Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T16:26:22.663Z Has data issue: false hasContentIssue false

Chapter 12 - Monitoring for Impending Ischemia

from Part III - Practice of Neuromonitoring: Pediatric Intensive Care Unit

Published online by Cambridge University Press:  08 September 2022

Cecil D. Hahn
Affiliation:
The Hospital for Sick Children, University of Toronto
Courtney J. Wusthoff
Affiliation:
Lucile Packard Children’s Hospital, Stanford University
Get access

Summary

The use of electrophysiological methods to monitor patients for cerebral ischemia is based on the observation that electrical brain activity is exquisitely dependent on adequate cerebral perfusion. The effect of ischemia on the EEG is dependent on the degree, duration, and rate of hypoperfusion, as well as on the cerebral metabolic rate, which itself can be influenced by sedation and body temperature. EEG can serve as an early indicator of ischemia, before clinical signs may be apparent and potentially before permanent injury occurs. Visual interpretation can be assisted by quantitative EEG analysis (QEEG). This chapter details the use of neuromonitoring for the detection of ischemia.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolay, H, Reuter, U, Dunn, AK, et al. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002 Feb;8(2):136–42.CrossRefGoogle Scholar
Hofmeijer, J, van Putten, MJ. Ischemic cerebral damage: an appraisal of synaptic failure. Stroke. 2012 Feb;43(2):607–15.CrossRefGoogle ScholarPubMed
Tjepkema-Cloostermans, MC, Hindriks, R, Hofmeijer, J, van Putten, MJ. Generalized periodic discharges after acute cerebral ischemia: reflection of selective synaptic failure? Clin Neurophysiol. 2014 Feb;125(2):255–62.CrossRefGoogle ScholarPubMed
Paz, JT, Huguenard, JR. Microcircuits and their interactions in epilepsy: is the focus out of focus? Nat Neurosci. 2015 Mar;18(3):351–9.CrossRefGoogle ScholarPubMed
van Putten, MJ, Tavy, DL. Continuous quantitative EEG monitoring in hemispheric stroke patients using the brain symmetry index. Stroke. 2004 Nov;35(11):2489–92.CrossRefGoogle ScholarPubMed
Berenyi, A, Belluscio, M, Mao, D, Buzsaki, G. Closed-loop control of epilepsy by transcranial electrical stimulation. Science. 2012 Aug 10;337(6095):735–7.CrossRefGoogle ScholarPubMed
Astrup, J, Siesjo, BK, Symon, L. Thresholds in cerebral ischemia – the ischemic penumbra. Stroke. 1981 Nov-Dec;12(6):723–5.CrossRefGoogle ScholarPubMed
Boysen, G, Ladegaard-Pedersen, HJ, Henriksen, H, et al. The effects of PaCO2 on regional cerebral blood flow and internal carotid arterial pressure during carotid clamping. Anesthesiology. 1971 Sep;35(3):286300.Google ScholarPubMed
Hossmann, KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol. 1994 Oct;36(4):557–65.CrossRefGoogle ScholarPubMed
Ingvar, DH, Sjolund, B, Ardo, A. Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroencephalogr Clin Neurophysiol. 1976 Sep;41(3):268–76.CrossRefGoogle ScholarPubMed
Nagata, K. Topographic EEG mapping in cerebrovascular disease. Brain Topogr. 1989 Fall-Winter;2(1-2):119–28.CrossRefGoogle ScholarPubMed
Sharbrough, FW, Messick, JM, Jr., Sundt, TM, Jr. Correlation of continuous electroencephalograms with cerebral blood flow measurements during carotid endarterectomy. Stroke. 1973 Jul-Aug;4(4):674–83.CrossRefGoogle ScholarPubMed
