Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T20:28:33.408Z Has data issue: false hasContentIssue false

Chapter 3 - Prognostication in Acute Ischemic Stroke

from Part I - Disease-Specific Prognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

Stroke represents one of the most prominent causes of disability and mortality worldwide and poses significant costs to healthcare services. As many as 24.9 million people living worldwide have suffered an ischemic stroke, and projections suggest that by 2030, an additional 3.4 million adults older than 18 years in the United States will have had a stroke.[1] Stroke can be deadly, with mortality rates at 1 year post-stroke (both ischemic and hemorrhagic) running from 8 to 36%, with the higher mortality rates occurring in the elderly. [1] But more than this, stroke leads to disability in a large number of patients. Approximately half of stroke survivors remain disabled, with 20% requiring care at a facility.[2] These sobering data highlight the economic and medical importance of understanding stroke mechanisms, stroke management, and stroke prognosis.

Despite the potential catastrophic outcomes of stroke, not all patients suffer significant morbidity, and some patients even show considerable improvement over time.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, EJ, Virani, SS, Callaway, CW, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation. 2018;137(12):e67492.CrossRefGoogle ScholarPubMed
Makris, K, Haliassos, A, Chondrogianni, M, Tsivgoulis, G. Blood biomarkers in ischemic stroke: potential role and challenges in clinical practice and research. Crit Rev Clin Lab Sci. 2018;55(5):294328.CrossRefGoogle ScholarPubMed
Drozdowska, BA, Singh, S, Quinn, TJ. Thinking about the future: a review of prognostic scales used in acute stroke. Front Neurol. 2019;10:274.CrossRefGoogle ScholarPubMed
Etherton, MR, Rost, NS, Wu, O. Infarct topography and functional outcomes. J Cereb Blood Flow Metab. 2018;38(9):1517–32.CrossRefGoogle ScholarPubMed
Rost, NS, Bottle, A, Lee, J-M, et al. Stroke severity is a crucial predictor of outcome: an international prospective validation study. J Am Heart Assoc. 2016;5(1):e002433.CrossRefGoogle ScholarPubMed
Ganesh, A, Luengo-Fernandez, R, Wharton, RM, Rothwell, PM, Oxford Vascular Study. Ordinal vs dichotomous analyses of modified Rankin Scale, 5-year outcome, and cost of stroke. Neurology. 2018;91(21):e1951–60.CrossRefGoogle ScholarPubMed
Quinn, TJ, Langhorne, P, Stott, DJ. Barthel Index for stroke trials: development, properties, and application. Stroke. 2011;42(4):1146–51.CrossRefGoogle ScholarPubMed
Ajam, K, Gold, LS, Beck, SS, et al. Reliability of the Cerebral Performance Category to classify neurological status among survivors of ventricular fibrillation arrest: a cohort study. Scand J Trauma Resusc Emerg Med. 2011;19:38.CrossRefGoogle ScholarPubMed
Teasdale, GM, Pettigrew, LE, Wilson, JT, Murray, G, Jennett, B. Analyzing outcome of treatment of severe head injury: a review and update on advancing the use of the Glasgow Outcome Scale. J Neurotrauma. 1998;15(8):587–97.CrossRefGoogle ScholarPubMed
Jennett, B, Bond, M. Assessment of outcome after severe brain damage. Lancet. 1975;1(7905):480–4.Google ScholarPubMed
Linacre, JM, Heinemann, AW, Wright, BD, Granger, CV, Hamilton, BB. The structure and stability of the Functional Independence Measure. Arch Phys Med Rehabil. 1994;75(2):127–32.CrossRefGoogle ScholarPubMed
Lee, S-J, Lee, D-G. Distribution of atherosclerotic stenosis determining early neurologic deterioration in acute ischemic stroke. PLoS One. 2017;12(9):e0185314.CrossRefGoogle ScholarPubMed
Kharitonova, T, Mikulik, R, Roine, RO, et al. Association of early National Institutes of Health Stroke Scale improvement with vessel recanalization and functional outcome after intravenous thrombolysis in ischemic stroke. Stroke. 2011;42(6):1638–43.CrossRefGoogle ScholarPubMed
van Kranendonk, KR, Treurniet, KM, Boers, AMM, et al. Hemorrhagic transformation is associated with poor functional outcome in patients with acute ischemic stroke due to a large vessel occlusion. J Neurointerv Surg. 2019;11(5):464–8.CrossRefGoogle ScholarPubMed
Ntaios, G, Faouzi, M, Ferrari, J, et al. An integer-based score to predict functional outcome in acute ischemic stroke: the ASTRAL score. Neurology. 2012;78(24):1916–22.CrossRefGoogle ScholarPubMed
Khatri, M, Himmelfarb, J, Adams, D, et al. Acute kidney injury is associated with increased hospital mortality after stroke. J Stroke Cerebrovasc Dis. 2014;23(1):2530.CrossRefGoogle ScholarPubMed
Gadalean, F, Simu, M, Parv, F, et al. The impact of acute kidney injury on in-hospital mortality in acute ischemic stroke patients undergoing intravenous thrombolysis. PLoS One. 2017;12(10):e0185589.CrossRefGoogle ScholarPubMed
Shi, J, Liu, Y, Liu, Y, et al. Dynamic changes in the estimated glomerular filtration rate predict all-cause mortality after intravenous thrombolysis in stroke patients. Neurotox Res. 2019;35(2):441–50.CrossRefGoogle ScholarPubMed
Saposnik, G, Kapral, MK, Liu, Y, et al. IScore: a risk score to predict death early after hospitalization for an acute ischemic stroke. Circulation. 2011;123(7):739–49.CrossRefGoogle ScholarPubMed
Saposnik, G, Reeves, MJ, Johnston, SC, Bath, PMW, Ovbiagele, B, VISTA Collaboration. Predicting clinical outcomes after thrombolysis using the iScore: results from the Virtual International Stroke Trials Archive. Stroke. 2013;44(10):2755–9.Google ScholarPubMed
Sung, S-F, Chen, Y-W, Hung, L-C, Lin, H-J. Revised iScore to predict outcomes after acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(6):1634–9.CrossRefGoogle ScholarPubMed
Wang, W-Y, Sang, W-W, Jin, D, et al. The prognostic value of the iScore, the PLAN Score, and the ASTRAL Score in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(6):1233–8.CrossRefGoogle ScholarPubMed
Bushnell, C. Another score to predict ischemic stroke mortality? Circulation. 2011;123(7):712–13.CrossRefGoogle ScholarPubMed
Van Hooff, R-J, Nieboer, K, De Smedt, A, et al. Validation assessment of risk tools to predict outcome after thrombolytic therapy for acute ischemic stroke. Clin Neurol Neurosurg. 2014;125:189–93.CrossRefGoogle ScholarPubMed
Mattishent, K, Kwok, CS, Mahtani, A, et al. Prognostic indices for early mortality in ischaemic stroke – meta-analysis. Acta Neurol Scand. 2016;133(1):41–8.CrossRefGoogle ScholarPubMed
Xu, J, Tao, Y, Xie, X, et al. A comparison of mortality prognostic scores in ischemic stroke patients. J Stroke Cerebrovasc Dis, 2016;25(2):241–7.CrossRefGoogle ScholarPubMed
Chu, X, Yang, Y, Zhang, F, Ye, R, Chu, W. Validation of iScore and PLAN Score for death in thrombectomy in acute stroke due to anterior circulation large artery occlusion. J Stroke Cerebrovasc Dis. 2018;27(11):3261–5.CrossRefGoogle ScholarPubMed
Widhi Nugroho, A, Arima, H, Takashima, N, et al. The JAGUAR score predicts 1-month disability/death in ischemic stroke patient ineligible for recanalization therapy. J Stroke Cerebrovasc Dis. 2018;27(10):2579–86.CrossRefGoogle ScholarPubMed
Chen, C-J, Chuang, T-Y, Hansen, L, et al. Predictors of 30-day mortality after endovascular mechanical thrombectomy for acute ischemic stroke. J Clin Neurosci. 2018;57:3842.CrossRefGoogle ScholarPubMed
O’Donnell, MJ, Fang, J, D’Uva, C, et al. The PLAN score: a bedside prediction rule for death and severe disability following acute ischemic stroke. Arch Intern Med. 2012;172(20):1548–56.CrossRefGoogle Scholar
Reid, JM, Dai, D, Delmonte, S, et al. Simple prediction scores predict good and devastating outcomes after stroke more accurately than physicians. Age Ageing. 2017;46(3):421–6.Google ScholarPubMed
Ayis, SA, Coker, B, Rudd, AG, Dennis, MS, Wolfe, CDA. Predicting independent survival after stroke: a European study for the development and validation of standardised stroke scales and prediction models of outcome. J Neurol Neurosurg Psychiatry. 2013;84(3):288–96.CrossRefGoogle ScholarPubMed
Huang, C-W, Saposnik, G, Fang, J, Steven, DA, Burneo, JG. Influence of seizures on stroke outcomes: a large multicenter study. Neurology. 2014;82(9):768–76.CrossRefGoogle ScholarPubMed
Oliveira, FF de, Damasceno, BP. Global aphasia as a predictor of mortality in the acute phase of a first stroke. Arq Neuropsiquiatr. 2011;69(2B):277–82.CrossRefGoogle ScholarPubMed
Fan, Y, Jiang, M, Gong, D, Man, C, Chen, Y. Cardiac troponin for predicting all-cause mortality in patients with acute ischemic stroke: a meta-analysis. Biosci Rep [Internet]. 2018;38(2).Google ScholarPubMed
Karagiannis, A, Mikhailidis, DP, Tziomalos, K, et al. Serum uric acid as an independent predictor of early death after acute stroke. Circ J. 2007;71(7):1120–7.CrossRefGoogle ScholarPubMed
