Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T09:36:00.187Z Has data issue: false hasContentIssue false

Chapter 22 - New Frontiers in Neuroprognostication: Machine Learning and AI

from Part II - Other Topics in Neuroprognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

Artificial intelligence (AI) refers to a wide range of computational methods that approximate human reasoning. Machine learning is a subclass of AI that uses predictive computer models that adjust and improve their performance after exposure to data.[1–3] Machine learning is increasingly used for various purposes, including facial recognition, financial strategy, automated vehicles, and medical applications.[2,3] While objections to AI stem both from skepticism that automation can approach human reasoning and fears of obsolescence, a basic understanding of AI methods, uses, and limitations will be increasingly important as it continues to weave itself into the fabric of our society.

What contribution can machine learning offer the field of neuroprognostication? Certainly, AI approaches hold great promise in advancing our pathophysiological understanding of neurological injury, improving the accuracy of prognostication for patients and families, and streamlining clinical workflows.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Michie, D, Spiegelhalter, DJ, Taylor, C. Machine Learning. Neural and Statistical Classification, self-published, 1994;13.Google Scholar
Goodfellow, I, Bengio, Y, Courville, A. Deep Learning. Cambridge, MA: MIT Press, 2016.Google Scholar
Mohri, M, Rostamizadeh, A, Talwalkar, A. Foundations of Machine Learning: Cambridge, MA: MIT Press, 2018.Google Scholar
Schwartz, WB. Medicine and the computer: the promise and problems of change. In Use and Impact of Computers in Clinical Medicine. New York: Springer, 1970;321–35.Google Scholar
Greene, JA, Lea, AS. Digital futures past – the long arc of big data in medicine. N Engl J Med 2019;381(5):480–5.CrossRefGoogle Scholar
Nash, F. Differential diagnosis, an apparatus to assist the logical faculties. Lancet 1954;266:8745.Google ScholarPubMed
Shortliffe, EH. Computer-Based Medical Consultations: MYCIN. New York: Elsevier, 1976.Google Scholar
Miller, RA, McNeil, MA, Challinor, SM, Masarie, FE, Myers, JD. The INTERNIST-1/QUICK MEDICAL REFERENCE project – status report. West J Med 1986;145:816.Google ScholarPubMed
Shwe, MA, Middleton, B, Heckerman, DE, et al. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Methods Inf Med 1991;30:241–55.Google ScholarPubMed
BLUM, RL. Computer-assisted design of studies using routine clinical data: analyzing the association of prednisone and cholesterol. Ann Int Me 1986;104:858868.CrossRefGoogle ScholarPubMed
Papik, K, Molnar, B, Schaefer, R, et al. Application of neural networks in medicine-a review. Med Sci Monitor 1998;4:MT538–MT546.Google Scholar
Penny, W, Frost, D. Neural networks in clinical medicine. Med Decis Making 1996;16:386–98.CrossRefGoogle ScholarPubMed
Crevier, D. AI: The Tumultuous History of the Search for Artificial Intelligence. New York: Basic Books, 1993.Google Scholar
Pedregosa, F, Varoquaux, G, Gramfort, A, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.Google Scholar
Dabbish, L, Stuart, C, Tsay, J, Herbsleb, J. Social coding in GitHub: transparency and collaboration in an open software repository. Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work. 2012: ACM: 1277–86.CrossRefGoogle Scholar
Tegmark, M. Life 3.0: Being Human in the Age of Artificial Intelligence. New York: Knopf, 2017.Google Scholar
Rajkomar, A, Dean, J, Kohane, I. Machine learning in medicine. N Engl J Med 2019;380:1347–58.CrossRefGoogle Scholar