Sundt, TM, Jr., Sharbrough, FW, Piepgras, DG, et al. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981 Sep;56(9):533–43.Google ScholarPubMed
Trojaborg, W, Boysen, G. Relation between EEG, regional cerebral blood flow and internal carotid artery pressure during carotid endarterectomy. Electroencephalogr Clin Neurophysiol. 1973 Jan;34(1):61–9.CrossRefGoogle ScholarPubMed
Labar, DR, Fisch, BJ, Pedley, TA, Fink, ME, Solomon, RA. Quantitative EEG monitoring for patients with subarachnoid hemorrhage. Electroencephalogr Clin Neurophysiol. 1991 May;78(5):325–32.CrossRefGoogle ScholarPubMed
Vespa, PM, Nuwer, MR, Juhasz, C, et al. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997 Dec;103(6):607–15.CrossRefGoogle ScholarPubMed
Miller, CM, Palestrant, D. Distribution of delayed ischemic neurological deficits after aneurysmal subarachnoid hemorrhage and implications for regional neuromonitoring. Clinical Neurol Neurosurg. 2012 Jul;114(6):545–9.CrossRefGoogle ScholarPubMed
Kohno, K, Ohta, S, Kohno, K, et al. Early detection of cerebral ischemic lesion using diffusion-weighted MRI. J Comput Assist Tomogr. 1995 Nov-Dec;19(6):982–6.CrossRefGoogle ScholarPubMed
Friedman, D, Claassen, J, Hirsch, LJ. Continuous electroencephalogram monitoring in the intensive care unit. Anesth Analg. 2009 Aug;109(2):506–23.CrossRefGoogle ScholarPubMed
Schmidt, JM, Wartenberg, KE, Fernandez, A, et al. Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage. J Neurosurg. 2008 Dec;109(6):1052–9.CrossRefGoogle ScholarPubMed
Hopfengartner, R, Kerling, F, Bauer, V, Stefan, H. An efficient, robust and fast method for the offline detection of epileptic seizures in long-term scalp EEG recordings. Clin Neurophysiol. 2007 Nov;118(11):2332–43.CrossRefGoogle ScholarPubMed
Claassen, J, Hirsch, LJ, Kreiter, KT, et al. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004 Dec;115(12):26992710.CrossRefGoogle ScholarPubMed
Stuart, RM, Schmidt, M, Kurtz, P, et al. Intracranial multimodal monitoring for acute brain injury: a single institution review of current practices. Neurocrit Care. 2010 Apr;12(2):188–98.CrossRefGoogle ScholarPubMed
Vespa, PM. Acute presentation and early intensive care of acute aneurysmal subarachnoid hemorrhage. J Stroke Cerebrovasc Dis. 1997 Apr-May;6(4):230–4.Google Scholar
Machado, C, Cuspineda, E, Valdes, P, et al. Assessing acute middle cerebral artery ischemic stroke by quantitative electric tomography. Clin EEG Neurosci. 2004 Jul;35(3):116–24.CrossRefGoogle ScholarPubMed
Sheorajpanday, RV, Nagels, G, Weeren, AJ, van Putten, MJ, De Deyn, PP. Quantitative EEG in ischemic stroke: correlation with functional status after 6 months. Clin Neurophysiol. 2011 May;122(5):874–83.Google ScholarPubMed
Finnigan, SP, Rose, SE, Walsh, M, et al. Correlation of quantitative EEG in acute ischemic stroke with 30-day NIHSS score: comparison with diffusion and perfusion MRI. Stroke. 2004 Apr;35(4):899903.CrossRefGoogle ScholarPubMed
Foreman, B, Claassen, J. Quantitative EEG for the detection of brain ischemia. Crit Care. 2012;16(2):216.CrossRefGoogle ScholarPubMed
Rungta, RL, Choi, HB, Tyson, JR, et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell. 2015 Apr 23;161(3):610–21.CrossRefGoogle ScholarPubMed
Stokum, JA, Gerzanich, V, Simard, JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab. 2016 Mar;36(3):513–38.CrossRefGoogle ScholarPubMed