Celikbilek, A, Ismailogullari, S, Zararsiz, G. Neutrophil to lymphocyte ratio predicts poor prognosis in ischemic cerebrovascular disease. J Clin Lab Anal. 2014;28(1):2731.CrossRefGoogle ScholarPubMed
Fang, Y-N, Tong, M-S, Sung, P-H, et al. Higher neutrophil counts and neutrophil-to-lymphocyte ratio predict prognostic outcomes in patients after non-atrial fibrillation-caused ischemic stroke. Biomed J. 2017;40(3):154–62.CrossRefGoogle ScholarPubMed
Tokunaga, K, Yamagami, H, Koga, M, et al. Associations between pre-admission risk scores and two-year clinical outcomes in ischemic stroke or transient ischemic attack patients with non-valvular atrial fibrillation. Cerebrovasc Dis. 2018;45(3–4):170–9.CrossRefGoogle ScholarPubMed
Kernan, WN, Viscoli, CM, Brass, LM, et al. The stroke prognosis instrument II (SPI-II): a clinical prediction instrument for patients with transient ischemia and nondisabling ischemic stroke. Stroke. 2000;31(2):456–62.CrossRefGoogle ScholarPubMed
Kamel, H, Patel, N, Rao, VA, et al. The totaled health risks in vascular events (THRIVE) score predicts ischemic stroke outcomes independent of thrombolytic therapy in the NINDS tPA trial. J Stroke Cerebrovasc Dis. 2013;22(7):1111–16.CrossRefGoogle ScholarPubMed
You, S, Han, Q, Xiao, G, et al. [The role of THRIVE score in prediction of outcomes of acute ischemic stroke patients with atrial fibrillation]. Zhonghua Nei Ke Za Zhi. 2014;53(7):532–6.Google ScholarPubMed
Kuster, GW, Dutra, LA, Brasil, IP, et al. Performance of four ischemic stroke prognostic scores in a Brazilian population. Arq Neuropsiquiatr. 2016;74(2):133–7.CrossRefGoogle Scholar
Raza, SA, Rangaraju, S. A review of pre-intervention prognostic scores for early prognostication and patient selection in endovascular management of large vessel occlusion stroke. Interv Neurol. 2018;7(3-4):171–81.CrossRefGoogle ScholarPubMed
Flint, AC, Faigeles, BS, Cullen, SP, et al. THRIVE score predicts ischemic stroke outcomes and thrombolytic hemorrhage risk in VISTA. Stroke. 2013;44(12):3365–9.CrossRefGoogle ScholarPubMed
Flint, AC, Kamel, H, Rao, VA, Cullen, SP, Faigeles, BS, Smith, WS. Validation of the Totaled Health Risks In Vascular Events (THRIVE) score for outcome prediction in endovascular stroke treatment. Int J Stroke. 2014;9(1):32–9.CrossRefGoogle ScholarPubMed
Flint, AC, Gupta, R, Smith, WS, et al. The THRIVE score predicts symptomatic intracerebral hemorrhage after intravenous tPA administration in SITS-MOST. Int J Stroke. 2014;9(6):705–10.CrossRefGoogle ScholarPubMed
Chen, W, Liu, G, Fang, J, et al. external validation of the totaled health risks in vascular events score to predict functional outcome and mortality in patients entered into the China National Stroke Registry. J Stroke Cerebrovasc Dis. 2016;25(10):2331–7.CrossRefGoogle ScholarPubMed
Boehme, AK, Rawal, PV, Lyerly, MJ, et al. Investigating the utility of previously developed prediction scores in acute ischemic stroke patients in the stroke belt. J Stroke Cerebrovasc Dis. 2014;23(8):2001–6.CrossRefGoogle ScholarPubMed
Fjetland, L, Roy, S, Kurz, KD, et al. Neurointerventional treatment in acute stroke. Whom to treat? (Endovascular treatment for acute stroke: utility of THRIVE score and HIAT score for patient selection). Cardiovasc Intervent Radiol. 2013;36(5):1241–6.CrossRefGoogle ScholarPubMed
Ishkanian, AA, McCullough-Hicks, ME, Appelboom, G, et al. Improving patient selection for endovascular treatment of acute cerebral ischemia: a review of the literature and an external validation of the Houston IAT and THRIVE predictive scoring systems. Neurosurg Focus. 2011;30(6):E7.CrossRefGoogle Scholar
Kastrup, A, Brunner, F, Hildebrandt, H, et al. THRIVE score predicts clinical and radiological outcome after endovascular therapy or thrombolysis in patients with anterior circulation stroke in everyday clinical practice. Eur J Neurol. 2017;24(8):1032–9.CrossRefGoogle ScholarPubMed
Kurre, W, Aguilar-Pérez, M, Niehaus, L, et al. Predictors of outcome after mechanical thrombectomy for anterior circulation large vessel occlusion in patients aged ≥80 years. Cerebrovasc Dis. 2013;36(5−6):430–6.CrossRefGoogle ScholarPubMed
Lei, C, Wu, B, Liu, M, et al. Totaled health risks in vascular events score predicts clinical outcomes in patients with cardioembolic and other subtypes of ischemic stroke. Stroke. 2014;45(6):1689–94.CrossRefGoogle ScholarPubMed
Laible, M, Möhlenbruch, MA, Pfaff, J, et al. Influence of renal function on treatment results after stroke thrombectomy. Cerebrovasc Dis. 2017;44(5−6):351–8.CrossRefGoogle ScholarPubMed
Hallevi, H, Barreto, AD, Liebeskind, DS, et al. Identifying patients at high risk for poor outcome after intra-arterial therapy for acute ischemic stroke. Stroke. 2009;40(5):1780–5.CrossRefGoogle ScholarPubMed
Liggins, JTP, Yoo, AJ, Mishra, NK, et al. A score based on age and DWI volume predicts poor outcome following endovascular treatment for acute ischemic stroke. Int J Stroke. 2015;10(5):705–9.CrossRefGoogle ScholarPubMed
Wood, AD, Gollop, ND, Bettencourt-Silva, JH, et al. A 6-point TACS score predicts in-hospital mortality following total anterior circulation stroke. J Clin Neurol. 2016;12(4):407–13.CrossRefGoogle ScholarPubMed
Tonetti, DA, Gross, BA, Desai, SM, et al. Final infarct volume of <10 cm3 is a strong predictor of return to home in nonagenarians undergoing mechanical thrombectomy. World Neurosurg. 2018;119:e941–6.CrossRefGoogle Scholar
Vogt, G, Laage, R, Shuaib, A, Schneider, A, VISTA Collaboration. Initial lesion volume is an independent predictor of clinical stroke outcome at day 90: an analysis of the Virtual International Stroke Trials Archive (VISTA) database. Stroke. 2012;43(5):1266–72.Google ScholarPubMed
Christoforidis, GA, Mohammad, Y, Kehagias, D, Avutu, B, Slivka, AP. Angiographic assessment of pial collaterals as a prognostic indicator following intra-arterial thrombolysis for acute ischemic stroke. AJNR Am J Neuroradiol. 2005;26(7):1789–97.Google ScholarPubMed
Liu, X-T, Wang, W, Wang, L-J, et al. [Correlation of collateral circulation and prognosis in patients with acute cerebral infarction]. Zhonghua Yi Xue Za Zhi. 2011;91(11):766–8.Google ScholarPubMed
Galego, O, Jesus-Ribeiro, J, Baptista, M, et al. Collateral pial circulation relates to the degree of brain edema on CT 24 hours after ischemic stroke. Neuroradiol J. 2018;31(5):456–63.CrossRefGoogle Scholar
Sharma, R, Llinas, RH, Urrutia, V, Marsh, EB. Collaterals predict outcome regardless of time last known normal. J Stroke Cerebrovasc Dis. 2018;27(4):971–7.CrossRefGoogle ScholarPubMed
Liou, L-M, Chen, C-F, Guo, Y-C, et al. Cerebral white matter hyperintensities predict functional stroke outcome. Cerebrovasc Dis. 2010;29(1):22–7.CrossRefGoogle ScholarPubMed
Henninger, N, Khan, MA, Zhang, J, Moonis, M, Goddeau, RP Jr. Leukoaraiosis predicts cortical infarct volume after distal middle cerebral artery occlusion. Stroke. 2014;45(3):689–95.CrossRefGoogle ScholarPubMed
van den Herik, EG, Cheung, EYL, de Lau, LML, et al. γ’/total fibrinogen ratio is associated with short-term outcome in ischaemic stroke. Thromb Haemost. 2011;105(3):430–4.Google ScholarPubMed
Whiteley, W, Chong, WL, Sengupta, A, Sandercock, P. Blood markers for the prognosis of ischemic stroke: a systematic review. Stroke. 2009;40(5):e380–9.CrossRefGoogle ScholarPubMed
Ahn, S-H, Lee, J-S, Kim, Y-H, et al. Prognostic significance of troponin elevation for long-term mortality after ischemic stroke. J Stroke Cerebrovasc Dis. 2017;19(3):312–22.Google ScholarPubMed
Scheitz, JF, Mochmann, H-C, Erdur, H, et al. Prognostic relevance of cardiac troponin T levels and their dynamic changes measured with a high-sensitivity assay in acute ischaemic stroke: analyses from the TRELAS cohort. Int J Cardiol. 2014;177(3):886–93.CrossRefGoogle ScholarPubMed
Beaulieu-Boire, I, Leblanc, N, Berger, L, Boulanger, J-M. Troponin elevation predicts atrial fibrillation in patients with stroke or transient ischemic attack. J Stroke Cerebrovasc Dis. 2013;22(7):978–83.CrossRefGoogle ScholarPubMed
Furtner, M, Ploner, T, Hammerer-Lercher, A, Pechlaner, R, Mair, J. The high-sensitivity cardiac troponin T assay is superior to its previous assay generation for prediction of 90-day clinical outcome in ischemic stroke. Clin Chem Lab Med. 2012;50(11):2027–9.CrossRefGoogle ScholarPubMed
Csecsei, P, Pusch, G, Ezer, E, et al. Relationship between cardiac troponin and thrombo-inflammatory molecules in prediction of outcome after acute ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(4):951–6.CrossRefGoogle ScholarPubMed