Esteva, A, Kuprel, B, Novoa, RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542:115.CrossRefGoogle ScholarPubMed
De Fauw, J, Ledsam, JR, Romera-Paredes, B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med 2018;24:1342–50.CrossRefGoogle ScholarPubMed
Hannun, AY, Rajpurkar, P, Haghpanahi, M, et al. Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 2019;25:65–9.Google ScholarPubMed
Hemphill, JC 3rd, White, DB. Clinical nihilism in neuroemergencies. Emerg Med Clin North Am 2009;27:2737, viiviii.CrossRefGoogle ScholarPubMed
Breiman, L. Classification and Regression Trees. New York: Routledge, 2017.CrossRefGoogle Scholar
Breiman, L. Random forests. Machine Learn 2001;45:532.CrossRefGoogle Scholar
Bertsimas, D, Dunn, J. Optimal classification trees. Machine Learn 2017;106:1039–82.CrossRefGoogle Scholar
Cover, T, Hart, P. Nearest neighbor pattern classification. IEEE Trans Inf Theory 1967;13:21–7.CrossRefGoogle Scholar
Haykin, S. Neural Networks: A Comprehensive Foundation. Englewood Cliffs: Prentice-Hall, 1994.Google Scholar
Hastie, T, Tibshirani, R, Friedman, J, Franklin, J. The elements of statistical learning: data mining, inference and prediction. Math Intell 2005;27:83–5.Google Scholar
Lip, GY, Nieuwlaat, R, Pisters, R, Lane, DA, Crijns, HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro Heart Survey on Atrial Fibrillation. Chest 2010;137:263–72.CrossRefGoogle ScholarPubMed
Rothwell, P, Giles, M, Flossmann, E, et al. A simple score (ABCD) to identify individuals at high early risk of stroke after transient ischaemic attack. Lancet 2005;366:2936.CrossRefGoogle ScholarPubMed
Koton, S, Rothwell, P. Performance of the ABCD and ABCD2 scores in TIA patients with carotid stenosis and atrial fibrillation. Cerebrovasc Dis 2007;24:231–5.CrossRefGoogle ScholarPubMed
Shariff, N, Aleem, A, Singh, M, Li, YZ, Smith, SJ. AF and venous thromboembolism – pathophysiology, risk assessment and CHADS-VASc score. J Atr Fibrillation 2012;5:649.Google ScholarPubMed
Keegan, MT, Gajic, O, Afessa, B. Severity of illness scoring systems in the intensive care unit. Crit Care Med 2011;39:163–9.CrossRefGoogle ScholarPubMed
Wong, A, Young, AT, Liang, AS, et al. Development and validation of an electronic health record–based machine learning model to estimate delirium risk in newly hospitalized patients without known cognitive impairment. JAMA Netw Open 2018;1:e181018–e181018.CrossRefGoogle ScholarPubMed
Douglas, VC, Hessler, CS, Dhaliwal, G, et al. The AWOL tool: derivation and validation of a delirium prediction rule. J Hosp Med 2013;8:493–9.CrossRefGoogle ScholarPubMed
Heo, J, Yoon, JG, Park, H, et al. Machine learning–based model for prediction of outcomes in acute stroke. Stroke 2019;50:1263–5.CrossRefGoogle ScholarPubMed
Ntaios, G, Faouzi, M, Ferrari, J, et al. An integer-based score to predict functional outcome in acute ischemic stroke: the ASTRAL score. Neurology 2012;78:1916–22.CrossRefGoogle ScholarPubMed
Asadi, H, Dowling, R, Yan, B, Mitchell, P. Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PloS One 2014;9:e88225.CrossRefGoogle ScholarPubMed
Liu, J, Xu, H, Chen, Q, et al. Prediction of hematoma expansion in spontaneous intracerebral hemorrhage using support vector machine. EBioMedicine 2019;43:454–9.CrossRefGoogle ScholarPubMed
Van Os, HJ, Ramos, LA, Hilbert, A, et al. Predicting outcome of endovascular treatment for acute ischemic stroke: potential value of machine learning algorithms. Front Neurol 2018;9:784.CrossRefGoogle ScholarPubMed