Zandt, BJ, ten Haken, B, van Dijk, JG, van Putten, MJ. Neural dynamics during anoxia and the “wave of death.PLoS ONE. 2011;6(7):e22127.CrossRefGoogle ScholarPubMed
Young, GB, Campbell, VC. EEG monitoring in the intensive care unit: pitfalls and caveats. J Clin Neurophysiol. 1999 Jan;16(1):40–5.Google Scholar
MacKay, EC, Sleigh, JW, Voss, LJ, Barnard, JP. Episodic waveforms in the electroencephalogram during general anaesthesia: a study of patterns of response to noxious stimuli. Anaesth Intensive Care. 2010 Jan;38(1):102–12.CrossRefGoogle ScholarPubMed
Leduc, ML, Atherley, R, Jinks, SL, Antognini, JF. Nitrous oxide depresses electroencephalographic responses to repetitive noxious stimulation in the rat. Br J Anaesth. 2006 Feb;96(2):216–21.CrossRefGoogle ScholarPubMed
Antognini, JF, Carstens, E, Sudo, M, Sudo, S. Isoflurane depresses electroencephalographic and medial thalamic responses to noxious stimulation via an indirect spinal action. Anesth Analg. 2000 Nov;91(5):1282–8.Google ScholarPubMed
Sato, Y, Sato, K, Shamoto, H, Kato, M, Yoshimoto, T. Effect of nitrous oxide on spike activity during epilepsy surgery. Acta Neurochir (Wien). 2001 Dec;143(12):1213–15; discussion 1215–16.CrossRefGoogle ScholarPubMed
Endo, T, Sato, K, Shamoto, H, Yoshimoto, T. Effects of sevoflurane on electrocorticography in patients with intractable temporal lobe epilepsy. J Neurosurg Anesth. 2002 Jan;14(1):5962.Google Scholar
Asano, E, Benedek, K, Shah, A, et al. Is intraoperative electrocorticography reliable in children with intractable neocortical epilepsy? Epilepsia. 2004 Sep;45(9):1091–9.CrossRefGoogle ScholarPubMed
Manninen, PH, Burke, SJ, Wennberg, R, Lozano, AM, El Beheiry, H. Intraoperative localization of an epileptogenic focus with alfentanil and fentanyl. Anesth Analg. 1999 May;88(5):1101–6.Google ScholarPubMed
Herrick, IA, Craen, RA, Gelb, AW, et al. Propofol sedation during awake craniotomy for seizures: electrocorticographic and epileptogenic effects. Anesth Analg. 1997 Jun;84(6):1280–4.CrossRefGoogle ScholarPubMed
Kaste, M, Waltimo, O. Prognosis of patients with middle cerebral artery occlusion. Stroke. 1976 Sep-Oct;7(5):482–5.Google Scholar
de Vos, CC, van Maarseveen, SM, Brouwers, PJ, van Putten, MJ. Continuous EEG monitoring during thrombolysis in acute hemispheric stroke patients using the brain symmetry index. J ClinNeurophysiol. 2008 Apr;25(2):7782.Google ScholarPubMed
Dreier, JP, Major, S, Pannek, HW, et al. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex. Brain. 2012 Jan;135(Pt 1):259–75.CrossRefGoogle ScholarPubMed
Drenckhahn, C, Winkler, MK, Major, S, et al. Correlates of spreading depolarization in human scalp electroencephalography. Brain. 2012 Mar;135(Pt 3):853–68.Google Scholar
Dohmen, C, Sakowitz, OW, Fabricius, M, et al. Spreading depolarizations occur in human ischemic stroke with high incidence. Ann Neurol. 2008 Jun;63(6):720–8.CrossRefGoogle ScholarPubMed
Dreier, JP, Woitzik, J, Fabricius, M, et al. Delayed ischaemic neurological deficits after subarachnoid haemorrhage are associated with clusters of spreading depolarizations. Brain. 2006 Dec;129(Pt 12):3224–37.CrossRefGoogle ScholarPubMed
Jeffcote, T, Hinzman, JM, Jewell, SL, et al. Detection of spreading depolarization with intraparenchymal electrodes in the injured human brain. Neurocrit Care. 2014 Feb;20(1):2131.CrossRefGoogle ScholarPubMed
Helbok, R, Madineni, RC, Schmidt, MJ, et al. Intracerebral monitoring of silent infarcts after subarachnoid hemorrhage. Neurocrit Care. 2011 Apr;14(2):162–7.CrossRefGoogle ScholarPubMed