He, L, Wang, J, Dong, W. The clinical prognostic significance of hs-cTnT elevation in patients with acute ischemic stroke. BMC Neurol. 2018;18(1):118.CrossRefGoogle ScholarPubMed
Xing, L, Liu, S, Tian, Y, et al. C-R relationship between fasting plasma glucose and unfavorable outcomes in patients of ischemic stroke without diabetes. J Stroke Cerebrovasc Dis. 2019;28(5):1400–8.CrossRefGoogle Scholar
Osei, E, Fonville, S, Zandbergen, AAM, et al. Impaired fasting glucose is associated with unfavorable outcome in ischemic stroke patients treated with intravenous alteplase. J Neurol. 2018;265(6):1426–31.CrossRefGoogle ScholarPubMed
Wang, F, Jiang, B, Kanesan, L, Zhao, Y, Yan, B. Higher admission fasting plasma glucose levels are associated with a poorer short-term neurologic outcome in acute ischemic stroke patients with good collateral circulation. Acta Diabetol. 2018;55(7):703–14.CrossRefGoogle ScholarPubMed
Zhou, J, Wu, J, Zhang, J, et al. Association of stroke clinical outcomes with coexistence of hyperglycemia and biomarkers of inflammation. J Stroke Cerebrovasc Dis. 2015;24(6):1250–5.CrossRefGoogle ScholarPubMed
Cao, W, Ling, Y, Wu, F, et al. Higher fasting glucose next day after intravenous thrombolysis is independently associated with poor outcome in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(1):100–3.CrossRefGoogle ScholarPubMed
Ntaios, G, Egli, M, Faouzi, M, Michel, P. J-shaped association between serum glucose and functional outcome in acute ischemic stroke. Stroke. 2010;41(10):2366–70.CrossRefGoogle ScholarPubMed
Kostulas, N, Markaki, I, Cansu, H, Masterman, T, Kostulas, V. Hyperglycaemia in acute ischaemic stroke is associated with an increased 5-year mortality. Age Ageing. 2009;38(5):590–4.CrossRefGoogle ScholarPubMed
Fuentes, B, Castillo, J, San José, B, et al. The prognostic value of capillary glucose levels in acute stroke: the GLycemia in Acute Stroke (GLIAS) study. Stroke. 2009;40(2):562–8.CrossRefGoogle ScholarPubMed
Stead, LG, Gilmore, RM, Bellolio, MF, et al. Hyperglycemia as an independent predictor of worse outcome in non-diabetic patients presenting with acute ischemic stroke. Neurocrit Care. 2009;10(2):181–6.CrossRefGoogle ScholarPubMed
Baird, TA, Parsons, MW, Phan, T, et al. Persistent poststroke hyperglycemia is independently associated with infarct expansion and worse clinical outcome. Stroke. 2003;34(9):2208–14.CrossRefGoogle ScholarPubMed
Bruno, A, Levine, SR, Frankel, MR, et al. Admission glucose level and clinical outcomes in the NINDS rt-PA Stroke Trial. Neurology. 2002;59(5):669–74.CrossRefGoogle ScholarPubMed
Nardi, K, Milia, P, Eusebi, P, et al. Predictive value of admission blood glucose level on short-term mortality in acute cerebral ischemia. J Diabetes Complications. 2012;26(2):70–6.CrossRefGoogle ScholarPubMed
Garg, R, Aravind, S, Kaur, S, et al. Role of serum ferritin as a prognostic marker in acute ischemic stroke: a preliminary observation. Ann Afr Med. 2020;19(2):95102.Google ScholarPubMed
Schrock, JW, Glasenapp, M, Drogell, K. Elevated blood urea nitrogen/creatinine ratio is associated with poor outcome in patients with ischemic stroke. Clin Neurol Neurosurg. 2012;114(7):881–4.CrossRefGoogle ScholarPubMed
Cortés-Vicente, E, Guisado-Alonso, D, Delgado-Mederos, R, et al. Frequency, risk factors, and prognosis of dehydration in acute stroke. Front Neurol. 2019;10:305.CrossRefGoogle ScholarPubMed
Hu, Y, Wang, C, Yan, X, Fu, H, Wang, K. Prediction of conscious awareness recovery after severe acute ischemic stroke. J Neurol Sci. 2017;383:128–34.CrossRefGoogle ScholarPubMed
Ntaios, G, Gioulekas, F, Papavasileiou, V, Strbian, D, Michel, P. ASTRAL, DRAGON and SEDAN scores predict stroke outcome more accurately than physicians. Eur J Neurol. 2016;23(11):1651–7.CrossRefGoogle ScholarPubMed
Asuzu, D, Nystrom, K, Amin, H, et al. Comparison of 8 scores for predicting symptomatic intracerebral hemorrhage after IV thrombolysis. Neurocrit Care. 2015;22(2):229–33.CrossRefGoogle ScholarPubMed
Cooray, C, Mazya, M, Bottai, M, et al. External validation of the ASTRAL and DRAGON scores for prediction of functional outcome in stroke. Stroke. 2016;47(6):1493–9.CrossRefGoogle ScholarPubMed
Liu, G, Ntaios, G, Zheng, H, et al. External validation of the ASTRAL score to predict 3- and 12-month functional outcome in the China National Stroke Registry. Stroke. 2013;44(5):1443–5.CrossRefGoogle ScholarPubMed
Papavasileiou, V, Milionis, H, Michel, P, et al. ASTRAL score predicts 5-year dependence and mortality in acute ischemic stroke. Stroke. 2013;44(6):1616–20.CrossRefGoogle ScholarPubMed
Koga, M, Kimura, K, Shibazaki, K, et al. CHADS2 score is associated with 3-month clinical outcomes after intravenous rt-PA therapy in stroke patients with atrial fibrillation: SAMURAI rt-PA Registry. J Neurol Sci. 2011;306(1−2):4953.CrossRefGoogle ScholarPubMed
Hoshino, T, Ishizuka, K, Shimizu, S, Uchiyama, S. CHADS2 score predicts functional outcome of stroke in patients with a history of coronary artery disease. J Neurol Sci. 2013;331(1–2):5760.CrossRefGoogle ScholarPubMed
Naito, H, Nezu, T, Hosomi, N, et al. Controlling nutritional status score for predicting 3-mo functional outcome in acute ischemic stroke. Nutrition. 2018;55–56:16.CrossRefGoogle ScholarPubMed
Zhang, X, Liao, X, Wang, C, et al. Validation of the DRAGON Score in a Chinese population to predict functional outcome of intravenous thrombolysis-treated stroke patients. J Stroke Cerebrovasc Dis. 2015;24(8):1755–60.CrossRefGoogle Scholar
Giralt-Steinhauer, E, Rodríguez-Campello, A, Cuadrado-Godia, E, et al. External validation of the DRAGON score in an elderly Spanish population: prediction of stroke prognosis after IV thrombolysis. Cerebrovasc Dis. 2013;36(2):110–4.CrossRefGoogle Scholar
Ovesen, C, Christensen, A, Nielsen, JK, Christensen, H. External validation of the ability of the DRAGON score to predict outcome after thrombolysis treatment. J Clin Neurosci. 2013;20(11):1635–6.CrossRefGoogle ScholarPubMed
Strbian, D, Seiffge, DJ, Breuer, L, et al. Validation of the DRAGON score in 12 stroke centers in anterior and posterior circulation. Stroke. 2013;44(10):2718–21.CrossRefGoogle ScholarPubMed
Baek, JH, Kim, K, Lee, Y-B, et al. Predicting stroke outcome using clinical- versus imaging-based scoring system. J Stroke Cerebrovasc Dis. 2015;24(3):642–8.CrossRefGoogle ScholarPubMed
Wang, A, Pednekar, N, Lehrer, R, et al. DRAGON score predicts functional outcomes in acute ischemic stroke patients receiving both intravenous tissue plasminogen activator and endovascular therapy. Surg Neurol Int. 2017;8:149.CrossRefGoogle ScholarPubMed
Adams, HP Jr, Davis, PH, Leira, EC, et al. Baseline NIH Stroke Scale score strongly predicts outcome after stroke: a report of the Trial of Org 10172 in Acute Stroke Treatment (TOAST). Neurology. 1999;53(1):126–31.CrossRefGoogle ScholarPubMed
Jia, X-Y, Huang, M, Zou, Y-F, et al. Predictors of poor outcomes in first-event ischemic stroke as assessed by magnetic resonance imaging. Clin Invest Med. 2016;39(3):E95104.CrossRefGoogle ScholarPubMed
Soize, S, Fabre, G, Gawlitza, M, et al. Can early neurological improvement after mechanical thrombectomy be used as a surrogate for final stroke outcome? J Neurointerv Surg. 2019;11(5):450–4.CrossRefGoogle ScholarPubMed
Song, Y-M, Lee, GH, Kim, JI. Timing of neurological improvement after acute ischemic stroke and functional outcome. Eur Neurol. 2015;73(3-4):164–70.CrossRefGoogle ScholarPubMed
Heitsch, L, Ibanez, L, Carrera, C, et al. Early neurological change after ischemic stroke is associated with 90-day outcome. Stroke. 2021;52(1):132–41.CrossRefGoogle ScholarPubMed
Sajobi, TT, Menon, BK, Wang, M, et al. Early trajectory of stroke severity predicts long-term functional outcomes in ischemic stroke subjects: results from the ESCAPE Trial (Endovascular Treatment for Small Core and Anterior Circulation Proximal Occlusion with Emphasis on Minimizing CT to Recanalization Times). Stroke. 2017;48(1):105–10.CrossRefGoogle ScholarPubMed
Kim, D-H, Nah, H-W, Park, H-S, et al. Factors associated with early dramatic recovery following successful recanalization of occluded artery by endovascular treatment in anterior circulation stroke. J Clin Neurosci. 2017;46:171–5.CrossRefGoogle ScholarPubMed
Yeo, LLL, Paliwal, P, Teoh, HL, et al. Early and continuous neurologic improvements after intravenous thrombolysis are strong predictors of favorable long-term outcomes in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2013;22(8):e590–6.CrossRefGoogle ScholarPubMed