Drotár, P, Mekyska, J, Rektorová, I, et al. Evaluation of handwriting kinematics and pressure for differential diagnosis of Parkinson’s disease. Artif Intell Med 2016;67:3946.CrossRefGoogle ScholarPubMed
Pirlo, G, Diaz, M, Ferrer, MA, et al. Early diagnosis of neurodegenerative diseases by handwritten signature analysis. In International Conference on Image Analysis and Processing. New York: Springer, 2015; 290–7.Google Scholar
Zhang, H-H, Yang, L, Liu, Y, et al. Classification of Parkinson’s disease utilizing multi-edit nearest-neighbor and ensemble learning algorithms with speech samples. Biomed Eng Online 2016;15:122.CrossRefGoogle ScholarPubMed
Li, Y, Yang, L, Wang, P, et al. Classification of Parkinson’s disease by decision tree based instance selection and ensemble learning algorithms. J Med Imaging Health Inform 2017;7:444–52.CrossRefGoogle Scholar
Tu, M, Berisha, V, Liss, J. Interpretable objective assessment of dysarthric speech based on deep neural networks. Proc Interspeech 2017:1849–53.CrossRefGoogle Scholar
Krizhevsky, A, Sutskever, I, Hinton, GE. ImageNet classification with deep convolutional neural networks. Comm ACM 2017;60:8490.CrossRefGoogle Scholar
Griffis, JC, Allendorfer, JB, Szaflarski, JP. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J Neurosci Methods 2016;257:97108.CrossRefGoogle ScholarPubMed
Kamnitsas, K, Ledig, C, Newcombe, VF, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2017;36:6178.CrossRefGoogle ScholarPubMed
Thornhill, RE, Lum, C, Jaberi, A, et al. Can shape analysis differentiate free-floating internal carotid artery thrombus from atherosclerotic plaque in patients evaluated with CTA for stroke or transient ischemic attack? Acad Radiol 2014;21:345–54.CrossRefGoogle ScholarPubMed
Dhar, R, Chen, Y, An, H, Lee, J-M. Application of machine learning to automated analysis of cerebral edema in large cohorts of ischemic stroke patients. Front Neurol 2018;9:687.CrossRefGoogle ScholarPubMed
Sheth, SA, Lopez-Rivera, V, Barman, A, et al. Machine learning–enabled automated determination of acute ischemic core from computed tomography angiography. Stroke 2019;50:30933100.CrossRefGoogle ScholarPubMed
Albers, GW, Wald, MJ, Mlynash, M, et al. Automated calculation of Alberta Stroke Program early CT score: validation in patients with large hemispheric infarct. Stroke 2019;50:3277–9.CrossRefGoogle ScholarPubMed
Forkert, ND, Verleger, T, Cheng, B, et al. Multiclass support vector machine-based lesion mapping predicts functional outcome in ischemic stroke patients. PLoS One 2015;10:e0129569.CrossRefGoogle ScholarPubMed
Nielsen, A, Hansen, MB, Tietze, A, Mouridsen, K. Prediction of tissue outcome and assessment of treatment effect in acute ischemic stroke using deep learning. Stroke 2018;49:13941401.CrossRefGoogle ScholarPubMed
Rehme, AK, Volz, LJ, Feis, D-L, et al. Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques. Cereb Cortex 2014;25:3046–56.Google ScholarPubMed
Bentley, P, Ganesalingam, J, Jones, ALC, et al. Prediction of stroke thrombolysis outcome using CT brain machine learning. Neuroimage Clin 2014;4:635–40.CrossRefGoogle ScholarPubMed
Strbian, D, Engelter, S, Michel, P, et al. Symptomatic intracranial hemorrhage after stroke thrombolysis: the SEDAN score. Ann Neurol 2012;71:634–41.CrossRefGoogle ScholarPubMed
Lou, M, Safdar, A, Mehdiratta, M, et al. The HAT score: a simple grading scale for predicting hemorrhage after thrombolysis. Neurology 2008;71:1417–23.CrossRefGoogle Scholar
Yu, Y, Guo, D, Lou, M, Liebeskind, D, Scalzo, F. Prediction of hemorrhagic transformation severity in acute stroke from source perfusion MRI. IEEE Trans Biomed Eng 2017;65:2058–65.Google ScholarPubMed