Scott, RM, Smith, ER. Moyamoya disease and moyamoya syndrome. N Engl J Med. 2009 Mar 19;360(12):1226–37.Google Scholar
Suzuki, J, Takaku, A. Cerebrovascular “moyamoya” disease. Disease showing abnormal net-like vessels in base of brain. Arch Neurol. 1969 Mar;20(3):288–99.CrossRefGoogle ScholarPubMed
Hallemeier, CL, Rich, KM, Grubb, RL, Jr., et al. Clinical features and outcome in North American adults with moyamoya phenomenon. Stroke. 2006 Jun;37(6):1490–6.CrossRefGoogle ScholarPubMed
Yilmaz, EY, Pritz, MB, Bruno, A, Lopez-Yunez, A, Biller, J. Moyamoya: Indiana University Medical Center experience. Arch Neurol. 2001 Aug;58(8):1274–8.Google Scholar
Smith, ER, Scott, RM. Surgical management of moyamoya syndrome. Skull Base. 2005 Feb;15(1):1526.CrossRefGoogle ScholarPubMed
Vendrame, M, Kaleyias, J, Loddenkemper, T, et al. Electroencephalogram monitoring during intracranial surgery for moyamoya disease. Pediatr Neurol. 2011 Jun;44(6):427–32.CrossRefGoogle ScholarPubMed
Cahill, J, Calvert, JW, Zhang, JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006 Nov;26(11):1341–53.CrossRefGoogle ScholarPubMed
Komotar, RJ, Schmidt, JM, Starke, RM, et al. Resuscitation and critical care of poor-grade subarachnoid hemorrhage. Neurosurgery. 2009 Mar;64(3):397410; discussion 410–391.Google Scholar
Al-Tamimi, YZ, Orsi, NM, Quinn, AC, Homer-Vanniasinkam, S, Ross, SA. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology. World Neurosurg. 2010 Jun;73(6):654–67.Google Scholar
Suarez, JI. Treatment of ruptured cerebral aneurysms and vasospasm after subarachnoid hemorrhage. Neurosurg Clin N Am. 2006 Sep;17 Suppl 1:5769.CrossRefGoogle ScholarPubMed
Roos, YB, de Haan, RJ, Beenen, LF, et al. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands. J Neurol Neurosurg Psychiatry. 2000 Mar;68(3):337–41.CrossRefGoogle ScholarPubMed
Vergouwen, MD, Fang, J, Casaubon, LK, et al. Higher incidence of in-hospital complications in patients with clipped versus coiled ruptured intracranial aneurysms. Stroke. 2011 Nov;42(11):3093–8.Google Scholar
O’Gorman, RL, Poil, SS, Brandeis, D, et al. Coupling between resting cerebral perfusion and EEG. Brain Topogr. 2013 Jul;26(3):442–57.CrossRefGoogle ScholarPubMed
Sundt, TM, Jr., Sharbrough, FW, Anderson, RE, Michenfelder, JD. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J Neurosurg. 1974 Sep;41(3):310–20.CrossRefGoogle ScholarPubMed
Diedler, J, Sykora, M, Juttler, E, Steiner, T, Hacke, W. Intensive care management of acute stroke: general management. Int J Stroke. 2009 Oct;4(5):365–78.CrossRefGoogle ScholarPubMed
Rivierez, M, Landau-Ferey, J, Grob, R, Grosskopf, D, Philippon, J. Value of electroencephalogram in prediction and diagnosis of vasospasm after intracranial aneurysm rupture. Acta Neurochir (Wien). 1991;110(1-2): 1723.CrossRefGoogle ScholarPubMed
Rathakrishnan, R, Gotman, J, Dubeau, F, Angle, M. Using continuous electroencephalography in the management of delayed cerebral ischemia following subarachnoid hemorrhage. Neurocrit Care. 2011 Apr;14(2):152–61.Google Scholar
Implantable tissue ischemia sensor. U.S. Patent US20100312081A1. www.google.ch/patents/US20100312081Google Scholar
Zeller, JS. EM innovations: new technologies you haven’t heard of yet. Medscape. 2013 Mar 19.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×