Rangaraju, S, Frankel, M, Jovin, TG. Prognostic value of the 24-hour neurological examination in anterior circulation ischemic stroke: a post hoc analysis of two randomized controlled stroke trials. Interv Neurol. 2016;4(3–4):120–9.Google ScholarPubMed
Johnston, KC, Wagner, DP. Relationship between 3-month National Institutes of Health Stroke Scale score and dependence in ischemic stroke patients. Neuroepidemiology. 2006;27(2):96100.CrossRefGoogle ScholarPubMed
Irvine, HJ, Battey, TW, Ostwaldt, A-C, et al. Early neurological stability predicts adverse outcome after acute ischemic stroke. Int J Stroke. 2016;11(8):882–9.CrossRefGoogle ScholarPubMed
Wu, Z, Zeng, M, Li, C, et al. Time-dependence of NIHSS in predicting functional outcome of patients with acute ischemic stroke treated with intravenous thrombolysis. Postgrad Med J. 2019;95(1122):181–6.CrossRefGoogle ScholarPubMed
Pu, J, Wang, H, Tu, M, et al. Combination of 24-hour and 7-day relative neurological improvement strongly predicts 90-day functional outcome of endovascular stroke therapy. J Stroke Cerebrovasc Dis. 2018;27(5):1217–25.CrossRefGoogle ScholarPubMed
Kandiah, N, Chander, RJ, Lin, X, et al. Cognitive impairment after mild stroke: development and validation of the SIGNAL2 Risk Score. J Alzheimers Dis. 2016;49(4):1169–77.CrossRefGoogle ScholarPubMed
Prabhakaran, S, Jovin, TG, Tayal, AH, et al. Posttreatment variables improve outcome prediction after intra-arterial therapy for acute ischemic stroke. Cerebrovasc Dis. 2014;37(5):356–63.CrossRefGoogle ScholarPubMed
Rodríguez-Castro, E, Rodríguez-Yáñez, M, Arias, S, et al. Influence of sex on stroke prognosis: a demographic, clinical, and molecular analysis. Front Neurol. 2019;10:388.CrossRefGoogle ScholarPubMed
Kim, Y, Kim, CK, Jung, S, et al. Prognostic importance of weight change on short-term functional outcome in acute ischemic stroke. Int J Stroke. 2015;10(Suppl A100):62–8.CrossRefGoogle ScholarPubMed
Kremer, C, Perren, F, Kappelin, J, Selariu, E, Abul-Kasim, K. Prognosis of aphasia in stroke patients early after iv thrombolysis. Clin Neurol Neurosurg. 2013;115(3):289–92.CrossRefGoogle ScholarPubMed
Luvizutto, GJ, Moliga, AF, Rizzatti, GRS, et al. Unilateral spatial neglect in the acute phase of ischemic stroke can predict long-term disability and functional capacity. Clinics. 2018;73:e131.CrossRefGoogle ScholarPubMed
Spaccavento, S, Cellamare, F, Falcone, R, Loverre, A, Nardulli, R. Effect of subtypes of neglect on functional outcome in stroke patients. Ann Phys Rehabil Med. 2017;60(6):376–81.CrossRefGoogle ScholarPubMed
Maaijwee, NAMM, Tendolkar, I, Rutten-Jacobs, LCA, et al. Long-term depressive symptoms and anxiety after transient ischaemic attack or ischaemic stroke in young adults. Eur J Neurol. 2016;23(8):1262–8.CrossRefGoogle ScholarPubMed
El Husseini, N, Goldstein, LB, Peterson, ED, et al. Depression status is associated with functional decline over 1-year following acute stroke. J Stroke Cerebrovasc Dis. 2017;26(7):1393–9.CrossRefGoogle ScholarPubMed
Molad, J, Kliper, E, Korczyn, AD, et al. Only white matter hyperintensities predicts post-stroke cognitive performances among cerebral small vessel disease markers: results from the TABASCO Study. J Alzheimers Dis. 2017;56(4):1293–9.CrossRefGoogle ScholarPubMed
Li, J, Zhao, Y, Mao, J. Association between the extent of white matter damage and early cognitive impairment following acute ischemic stroke. Exp Ther Med. 2017;13(3):909–12.Google ScholarPubMed
Khan, M, Heiser, H, Bernicchi, N, et al. Leukoaraiosis predicts short-term cognitive but not motor recovery in ischemic stroke patients during rehabilitation. J Stroke Cerebrovasc Dis. 2019;28(6):1597–603.CrossRefGoogle Scholar
Sillanpää, N, Pienimäki, J-P, Protto, S, et al. Chronic infarcts predict poor clinical outcome in mechanical thrombectomy of sexagenarian and older patients. J Stroke Cerebrovasc Dis. 2018;27(7):1789–95.CrossRefGoogle ScholarPubMed
Arba, F, Palumbo, V, Boulanger, J-M, et al. Leukoaraiosis and lacunes are associated with poor clinical outcomes in ischemic stroke patients treated with intravenous thrombolysis. Int J Stroke. 2016;11(1):62–7.CrossRefGoogle ScholarPubMed
Kongbunkiat, K, Wilson, D, Kasemsap, N, et al. Leukoaraiosis, intracerebral hemorrhage, and functional outcome after acute stroke thrombolysis. Neurology. 2017;88(7):638–45.CrossRefGoogle ScholarPubMed
Fierini, F, Poggesi, A, Pantoni, L. Leukoaraiosis as an outcome predictor in the acute and subacute phases of stroke. Expert Rev Neurother. 2017;17(10):963–75.CrossRefGoogle ScholarPubMed
Chen, Y, Yan, S, Xu, M, et al. More extensive white matter hyperintensity is linked with higher risk of remote intracerebral hemorrhage after intravenous thrombolysis. Eur J Neurol. 2018;25(2):380–e15.CrossRefGoogle ScholarPubMed
Liu, Y, Zhang, M, Chen, Y, et al. The degree of leukoaraiosis predicts clinical outcomes and prognosis in patients with middle cerebral artery occlusion after intravenous thrombolysis. Brain Res. 2018;1681:2833.CrossRefGoogle ScholarPubMed
Yang, C-M, Hung, C-L, Su, H-C, et al. Leukoaraiosis and risk of intracranial hemorrhage and outcome after stroke thrombolysis. PLoS One. 2018;13(5):e0196505.CrossRefGoogle ScholarPubMed
Liu, X, Li, T, Diao, S, et al. The global burden of cerebral small vessel disease related to neurological deficit severity and clinical outcomes of acute ischemic stroke after IV rt-PA treatment. Neurol Sci. 2019;40(6):1157–66.CrossRefGoogle ScholarPubMed
Zhang, J, Puri, AS, Khan, MA, Goddeau, RP Jr, Henninger, N. Leukoaraiosis predicts a poor 90-day outcome after endovascular stroke therapy. AJNR Am J Neuroradiol. 2014;35(11):2070–5.CrossRefGoogle ScholarPubMed
Gilberti, N, Gamba, M, Premi, E, et al. Leukoaraiosis is a predictor of futile recanalization in acute ischemic stroke. J Neurol. 2017;264(3):448–52.CrossRefGoogle ScholarPubMed
Guo, Y, Zi, W, Wan, Y, et al. Leukoaraiosis severity and outcomes after mechanical thrombectomy with stent-retriever devices in acute ischemic stroke. J Neurointerv Surg. 2019;11(2):137–40.CrossRefGoogle ScholarPubMed
Liu, Y, Gong, P, Sun, H, et al. Leukoaraiosis is associated with poor outcomes after successful recanalization for large vessel occlusion stroke. Neurol Sci. 2019;40(3):585–91.CrossRefGoogle ScholarPubMed
Jeong, SH, Ahn, SS, Baik, M, et al. Impact of white matter hyperintensities on the prognosis of cryptogenic stroke patients. PLoS One. 2018;13(4):e0196014.CrossRefGoogle ScholarPubMed
Putaala, J, Haapaniemi, E, Kurkinen, M, et al. Silent brain infarcts, leukoaraiosis, and long-term prognosis in young ischemic stroke patients. Neurology. 2011;76(20):1742–9.Google ScholarPubMed
Leonards, CO, Ipsen, N, Malzahn, U, et al. White matter lesion severity in mild acute ischemic stroke patients and functional outcome after 1 year. Stroke. 2012;43(11):3046–51.CrossRefGoogle ScholarPubMed
Senda, J, Ito, K, Kotake, T, et al. Association of leukoaraiosis with convalescent rehabilitation outcome in patients with ischemic stroke. Stroke. 2016;47(1):160–6.Google ScholarPubMed
Kamakura, CK, Ueno, Y, Sakai, Y, et al. White matter lesions and cognitive impairment may be related to recovery from unilateral spatial neglect after stroke. J Neurol Sci. 2017;379:241–6.CrossRefGoogle ScholarPubMed
Yassi, N, Churilov, L, Campbell, BCV, et al. The association between lesion location and functional outcome after ischemic stroke. Int J Stroke. 2015;10(8):1270–6.CrossRefGoogle ScholarPubMed
Sylaja, PN, Puetz, V, Dzialowski, I, et al. Prognostic value of CT angiography in patients with suspected vertebrobasilar ischemia. J Neuroimaging. 2008;18(1):46–9.CrossRefGoogle ScholarPubMed
DeVetten, G, Coutts, SB, Hill, MD, et al. Acute corticospinal tract Wallerian degeneration is associated with stroke outcome. Stroke. 2010;41(4):751–6.CrossRefGoogle ScholarPubMed
Kaya, D, Dincer, A, Arman, F, et al. Ischemic involvement of the primary motor cortex is a prognostic factor in acute stroke. Int J Stroke. 2015;10(8):1277–83.CrossRefGoogle ScholarPubMed
Shelton, FN, Reding, MJ. Effect of lesion location on upper limb motor recovery after stroke. Stroke. 2001;32(1):107–12.CrossRefGoogle ScholarPubMed
Schouten, EA, Schiemanck, SK, Brand, N, Post, MWM. Long-term deficits in episodic memory after ischemic stroke: evaluation and prediction of verbal and visual memory performance based on lesion characteristics. J Stroke Cerebrovasc Dis. 2009;18(2):128–38.CrossRefGoogle ScholarPubMed
Munsch, F, Sagnier, S, Asselineau, J, et al. Stroke location is an independent predictor of cognitive outcome. Stroke. 2016;47(1):6673.CrossRefGoogle ScholarPubMed
Shatzman, S, Mahajan, S, Sundararajan, S. Often overlooked but critical: poststroke cognitive impairment in right hemispheric ischemic stroke. Stroke. 2016;47(9):e221–3.CrossRefGoogle ScholarPubMed