Takahashi, N, Lee, Y, Tsai, D-Y, et al. An automated detection method for the MCA dot sign of acute stroke in unenhanced CT. Radiol Phys Technol 2014;7:7988.CrossRefGoogle ScholarPubMed
Lee, H, Yune, S, Mansouri, M, et al. An explainable deep-learning algorithm for the detection of acute intracranial haemorrhage from small datasets. Nat Biomed Eng 2019;3:173.CrossRefGoogle ScholarPubMed
Gunter, NB, Schwarz, CG, Graff-Radford, J, et al. Automated detection of imaging features of disproportionately enlarged subarachnoid space hydrocephalus using machine learning methods. Neuroimage Clin 2019;21:101605.CrossRefGoogle ScholarPubMed
Ramos, LA, van der Steen, WE, Barros, RS, et al. Machine learning improves prediction of delayed cerebral ischemia in patients with subarachnoid hemorrhage. J Neurointerv Surg 2019;11:497502.CrossRefGoogle ScholarPubMed
Ribeiro, MT, Singh, S, Guestrin, C. “Why should I trust you?”: explaining the predictions of any classifier. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2016: 1135–44.CrossRefGoogle Scholar
Shrot, S, Salhov, M, Dvorski, N, et al. Application of MR morphologic, diffusion tensor, and perfusion imaging in the classification of brain tumors using machine learning scheme. Neuroradiology 2019;61:757–65.CrossRefGoogle ScholarPubMed
Liao, X, Cai, B, Tian, B, et al. Machine‐learning based radiogenomics analysis of MRI features and metagenes in glioblastoma multiforme patients with different survival time. J Cell Mol Med 2019;23:4375–85.CrossRefGoogle ScholarPubMed
Peeken, JC, Goldberg, T, Pyka, T, et al. Combining multimodal imaging and treatment features improves machine learning‐based prognostic assessment in patients with glioblastoma multiforme. Cancer Med 2019;8:128–36.CrossRefGoogle ScholarPubMed
Zhang, B, Chang, K, Ramkissoon, S, et al. Multimodal MRI features predict isocitrate dehydrogenase genotype in high-grade gliomas. Neurooncol 2016;19:109–17.Google ScholarPubMed
Akkus, Z, Ali, I, Sedlář, J, et al. Predicting deletion of chromosomal arms 1p/19q in low-grade gliomas from MR images using machine intelligence. J Digit Imaging 2017;30:469–76.CrossRefGoogle ScholarPubMed
Zhou, H, Chang, K, Bai, HX, et al. Machine learning reveals multimodal MRI patterns predictive of isocitrate dehydrogenase and 1p/19q status in diffuse low-and high-grade gliomas. J Neurooncol 2019;142:299307.CrossRefGoogle ScholarPubMed
Fischl, B. FreeSurfer. Neuroimage 2012;62:774–81.CrossRefGoogle ScholarPubMed
Lu, D, Popuri, K, Ding, GW, Balachandar, R, Beg, MF. Multimodal and multiscale deep neural networks for the early diagnosis of Alzheimer’s disease using structural MR and FDG-PET images. Sci Rep 2018;8:5697.CrossRefGoogle ScholarPubMed
Young, J, Modat, M, Cardoso, MJ, et al. Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. Neuroimage Clin 2013;2:735–45.CrossRefGoogle ScholarPubMed
An, L, Adeli, E, Liu, M, et al. A hierarchical feature and sample selection framework and its application for Alzheimer’s disease diagnosis. Sci Rep 2017;7:45269.CrossRefGoogle ScholarPubMed
Suk, H-I, Lee, S-W, Shen, D, Initiative AsDN. Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuromage 2014;101:569–82.Google ScholarPubMed
Moradi, E, Pepe, A, Gaser, C, Huttunen, H, Tohka, J, Initiative AsDN. Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 2015;104:398412.CrossRefGoogle ScholarPubMed
Liu, K, Chen, K, Yao, L, Guo, X. Prediction of mild cognitive impairment conversion using a combination of independent component analysis and the Cox model. Front Hum Neurosci 2017;11:33.CrossRefGoogle ScholarPubMed
Cheng, B, Liu, M, Zhang, D, Munsell, BC, Shen, D. Domain transfer learning for MCI conversion prediction. IEEE Trans Biomed Eng 2015;62:1805–17.CrossRefGoogle ScholarPubMed
