;128;167–72.CrossRefGoogle Scholar
Omar, S. A., Decristofaro, J. D., Agarwal, B. I.et al.Effects of prenatal steroids on water and sodium homeostasis in extremely low birth weight neonates. Pediatrics 1999;104:482–8.CrossRefGoogle ScholarPubMed
Tammela, O. K. T.Appropriate fluid regimen to prevent broncho pulmonary dysplasia. Eur. J. Pediatr. 1995;154:515.CrossRefGoogle Scholar
Cornblath, M., Forbes, A. E., Pildes, R. S.et al.A controlled study of early fluid administration on survival of low birthweight infants. Pediatrics 1966;38:547–54.Google Scholar
Spahr, R. C., Klein, A. M., Brown, D. R.et al.Fluid administration and bronchopulmonary dysplasia. Am. J. Dis. Child. 1980;134:958–60.CrossRefGoogle ScholarPubMed
Gersony, W. M., Peckham, G. J., Ellison, R. C., Miettinen, O. S., Nadas, A. S.Effects of indomethacin in premature infants with patent ductus arteriosus: results of a national collaborative study. J. Pediatr. 1983;102:895–906.CrossRefGoogle ScholarPubMed
Costarino, A. T., Baumgart, S.Modern fluid and electrolyte management of the critically ill premature infant. Ped. Clin. N. Am. 1986;33:153–78.CrossRefGoogle ScholarPubMed
Hammarlund, K., Sedin, G.Transepidermal water loss in newborn infants: VIII. Relation to gestational age and post-natal age in appropriate and small for gestational age infants. Acta Paediatr. Scand. 1983;72:721–8.CrossRefGoogle ScholarPubMed
Haycock, G. B., Schwartz, G. J., Wisotsky, D. H.Geometric method for measuring body surface areas: a height-weight formula validated in infants, children and adults. J. Pediatr. 1978;93:62–6.CrossRefGoogle ScholarPubMed
Shaffer, S. G., Kilbride, H. W., Hayen, L. K.et al.Hyperkalemia in very low birth weight infants. J. Pediatr. 1992;121:275–9.CrossRefGoogle ScholarPubMed
Baumgart, S., Fox, W. W., Polin, R. A.Physiologic implications of two different heat shields for infants under radiant warmers. J. Pediatr. 1982;100:787–90.CrossRefGoogle ScholarPubMed
Knauth, A., Gordin, M. S., McNelis, W., Baumgart, S.Semipermeable polyurethane membrane as an artificial skin for the premature neonate. Pediatrics 1989;83:945–50.Google ScholarPubMed
Harpin, A., Rutter, N.Humidification of incubators. Arch. Dis. Child. 1985;60:219–24.CrossRefGoogle ScholarPubMed
Sulyok, E.The relationship between electrolyte and acid base balance in premature infants during early postnatal life. Biol. Neonate 1971;95:227–37.CrossRefGoogle Scholar
Sulyok, E., Nemeth, M., Teny, I. F.et al.Relationship between maturity, electrolyte balance, and the function of renin-angiotensin-aldosterone system in newborn infants. Biol. Neonate 1979;35:60–5.CrossRefGoogle ScholarPubMed
Sulyok, E., Rascher, W., Baranyai, Z.et al.Influence of NaCl supplementation on vasopressin secretion and water excretion in premature infants. Biol. Neonate 1993;64:201–8.CrossRefGoogle ScholarPubMed
Lorenz, J. M., Kleinman, L. I., Ahmed, G., Markarian, K.Phases of fluid and electrolyte homeostasis in the extremely low birth weight infant. Pediatrics 1995;96:484–9.Google ScholarPubMed
Costarino, A. T., Gruskay, J. A., Corcoran, L., Polin, R. A., Baumgart, S.Sodium restriction versus daily maintenance replacement in very low birth weight premature neonates: a randomized, blind therapeutic trial. J. Pediatr. 1992;120:99–106.CrossRefGoogle ScholarPubMed
Bhatty, S. B., Tsirka, A., Quinn, P. B., LaGamma, E. F., DeCristofaro, J. D.Rapid correction of hyponatremia in extremely low birth weight (ELBW) premature neonates is associated with long term developmental delay. Pediatr. Res. 1997;41: 140A.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Water and electrolyte balance in newborn infants
    • By Shanthy Sridhar, Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY, Stephen Baumgart, Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Water and electrolyte balance in newborn infants
    • By Shanthy Sridhar, Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY, Stephen Baumgart, Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Water and electrolyte balance in newborn infants
    • By Shanthy Sridhar, Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY, Stephen Baumgart, Department of Pediatrics, State University of New York at Stony Brook, Stony Brook, NY
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.010
Available formats
×