Freyschlag, CF, Boehme, C, Bauer, M, et al. The volume of ischemic brain predicts poor outcome in patients with surgically treated malignant stroke. World Neurosurg. 2019;123:e515–19.CrossRefGoogle ScholarPubMed
Boers, AMM, Jansen, IGH, Beenen, LFM, et al. Association of follow-up infarct volume with functional outcome in acute ischemic stroke: a pooled analysis of seven randomized trials. J Neurointerv Surg. 2018;10(12):1137–42.CrossRefGoogle ScholarPubMed
Schaefer, PW, Pulli, B, Copen, WA, et al. Combining MRI with NIHSS thresholds to predict outcome in acute ischemic stroke: value for patient selection. AJNR Am J Neuroradiol. 2015;36(2):259–64.CrossRefGoogle ScholarPubMed
Kruetzelmann, A, Köhrmann, M, Sobesky, J, et al. Pretreatment diffusion-weighted imaging lesion volume predicts favorable outcome after intravenous thrombolysis with tissue-type plasminogen activator in acute ischemic stroke. Stroke. 2011;42(5):1251–4.CrossRefGoogle ScholarPubMed
Xie, Y, Oppenheim, C, Guillemin, F, et al. Pretreatment lesional volume impacts clinical outcome and thrombectomy efficacy. Ann Neurol. 2018;83(1):178–85.CrossRefGoogle ScholarPubMed
Cho, K-H, Kwon, SU, Lee, DH, et al. Early infarct growth predicts long-term clinical outcome after thrombolysis. J Neurol Sci. 2012;316(1–2):99103.CrossRefGoogle ScholarPubMed
Battey, TWK, Karki, M, Singhal, AB, et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke. 2014;45(12):3643–8.CrossRefGoogle ScholarPubMed
Simpkins, AN, Dias, C, Norato, G, Kim, E, Leigh, R, NIH Natural History of Stroke Investigators. Early change in stroke size performs best in predicting response to therapy. Cerebrovasc Dis. 2017;44(3–4):141–9.CrossRefGoogle Scholar
Deng, W, Teng, J, Liebeskind, D, Miao, W, Du, R. Predictors of infarct growth measured by apparent diffusion coefficient quantification in patients with acute ischemic stroke. World Neurosurg. 2019;123:e797802.CrossRefGoogle ScholarPubMed
Zhou, H, Sun, J, Ji, X, et al. Correlation between the integrity of the circle of Willis and the severity of initial noncardiac cerebral infarction and clinical prognosis. Medicine (Baltimore). 2016;95(10):e2892.CrossRefGoogle ScholarPubMed
Leng, X, Lan, L, Liu, L, Leung, TW, Wong, KS. Good collateral circulation predicts favorable outcomes in intravenous thrombolysis: a systematic review and meta-analysis. Eur J Neurol. 2016;23(12):1738–49.CrossRefGoogle ScholarPubMed
Madelung, CF, Ovesen, C, Trampedach, C, et al. Leptomeningeal collateral status predicts outcome after middle cerebral artery occlusion. Acta Neurol Scand. 2018;137(1):125–32.CrossRefGoogle ScholarPubMed
Wufuer, A, Wubuli, A, Mijiti, P, et al. Impact of collateral circulation status on favorable outcomes in thrombolysis treatment: a systematic review and meta-analysis. Exp Ther Med. 2018;15(1):707–18.Google ScholarPubMed
Huang, X, Liu, W, Zhu, W, et al. Distal hyperintense vessels on FLAIR: a prognostic indicator of acute ischemic stroke. Eur Neurol. 2012;68(4):214–20.CrossRefGoogle Scholar
Dong, X, Nao, J. Fluid-attenuated inversion recovery vascular hyperintensities in anterior circulation acute ischemic stroke: associations with cortical brain infarct volume and 90-day prognosis. Neurol Sci. 2019;40(8):1675–82.CrossRefGoogle ScholarPubMed
Copelan, A, Chehab, M, Brinjikji, W, et al. Opercular Index Score: a CT angiography-based predictor of capillary robustness and neurological outcomes in the endovascular management of acute ischemic stroke. J Neurointerv Surg. 2017;9(12):1179–86.CrossRefGoogle Scholar
Maus, V, You, S, Kalkan, A, et al. Incomplete large vessel occlusions in mechanical thrombectomy: an independent predictor of favorable outcome in ischemic stroke. Cerebrovasc Dis. 2017;44(3–4):113–21.CrossRefGoogle ScholarPubMed
Arsava, EM, Arat, A, Topcuoglu, MA, et al. Angiographic microcirculatory obstructions distal to occlusion signify poor outcome after endovascular treatment for acute ischemic stroke. Transl Stroke Res. 2018;9(1):4450.CrossRefGoogle ScholarPubMed
Carbone, F, Busto, G, Padroni, M, et al. Radiologic cerebral reperfusion at 24 h predicts good clinical outcome. Transl Stroke Res. 2019;10(2):178–88.CrossRefGoogle ScholarPubMed
Sakuta, K, Saji, N, Aoki, J, et al. Decrease of hyperintense vessels on fluid-attenuated inversion recovery predicts good outcome in t-PA patients. Cerebrovasc Dis. 2016;41(3–4):211–8.CrossRefGoogle ScholarPubMed
Yeo, LLL, Paliwal, P, Low, AF, et al. How temporal evolution of intracranial collaterals in acute stroke affects clinical outcomes. Neurology. 2016;86(5):434–41.CrossRefGoogle ScholarPubMed
Kneihsl, M, Niederkorn, K, Deutschmann, H, et al. Abnormal blood flow on transcranial duplex sonography predicts poor outcome after stroke thrombectomy. Stroke. 2018;49(11):2780–2.CrossRefGoogle ScholarPubMed
Dekker, L, Geraedts, VJ, Hund, H, et al. Importance of reperfusion status after intra-arterial thrombectomy for prediction of outcome in anterior circulation large vessel stroke. Interv Neurol. 2018;7(3–4):137–47.CrossRefGoogle ScholarPubMed
García-Tornel, Á, Requena, M, Rubiera, M, et al. When to stop. Stroke. 2019;50(7):1781–8.CrossRefGoogle ScholarPubMed
Branco, JP, Costa, JS, Sargento-Freitas, J, et al. [Neuroimaging and blood biomarkers in functional prognosis after stroke]. Acta Med Port. 2016;29(11):749–54.Google ScholarPubMed
Katan, M, Elkind, MSV. Inflammatory and neuroendocrine biomarkers of prognosis after ischemic stroke. Expert Rev Neurother. 2011;11(2):225–39.CrossRefGoogle ScholarPubMed
Shibazaki, K, Kimura, K, Iguchi, Y, et al. Plasma brain natriuretic peptide predicts death during hospitalization in acute ischaemic stroke and transient ischaemic attack patients with atrial fibrillation. Eur J Neurol. 2011;18(1):165–9.CrossRefGoogle ScholarPubMed
Rost, NS, Biffi, A, Cloonan, L, et al. Brain natriuretic peptide predicts functional outcome in ischemic stroke. Stroke. 2012;43(2):441–5.CrossRefGoogle ScholarPubMed
Shibazaki, K, Kimura, K, Aoki, J, et al. Brain natriuretic peptide level on admission predicts recurrent stroke after discharge in stroke survivors with atrial fibrillation. Clin Neurol Neurosurg. 2014;127:25–9.CrossRefGoogle ScholarPubMed
Menon, B, Ramalingam, K, Conjeevaram, J, Munisusmitha, K. Role of brain natriuretic peptide as a novel prognostic biomarker in acute ischemic stroke. Ann Indian Acad Neurol. 2016;19(4):462–6.CrossRefGoogle ScholarPubMed
Jang, SY, Sohn, MK, Lee, J, et al. Chronic kidney disease and functional outcomes 6 months after ischemic stroke: a prospective multicenter study. Neuroepidemiology. 2016;46(1):2430.CrossRefGoogle ScholarPubMed
Jeon, JW, Jeong, HS, Choi, DE, et al. Prognostic relationships between microbleed, lacunar infarction, white matter lesion, and renal dysfunction in acute ischemic stroke survivors. J Stroke Cerebrovasc Dis. 2017;26(2):385–92.CrossRefGoogle ScholarPubMed
Synhaeve, NE, van Alebeek, ME, Arntz, RM, et al. Kidney dysfunction increases mortality and incident events after young stroke: the FUTURE study. Cerebrovasc Dis. 2016;42(3-4):224–31.CrossRefGoogle ScholarPubMed
Wang, I-K, Liu, C-H, Yen, T-H, et al. Renal function is associated with 1-month and 1-year mortality in patients with ischemic stroke. Atherosclerosis. 2018;269:288–93.CrossRefGoogle ScholarPubMed
Widhi Nugroho, A, Arima, H, Miyazawa, I, et al. The association between glomerular filtration rate estimated on admission and acute stroke outcome: the Shiga Stroke Registry. J Atheroscler Thromb. 2018;25(7):570–9.CrossRefGoogle ScholarPubMed
Van Kaam, RC, van Putten, MJAM, Vermeer, SE, Hofmeijer, J. Contralesional brain activity in acute ischemic stroke. Cerebrovasc Dis. 2018;45(1–2):8592.CrossRefGoogle ScholarPubMed
Santamarina, E, Abraira, L, Toledo, M, et al. Prognosis of post-stroke status epilepticus: effects of time difference between the two events. Seizure. 2018;60:172–7.CrossRefGoogle ScholarPubMed
Sheorajpanday, RVA, Nagels, G, Weeren, AJTM, van Putten, MJAM, De Deyn, PP. Quantitative EEG in ischemic stroke: correlation with functional status after 6 months. Clin Neurophysiol. 2011;122(5):874–83.Google ScholarPubMed
Xin, X, Gao, Y, Zhang, H, Cao, K, Shi, Y. Correlation of continuous electroencephalogram with clinical assessment scores in acute stroke patients. Neurosci Bull. 2012;28(5):611–7.CrossRefGoogle ScholarPubMed
Zappasodi, F, Olejarczyk, E, Marzetti, L, et al. Fractal dimension of EEG activity senses neuronal impairment in acute stroke. PLoS One. 2014;9(6):e100199.CrossRefGoogle ScholarPubMed