Kaufmann, T, van der Meer, D, Doan, NT, et al. Common brain disorders are associated with heritable patterns of apparent aging of the brain. Nat Neurosci 2019;22:1617–23.CrossRefGoogle ScholarPubMed
Puntmann, V. How-to guide on biomarkers: biomarker definitions, validation and applications with examples from cardiovascular disease. Postgrad Med J 2009;85:538–45.CrossRefGoogle Scholar
Muller, E, Shock, JP, Bender, A, et al. Outcome prediction with serial neuron-specific enolase and machine learning in anoxic-ischaemic disorders of consciousness. Comput Biol Med 2019;107:145–52.CrossRefGoogle ScholarPubMed
Peacock, WF IV, Van Meter, TE, Mirshahi, N, et al. Derivation of a three biomarker panel to improve diagnosis in patients with mild traumatic brain injury. Front Neurol 2017;8:641.CrossRefGoogle ScholarPubMed
Tanioka, S, Ishida, F, Nakano, F, et al. Machine learning analysis of matricellular proteins and clinical variables for early prediction of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Mol Neurobiol 2019;56:7128–35.CrossRefGoogle Scholar
Olar, A, Wani, KM, Sulman, EP, et al. Mitotic index is an independent predictor of recurrence‐free survival in meningioma. Brain Pathol 2015;25:266–75.CrossRefGoogle ScholarPubMed
Chang, P, Malone, H, Bowden, S, et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. Am Journal of Neuroradiol 2017;38:890–8.CrossRefGoogle ScholarPubMed
Orringer, DA, Pandian, B, Niknafs, YS, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nature Biomed Eng 2017;1:0027.CrossRefGoogle ScholarPubMed
Huang, X, Liu, H, Li, X, et al. Revealing Alzheimer’s disease genes spectrum in the whole-genome by machine learning. BMC Neurol 2018;18:5.CrossRefGoogle ScholarPubMed
Zafeiris, D, Rutella, S, Ball, GR. An artificial neural network integrated pipeline for biomarker discovery using Alzheimer’s disease as a case study. Comput Struct Biotechnol J 2018;16:7787.CrossRefGoogle ScholarPubMed
Mika, S, Ratsch, G, Weston, J, Scholkopf, B, Mullers, K-R. Fisher discriminant analysis with kernels. Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No. 98TH8468). Madison, WI, 1999 41–8.Google Scholar
Crowgey, EL, Marsh, AG, Robinson, KG, Yeager, SK, Akins, RE. Epigenetic machine learning: utilizing DNA methylation patterns to predict spastic cerebral palsy. BMC Bioinformatics 2018;19:225.CrossRefGoogle ScholarPubMed
Bahado-Singh, RO, Vishweswaraiah, S, Aydas, B, et al. Deep learning/artificial intelligence and blood-based DNA epigenomic prediction of cerebral palsy. Int J Mol Sci 2019;20:2075.CrossRefGoogle ScholarPubMed
Aref-Eshghi, E, Rodenhiser, DI, Schenkel, LC, et al. Genomic DNA methylation signatures enable concurrent diagnosis and clinical genetic variant classification in neurodevelopmental syndromes. Am J Hum Genet 2018;102:156–74.CrossRefGoogle ScholarPubMed
Benghanem, S, Paul, M, Charpentier, J, et al. Value of EEG reactivity for prediction of neurologic outcome after cardiac arrest: insights from the Parisian registry. Resuscitation 2019;142:168–74.CrossRefGoogle ScholarPubMed
Ruijter, BJ, Tjepkema‐Cloostermans, MC, Tromp, SC, et al. Early EEG for outcome prediction of postanoxic coma: a prospective cohort study. Ann Neurol 2019;86:203–14.CrossRefGoogle ScholarPubMed
Admiraal, MM, Anne-Fleur van Rootselaar, M, Hofmeijer, J, et al. Electroencephalographic reactivity as predictor of neurological outcome in postanoxic coma: a multicenter prospective cohort study. Ann Neurol 2019;86:1727.CrossRefGoogle Scholar
Mayer, SA, Claassen, J, Lokin, J, et al. Refractory status epilepticus: frequency, risk factors, and impact on outcome. Arch Neurol 2002;59:205–10.CrossRefGoogle ScholarPubMed