Vang, C, Dunbabin, D, Kilpatrick, D. Correlation between functional and electrophysiological recovery in acute ischemic stroke. Stroke. 1999;30(10):2126–30.Google ScholarPubMed
Hendricks, HT, Pasman, JW, van Limbeek, J, Zwarts, MJ. Motor evoked potentials in predicting recovery from upper extremity paralysis after acute stroke. Cerebrovasc Dis. 2003;16(3):265–71.CrossRefGoogle ScholarPubMed
Nascimbeni, A, Gaffuri, A, Granella, L, Colli, M, Imazio, P. Prognostic value of motor evoked potentials in stroke motor outcome. Eura Medicophys. 2005;41(2):125–30.Google ScholarPubMed
Souza, LCS, Payabvash, S, Wang, Y, et al. Admission CT perfusion is an independent predictor of hemorrhagic transformation in acute stroke with similar accuracy to DWI. Cerebrovasc Dis. 2012;33(1):815.CrossRefGoogle ScholarPubMed
Yassi, N, Parsons, MW, Christensen, S, et al. Prediction of poststroke hemorrhagic transformation using computed tomography perfusion. Stroke. 2013;44(11):3039–43.CrossRefGoogle ScholarPubMed
Nagaraja, N, Tasneem, N, Shaban, A, et al. Cerebral microbleeds are an independent predictor of hemorrhagic transformation following intravenous alteplase administration in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(5):1403–11.CrossRefGoogle ScholarPubMed
Simats, A, García-Berrocoso, T, Montaner, J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. Biochim Biophys Acta. 2016;1862(3):411–24.Google ScholarPubMed
Worthmann, H, Tryc, AB, Goldbecker, A, et al. The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis. 2010;30(1):8592.CrossRefGoogle ScholarPubMed
Ramos-Fernandez, M, Bellolio, MF, Stead, LG. Matrix metalloproteinase-9 as a marker for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. 2011;20(1):4754.CrossRefGoogle ScholarPubMed
Gori, AM, Giusti, B, Piccardi, B, et al. Inflammatory and metalloproteinases profiles predict three-month poor outcomes in ischemic stroke treated with thrombolysis. J Cereb Blood Flow Metab. 2017;37(9):3253–61.CrossRefGoogle ScholarPubMed
Zhong, C, Yang, J, Xu, T, et al. Serum matrix metalloproteinase-9 levels and prognosis of acute ischemic stroke. Neurology. 2017;89(8):805–12.CrossRefGoogle ScholarPubMed
Liu, S-Y, Cao, W-F, Wu, L-F, et al. Effect of glycated hemoglobin index and mean arterial pressure on acute ischemic stroke prognosis after intravenous thrombolysis with recombinant tissue plasminogen activator. Medicine. 2018;97(49):e13216.CrossRefGoogle ScholarPubMed
Kalinin, MN, Khasanova, DR, Ibatullin, MM. The hemorrhagic transformation index score: a prediction tool in middle cerebral artery ischemic stroke. BMC Neurol. 2017;17(1):177.CrossRefGoogle Scholar
van Asch Charlotte, JJ, Velthuis Birgitta, K, Greving Jacoba, P, et al. External validation of the secondary intracerebral hemorrhage score in the Netherlands. Stroke. 2013;44(10):2904–6.Google ScholarPubMed
Asuzu, D, Nyström, K, Amin, H, et al. TURN: a simple predictor of symptomatic intracerebral hemorrhage after iv thrombolysis. Neurocrit Care. 2015;23(2):166–71.Google Scholar
Asuzu, D, Nystrӧm, K, Amin, H, et al. Validation of TURN, a simple predictor of symptomatic intracerebral hemorrhage after IV thrombolysis. Clin Neurol Neurosurg. 2016;146:71–5.CrossRefGoogle Scholar
Asuzu, D, Nyström, K, Schindler, J, et al. TURN score predicts 90-day outcome in acute ischemic stroke patients after IV thrombolysis. Neurocrit Care. 2015;23(2):172–8.CrossRefGoogle ScholarPubMed
Miyamoto, N, Tanaka, R, Ueno, Y, et al. Analysis of the usefulness of the WORSEN score for predicting the deterioration of acute ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(12):2834–9.CrossRefGoogle ScholarPubMed
Nakase, T, Yamamoto, Y, Takagi, M, Japan Branch Atheromatous Disease Registry Collaborators. The impact of diagnosing branch atheromatous disease for predicting prognosis. J Stroke Cerebrovasc Dis. 2015;24(10):2423–8.CrossRefGoogle ScholarPubMed
Melkas, S, Sibolt, G, Oksala, NKJ, et al. Extensive white matter changes predict stroke recurrence up to 5 years after a first-ever ischemic stroke. Cerebrovasc Dis. 2012;34(3):191–8.CrossRefGoogle ScholarPubMed
Andersen, SD, Larsen, TB, Gorst-Rasmussen, A, et al. White matter hyperintensities improve ischemic stroke recurrence prediction. Cerebrovasc Dis. 2017;43(1–2):1724.CrossRefGoogle ScholarPubMed
Nam, K-W, Kwon, H-M, Lim, J-S, Han, M-K, Lee, Y-S. Clinical relevance of abnormal neuroimaging findings and long-term risk of stroke recurrence. Eur J Neurol. 2017;24(11):1348–54.CrossRefGoogle ScholarPubMed
Vahedi, A, Lotfinia, I, Sad, RB, Halimi, M, Baybordi, H. Relationship between admission hypoalbuminemia and inhospital mortality in acute stroke. Pak J Biol Sci. 2011;14(2):118–22.CrossRefGoogle ScholarPubMed
Lin, L-C, Lee, T-H, Chang, C-H, et al. Predictors of clinical deterioration during hospitalization following acute ischemic stroke. Eur Neurol. 2012;67(3):186–92.CrossRefGoogle ScholarPubMed
Xu, Y, Chen, Y, Chen, R, et al. External validation of the WORSEN score for prediction the deterioration of acute ischemic stroke in a Chinese population. Front Neurol. 2020;11:482.CrossRefGoogle ScholarPubMed
Liu, Y, Wang, Y, Li, WA, Yan, A, Wang, Y. Validation of the Essen Stroke Risk Score in different subtypes of ischemic stroke. Neurol Res. 2017;39(6):504–8.CrossRefGoogle ScholarPubMed
Kim, B-S, Chung, P-W, Park, K-Y, et al. Burden of intracranial atherosclerosis is associated with long-term vascular outcome in patients with ischemic stroke. Stroke. 2017;48(10):2819–26.CrossRefGoogle ScholarPubMed
Lee, S-J, Lee, D-G, Lim, D-S, Hong, S. Impact of intracranial atherosclerotic stenosis on the prognosis in acute ischemic stroke patients with cardioembolic source. Eur Neurol. 2015;73(5–6):271–7.CrossRefGoogle ScholarPubMed
Tian, L, Yue, X, Xi, G, et al. Multiple intracranial arterial stenosis influences the long-term prognosis of symptomatic middle cerebral artery occlusion. BMC Neurol. 2015;15:68.CrossRefGoogle ScholarPubMed
Sacchetti, DC, Cutting, SM, McTaggart, RA, et al. Perfusion imaging and recurrent cerebrovascular events in intracranial atherosclerotic disease or carotid occlusion. Int J Stroke. 2018;13(6):592–9.CrossRefGoogle ScholarPubMed
Wijnhoud, AD, Koudstaal, PJ, Dippel, DWJ. The prognostic value of pulsatility index, flow velocity, and their ratio, measured with TCD ultrasound, in patients with a recent TIA or ischemic stroke. Acta Neurol Scand. 2011;124(4):238–44.CrossRefGoogle ScholarPubMed
Yoon, HJ, Kim, KH, Park, H, et al. Carotid plaque rather than intima-media thickness as a predictor of recurrent vascular events in patients with acute ischemic stroke. Cardiovasc Ultrasound. 2017;15(1):19.CrossRefGoogle ScholarPubMed
Tamura, H, Watanabe, T, Nishiyama, S, et al. Prognostic value of low left atrial appendage wall velocity in patients with ischemic stroke and atrial fibrillation. J Am Soc Echocardiogr. 2012;25(5):576–83.CrossRefGoogle ScholarPubMed
Hashimoto, N, Watanabe, T, Tamura, H, et al. Left atrial remodeling index is a feasible predictor of poor prognosis in patients with acute ischemic stroke. Heart Vessels. 2019;34(12):1936–43.CrossRefGoogle ScholarPubMed
Paciaroni, M, Agnelli, G, Falocci, N, et al. Prognostic value of trans-thoracic echocardiography in patients with acute stroke and atrial fibrillation: findings from the RAF study. J Neurol. 2016;263(2):231–7.CrossRefGoogle Scholar
Harima, K, Honda, S, Mikami, K, et al. Collagen-induced platelet aggregates, diabetes, and aspirin therapy predict clinical outcomes in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(8):2302–10.CrossRefGoogle ScholarPubMed
Akhtar, N, Kamran, S, Singh, R, et al. The impact of diabetes on outcomes after acute ischemic stroke: a prospective observational study. J Stroke Cerebrovasc Dis. 2019;28(3):619–26.CrossRefGoogle ScholarPubMed
Wang, H, Cheng, Y, Chen, S, et al. Impact of elevated hemoglobin A1c levels on functional outcome in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(2):470–6.CrossRefGoogle ScholarPubMed
Gofir, A, Mulyono, B, Sutarni, S. Hyperglycemia as a prognosis predictor of length of stay and functional outcomes in patients with acute ischemic stroke. Int J Neurosci. 2017;127(10):923–9.CrossRefGoogle ScholarPubMed
Dong, X-L, Guan, F, Xu, S-J, et al. Influence of blood glucose level on the prognosis of patients with diabetes mellitus complicated with ischemic stroke. J Res Med Sci. 2018;23:10.Google ScholarPubMed
McCall, SJ, Alanazi, TA, Clark, AB, et al. Hyperglycaemia and the SOAR stroke score in predicting mortality. Diab Vasc Dis Res. 2018;15(2):114–21.CrossRefGoogle ScholarPubMed
Zhu, Z, Yang, J, Zhong, C, et al. Abnormal glucose regulation, hypoglycemic treatment during hospitalization and prognosis of acute ischemic stroke. J Neurol Sci. 2017;379:177–82.CrossRefGoogle ScholarPubMed
Shafa, MA, Ebrahimi, H, Iranmanesh, F, Sasaie, M. Prognostic value of hemoglobin A1c in nondiabetic and diabetic patients with acute ischemic stroke. Iran J Neuro.l 2016;15(4):209–13.Google ScholarPubMed
Luitse, MJ, Velthuis, BK, Kappelle, LJ, van der Graaf, Y, Biessels, GJ, DUST Study Group. Chronic hyperglycemia is related to poor functional outcome after acute ischemic stroke. Int J Stroke. 2017;12(2):180–6.CrossRefGoogle ScholarPubMed
Jing, J, Pan, Y, Zhao, X, et al. Prognosis of ischemic stroke with newly diagnosed diabetes mellitus according to hemoglobin A1c criteria in Chinese population. Stroke. 2016;47(8):2038–44.CrossRefGoogle ScholarPubMed
Lattanzi, S, Bartolini, M, Provinciali, L, Silvestrini, M. Glycosylated hemoglobin and functional outcome after acute ischemic stroke. J Stroke Cerebrovasc Dis. 2016;25(7):1786–91.CrossRefGoogle ScholarPubMed
Wu, S, Wang, C, Jia, Q, et al. HbA1c is associated with increased all-cause mortality in the first year after acute ischemic stroke. Neurol Res. 2014;36(5):444–52.CrossRefGoogle ScholarPubMed
Wu, S, Shi, Y, Wang, C, et al. Glycated hemoglobin independently predicts stroke recurrence within one year after acute first-ever non-cardioembolic strokes onset in a Chinese cohort study. PLoS One. 2013;8(11):e80690.CrossRefGoogle Scholar
Tanaka, R, Ueno, Y, Miyamoto, N, et al. Impact of diabetes and prediabetes on the short-term prognosis in patients with acute ischemic stroke. J Neurol Sci. 2013;332(1–2):4550.CrossRefGoogle ScholarPubMed
Kamouchi, M, Matsuki, T, Hata, J, et al. Prestroke glycemic control is associated with the functional outcome in acute ischemic stroke: the Fukuoka Stroke Registry. Stroke. 2011;42(10):2788–94.CrossRefGoogle ScholarPubMed
Kaarisalo, MM, Räihä, I, Sivenius, J, et al. Diabetes worsens the outcome of acute ischemic stroke. Diabetes Res Clin Pract. 2005;69(3):293–8.CrossRefGoogle ScholarPubMed
Zhang, Q, Lei, Y-X, Wang, Q, et al. Serum albumin level is associated with the recurrence of acute ischemic stroke. Am J Emerg Med. 2016;34(9):1812–16.CrossRefGoogle ScholarPubMed
Lau, KK, Li, L, Schulz, U, et al. Total small vessel disease score and risk of recurrent stroke: Validation in 2 large cohorts. Neurology. 2017;88(24):2260–7.CrossRefGoogle ScholarPubMed
Galovic, M, Döhler, N, Erdélyi-Canavese, B, et al. Prediction of late seizures after ischaemic stroke with a novel prognostic model (the SeLECT score): a multivariable prediction model development and validation study. Lancet Neurol. 2018;17(2):143–52.CrossRefGoogle Scholar
Zapata-Arriaza, E, Moniche, F, Blanca, P-G, et al. External validation of the ISAN, A2DS2, and AIS-APS scores for predicting stroke-associated pneumonia. J Stroke Cerebrovasc Dis. 2018;27(3):673–6.CrossRefGoogle ScholarPubMed
Ramírez-Moreno, JM, Martínez-Acevedo, M, Cordova, R, et al. External validation of the A2SD2 and ISAN scales for predicting infectious respiratory complications of ischaemic stroke. Neurologia. 2019;34(1):1421.CrossRefGoogle ScholarPubMed
Zhang, R, Ji, R, Pan, Y, et al. External validation of the prestroke independence, sex, age, National Institutes of Health Stroke Scale score for predicting pneumonia after stroke using data from the China National Stroke Registry. J Stroke Cerebrovasc Dis. 2017;26(5):938–43.CrossRefGoogle ScholarPubMed
Ji, R, Shen, H, Pan, Y, et al. Novel risk score to predict pneumonia after acute ischemic stroke. Stroke. 2013;44(5):1303–9.CrossRefGoogle ScholarPubMed
Hoffmann, S, Malzahn, U, Harms, H, et al. Development of a clinical score (A2DS2) to predict pneumonia in acute ischemic stroke. Stroke. 2012;43(10):2617–23.CrossRefGoogle ScholarPubMed
Warnecke, T, Ritter, MA, Kroger, B, et al. Fiberoptic endoscopic dysphagia severity scale predicts outcome after acute stroke. Cerebrovasc Dis. 2009;28(3):283–9.CrossRefGoogle ScholarPubMed
Tinker, RJ, Smith, CJ, Heal, C, et al. Predictors of mortality and disability in stroke-associated pneumonia. Acta Neurol Belg. 2019;121:379–85.Google ScholarPubMed
Hotter, B, Hoffmann, S, Ulm, L, et al. external validation of five scores to predict stroke-associated pneumonia and the role of selected blood biomarkers. Stroke. 2021;52(1):325–30.CrossRefGoogle ScholarPubMed
Kishore, AK, Vail, A, Chamorro, A, et al. How is pneumonia diagnosed in clinical stroke research? A systematic review and meta-analysis. Stroke. 2015;46(5):1202–9.CrossRefGoogle Scholar
Li, Y, Song, B, Fang, H, et al. External validation of the A2DS2 score to predict stroke-associated pneumonia in a Chinese population: a prospective cohort study. PLoS One. 2014;9(10):e109665.CrossRefGoogle Scholar
Duan, Y, Chen, F, Lin, L, Wei, W, Huang, Y. Leukoaraiosis rather than lacunes predict poor outcome and chest infection in acute ischemic stroke patients. Int J Clin Exp Med. 2015;8(10):19304–10.Google ScholarPubMed
Huff, W, Steckel, R, Sitzer, M. [Poststroke depression: risk factors and effects on the course of the stroke]. Nervenarzt. 2003;74(2):104–14.CrossRefGoogle ScholarPubMed
Głodzik-Sobańska, L, Słowik, A, Borratyńska, A, Szczudlik, A. [Depressive symptoms following ischemic stroke]. Neurol Neurochir Pol. 2003;37(1):1725.Google ScholarPubMed
Zhang, T, Wang, C, Liu, L, et al. A prospective cohort study of the incidence and determinants of post-stroke depression among the mainland Chinese patients. Neurol Res. 2010;32(4):347–52.CrossRefGoogle ScholarPubMed
Arsava, EM, Bayrlee, A, Vangel, M, et al. Severity of leukoaraiosis determines clinical phenotype after brain infarction. Neurology. 2011;77(1):5561.CrossRefGoogle ScholarPubMed
Tang, WK, Chen, Y, Liang, H, et al. Cerebral microbleeds as a predictor of 1-year outcome of poststroke depression. Stroke, 2014;45(1):7781.CrossRefGoogle ScholarPubMed
Liang, Y, Chan, YL, Deng, M, et al. Enlarged perivascular spaces in the centrum semiovale are associated with poststroke depression: A 3-month prospective study. J Affect Disord. 2018;228:166–72.CrossRefGoogle ScholarPubMed
Wichowicz, HM, Gąsecki, D, Landowski, J, et al. Clinical utility of chosen factors in predicting post-stroke depression: a one year follow-up. Psychiatr Pol. 2015;49(4):683–96.CrossRefGoogle ScholarPubMed
Nishiyama, Y, Komaba, Y, Ueda, M, et al. Early depressive symptoms after ischemic stroke are associated with a left lenticulocapsular area lesion. J Stroke Cerebrovasc Dis. 2010;19(3):184–9.CrossRefGoogle ScholarPubMed
Jiménez, I, Sobrino, T, Rodríguez-Yáñez, M, et al. High serum levels of leptin are associated with post-stroke depression. Psychol Med. 2009;39(7):1201–9.CrossRefGoogle ScholarPubMed
Zhang, W, Wang, W, Kuang, L. The relation between insulin-like growth factor 1 levels and risk of depression in ischemic stroke. Int J Geriatr Psychiatry. 2018;33(2):e228–33.CrossRefGoogle ScholarPubMed
Alferova, VV, Shklovskij, VM, Ivanova, EG, et al. [The prognosis for post-stroke aphasia]. Zh Nevrol Psikhiatr Im S S Korsakova. 2018;118(4):20–9.Google ScholarPubMed
Payabvash, S, Kamalian, S, Fung, S, et al. Predicting language improvement in acute stroke patients presenting with aphasia: a multivariate logistic model using location-weighted atlas-based analysis of admission CT perfusion scans. AJNR Am J Neuroradiol. 2010;31(9):1661–8.CrossRefGoogle ScholarPubMed
Reineck, LA, Agarwal, S, Hillis, AE. “Diffusion-clinical mismatch” is associated with potential for early recovery of aphasia. Neurology. 2005;64(5):828–33.CrossRefGoogle ScholarPubMed
Koutsis, G, Siasos, G, Spengos, K. The emerging role of microRNA in stroke. Curr Top Med Chem. 2013;13(13):1573–88.CrossRefGoogle ScholarPubMed
Yan, H, Fang, M, Liu, X-Y. Role of microRNAs in stroke and poststroke depression. Sci World J. 2013;2013:459692.CrossRefGoogle ScholarPubMed
Jin, F, Xing, J. Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol Sci. 2017;38(11):2015–23.CrossRefGoogle ScholarPubMed
Dewdney, B, Trollope, A, Moxon, J, et al. Circulating microRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis. 2018;27(3):522–30.CrossRefGoogle ScholarPubMed
Tang, L, Zhang, L, Ding, H, Tu, W, Yan, J. GTP cyclohydrolase 1 gene 3’-UTR C+243T variant predicts worsening outcome in patients with first-onset ischemic stroke. J Huazhong Univ Sci Technolog Med Sci. 2010;30(6):694–8.CrossRefGoogle ScholarPubMed
Gomez-Sanchez, JC, Delgado-Esteban, M, Rodriguez-Hernandez, I, et al. The human Tp53 Arg72Pro polymorphism explains different functional prognosis in stroke. J Exp Med. 2011;208(3):429–37.CrossRefGoogle ScholarPubMed
Graham, CA, Chan, RWY, Chan, DYS, et al. Matrix metalloproteinase 9 mRNA: an early prognostic marker for patients with acute stroke. Clin Biochem. 2012;45(4-5):352–5.CrossRefGoogle ScholarPubMed