Johnson, EL, Martinez, NC, Ritzl, EK. EEG characteristics of successful burst suppression for refractory status epilepticus. Neurocrit Care 2016;25:407–14.CrossRefGoogle ScholarPubMed
Hirsch, L, LaRoche, S, Gaspard, N, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2012 version. J Clin Neurophysiol 2013;30:127.CrossRefGoogle ScholarPubMed
Cruse, D, Chennu, S, Chatelle, C, et al. Bedside detection of awareness in the vegetative state: a cohort study. Lancet 2011;378:2088–94.CrossRefGoogle ScholarPubMed
Goldfine, AM, Bardin, JC, Noirhomme, Q, et al. Reanalysis of “Bedside detection of awareness in the vegetative state: a cohort study.Lancet 2013;381:289–91.CrossRefGoogle ScholarPubMed
Henriques, J, Gabriel, D, Grigoryeva, L, et al. Protocol design challenges in the detection of awareness in aware subjects using EEG signals. Clin EEG Neurosci 2016;47:266–75.CrossRefGoogle ScholarPubMed
Höller, Y, Bergmann, J, Thomschewski, A, et al. Comparison of EEG-features and classification methods for motor imagery in patients with disorders of consciousness. PloS One 2013;8:e80479.CrossRefGoogle ScholarPubMed
Claassen, J, Doyle, K, Matory, A, et al. Detection of brain activation in unresponsive patients with acute brain injury. N Engl J Med 2019;380:24972505.CrossRefGoogle ScholarPubMed
Edlow, BL, Chatelle, C, Spencer, CA, et al. Early detection of consciousness in patients with acute severe traumatic brain injury. Brain 2017;140:23992414.CrossRefGoogle ScholarPubMed
Pan, J, Xie, Q, He, Y, et al. Detecting awareness in patients with disorders of consciousness using a hybrid brain–computer interface. J Neural Eng 2014;11:056007.CrossRefGoogle ScholarPubMed
King, J-R, Sitt, JD, Faugeras, F, et al. Information sharing in the brain indexes consciousness in noncommunicative patients. Curr Biol 2013;23:1914–19.CrossRefGoogle ScholarPubMed
Geurts, P, Ernst, D, Wehenkel, L. Extremely randomized trees. Mach Learn 2006;63:342.CrossRefGoogle Scholar
Engemann, DA, Raimondo, F, King, J-R, et al. Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain 2018;141:3179–92.CrossRefGoogle ScholarPubMed
Emami, A, Kunii, N, Matsuo, T, et al. Seizure detection by convolutional neural network-based analysis of scalp electroencephalography plot images. Neuroimage Clin 2019;22:101684.CrossRefGoogle ScholarPubMed
Schirrmeister, RT, Springenberg, JT, Fiederer, LDJ, et al. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp 2017;38:53915420.CrossRefGoogle ScholarPubMed
Acharya, UR, Oh, SL, Hagiwara, Y, Tan, JH, Adeli, H. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals. Comput Biol Med 2018;100:270–8.CrossRefGoogle ScholarPubMed
LeCun, Y, Bengio, Y, Hinton, G. Deep learning. Nature 2015; 521:436.CrossRefGoogle ScholarPubMed
Varsavsky, A, Mareels, I, Cook, M. Epileptic Seizures and the EEG: Measurement, Models, Detection and Prediction. Boca Raton: CRC Press, 2016.CrossRefGoogle Scholar
Holzinger, A. Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform 2016;3:119–31.CrossRefGoogle ScholarPubMed
Zou, J, Schiebinger, L. Design AI so that it’s fair. Nature 2018;559:324–6.Google Scholar
Bouton, CE, Shaikhouni, A, Annetta, NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 2016;533:247.CrossRefGoogle Scholar
Farina, D, Vujaklija, I, Sartori, M, et al. Man/machine interface based on the discharge timings of spinal motor neurons after targeted muscle reinnervation. Nat Biomed Eng 2017;1:0025.CrossRefGoogle Scholar
Beam, AL, Kohane, IS. Big data and machine learning in health care. JAMA 2018;319:1317–18.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×