Raman, K, O’Donnell, MJ, Czlonkowska, A, et al. Peripheral blood MCEMP1 gene expression as a biomarker for stroke prognosis. Stroke. 2016;47(3):652–8.CrossRefGoogle ScholarPubMed
Zhao, J, Bai, Y, Jin, L, et al. A functional variant in the 3’-UTR of VEGF predicts the 90-day outcome of ischemic stroke in Chinese patients. PLoS One. 2017;12(2):e0172709.CrossRefGoogle ScholarPubMed
Dong, M, Zheng, N, Ren, LJ, Zhou, H, Liu, J. Increased expression of STIM1/Orai1 in platelets of stroke patients predictive of poor outcomes. Eur J Neurol. 2017;24(7):912–19.CrossRefGoogle ScholarPubMed
Tsukagawa, T, Katsumata, R, Fujita, M, et al. Elevated serum high-mobility group box-1 protein level is associated with poor functional outcome in ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(10):2404–11.CrossRefGoogle ScholarPubMed
Yi, X, Lin, J, Li, J, Zhou, Q, Han, Z. Epoxyeicosatrienoic acids are mediated by EPHX2 variants and may be a predictor of early neurological deterioration in acute minor ischemic stroke. J Atheroscler Thromb. 2017;24(12):1258–66.CrossRefGoogle ScholarPubMed
Bouziana, SD, Tziomalos, K, Goulas, A, et al. Major adipokines and the -420C>G resistin gene polymorphism as predictors of acute ischemic stroke severity and in-hospital outcome. J Stroke Cerebrovasc Dis. 2018;27(4):963–70.CrossRefGoogle ScholarPubMed
Wzorek, J, Karpiński, M, Wypasek, E, et al. Alpha-2-antiplasmin Arg407Lys polymorphism and cryptogenic ischemic cerebrovascular events: association with neurological deficit. Neurol Neurochir Pol. 2018;52(3):352–8.CrossRefGoogle ScholarPubMed
Ye, Z, Zhang, H, Sun, L, et al. GWAS-supported CRP gene polymorphisms and functional outcome of large artery atherosclerotic stroke in Han Chinese. Neuromol Med. 2018;20(2):225–32.CrossRefGoogle ScholarPubMed
Zhang, Y-Y, Huang, N-N, Fan, Y-C, et al. Peripheral tumor necrosis factor-a-induced protein 8-like 2 mRNA level for predicting 3-month mortality of patients with acute ischemic stroke. J Neurol. 2018;265(11):2573–86.CrossRefGoogle ScholarPubMed
He, X-W, Shi, Y-H, Zhao, R, et al. Plasma levels of miR-125b-5p and miR-206 in acute ischemic stroke patients after recanalization treatment: a prospective observational study. J Stroke Cerebrovasc Dis. 2019;28(6):1654–61.CrossRefGoogle ScholarPubMed
Li, S, Shi, C-H, Liu, X-J, et al. Association of CYP3A4*1G and CYP3A5*3 with the 1-year outcome of acute ischemic stroke in the Han Chinese population. J Stroke Cerebrovasc Dis. 2019;28(7):1860–5.CrossRefGoogle Scholar
Xia, G-H, You, C, Gao, X-X, et al. Stroke Dysbiosis Index (SDI) in gut microbiome are associated with brain injury and prognosis of stroke. Front Neurol. 2019;10:397.CrossRefGoogle ScholarPubMed
Du, J, Yang, F, Zhang, Z, et al. Early functional MRI activation predicts motor outcome after ischemic stroke: a longitudinal, multimodal study. Brain Imaging Behav. 2018;12(6):1804–13.CrossRefGoogle ScholarPubMed
Koyama, T, Marumoto, K, Miyake, H, Domen, K. Relationship between diffusion tensor fractional anisotropy and motor outcome in patients with hemiparesis after corona radiata infarct. J Stroke Cerebrovasc Dis. 2013;22(8):1355–60.CrossRefGoogle ScholarPubMed
Bigourdan, A, Munsch, F, Coupé, P, et al. Early fiber number ratio is a surrogate of corticospinal tract integrity and predicts motor recovery after stroke. Stroke. 2016;47(4):1053–9.CrossRefGoogle ScholarPubMed
Maximova, MY, Popova, TA, Konovalov, RN. [Prоgnosis of motor function recovery in ischemic stroke using diffusion tensor MRI]. Zh Nevrol Psikhiatr Im S S Korsakova. 2016;116(8 Pt 2):5764.CrossRefGoogle ScholarPubMed
Schaapsmeerders, P, Tuladhar, AM, Arntz, RM, et al. Remote lower white matter integrity increases the risk of long-term cognitive impairment after ischemic stroke in young adults. Stroke. 2016;47(10):2517–25.CrossRefGoogle ScholarPubMed
Etherton, MR, Wu, O, Cougo, P, et al. Integrity of normal-appearing white matter and functional outcomes after acute ischemic stroke. Neurology. 2017;88(18):1701–8.CrossRefGoogle ScholarPubMed
Nakashima, A, Moriuchi, T, Mitsunaga, W, et al. Prediction of prognosis of upper-extremity function following stroke-related paralysis using brain imaging. J Phys Therapy Sci. 2017;29(8):1438–43.CrossRefGoogle ScholarPubMed
Koyama, T, Koumo, M, Uchiyama, Y, Domen, K. Utility of fractional anisotropy in cerebral peduncle for stroke outcome prediction: comparison of hemorrhagic and ischemic strokes. J Stroke Cerebrovasc Dis. 2018;27(4):878–85.CrossRefGoogle ScholarPubMed
Moulton, E, Valabregue, R, Lehéricy, S, Samson, Y, Rosso, C. Multivariate prediction of functional outcome using lesion topography characterized by acute diffusion tensor imaging. Neuroimage Clin. 2019;23:101821.CrossRefGoogle ScholarPubMed
Lin, G, Zhuang, C, Shen, Z, et al. APT weighted MRI as an effective imaging protocol to predict clinical outcome after acute ischemic stroke. Front Neurol. 2018;9:901.CrossRefGoogle ScholarPubMed
Rodier, M, Quirié, A, Prigent-Tessier, A, et al. Relevance of post-stroke circulating BDNF levels as a prognostic biomarker of stroke outcome. impact of rt-PA treatment. PLoS One. 2015;10(10):e0140668.CrossRefGoogle ScholarPubMed
Lasek-Bal, A, Jędrzejowska-Szypułka, H, Różycka, J, et al. Low concentration of BDNF in the acute phase of ischemic stroke as a factor in poor prognosis in terms of functional status of patients. Med Sci Monit. 2015;21:3900–5.CrossRefGoogle ScholarPubMed
Rezaei, S, Asgari Mobarake, K, Saberi, A, Keshavarz, P, Leili, EK. Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and post-stroke dementia: a hospital-based study from northern Iran. Neurol Sci. 2016;37(6):935–42.CrossRefGoogle ScholarPubMed
Wang, J, Gao, L, Yang, Y-L, et al. low serum levels of brain-derived neurotrophic factor were associated with poor short-term functional outcome and mortality in acute ischemic stroke. Mol Neurobiol. 2017;54(9):7335–42.CrossRefGoogle ScholarPubMed
Xu, H-B, Xu, Y-H, He, Y, et al. Decreased serum brain-derived neurotrophic factor may indicate the development of poststroke depression in patients with acute ischemic stroke: a meta-analysis. J Stroke Cerebrovasc Dis. 2018;27(3):709–15.CrossRefGoogle ScholarPubMed
Hsu, P-J, Chen, C-H, Yeh, S-J, et al. High plasma D-dimer indicates unfavorable outcome of acute ischemic stroke patients receiving intravenous thrombolysis. Cerebrovasc Dis. 2016;42(1-2):117–21.CrossRefGoogle ScholarPubMed
Li, S, Bi, P, Zhao, W, et al. Prognostic utility of fatty acid-binding protein 4 in patients with type 2 diabetes and acute ischemic stroke. Neurotox Res. 2018;33(2):309–15.CrossRefGoogle ScholarPubMed
Cheng, S-Y, Zhao, Y-D, Li, J, et al. Plasma levels of glutamate during stroke is associated with development of post-stroke depression. Psychoneuroendocrinology. 2014;47:126–35.CrossRefGoogle ScholarPubMed
Meng, X-E, Li, N, Guo, D-Z, et al. High plasma glutamate levels are associated with poor functional outcome in acute ischemic stroke. Cell Mol Neurobiol. 2015;35(2):159–65.CrossRefGoogle ScholarPubMed
Geng, L-Y, Qian, F-Y, Qian, J-F, Zhang, Z-J. The combination of plasma glutamate and physical impairment after acute stroke as a potential indicator for the early-onset post-stroke depression. J Psychosom Res. 2017;96:3541.CrossRefGoogle ScholarPubMed
Tu, W-J, Zeng, X-W, Deng, A, et al. Circulating FABP4 (fatty acid-binding protein 4) is a novel prognostic biomarker in patients with acute ischemic stroke. Stroke. 2017;48(6):1531–8.CrossRefGoogle ScholarPubMed
Li, W, Liu, M, Wu, B, et al. Serum lipid levels and 3-month prognosis in Chinese patients with acute stroke. Adv Ther. 2008;25(4):329–41.CrossRefGoogle ScholarPubMed
Lai, Y-T, Hsieh, C-L, Lee, H-P, Pan, S-L. Are higher total serum cholesterol levels associated with better long-term motor function after ischemic stroke? Nutr Neurosci. 2012;15(6):239–43.CrossRefGoogle ScholarPubMed
Tziomalos, K, Giampatzis, V, Bouziana, SD, et al. Prognostic significance of major lipids in patients with acute ischemic stroke. Metab Brain Dis. 2017;32(2):395400.CrossRefGoogle ScholarPubMed
Deng, Q-W, Wang, H, Sun, C-Z, et al. Triglyceride to high-density lipoprotein cholesterol ratio predicts worse outcomes after acute ischaemic stroke. Eur J Neurol. 2017;24(2):283–91.CrossRefGoogle ScholarPubMed
Cuadrado-Godia, E, Jiménez-Conde, J, Ois, A, et al. Sex differences in the prognostic value of the lipid profile after the first ischemic stroke. J Neurol. 2009;256(6):989–95.CrossRefGoogle ScholarPubMed
Wang, H, Zhao, J, Gui, Y, et al. Elevated lipoprotein (A) and risk of poor functional outcome in Chinese patients with ischemic stroke and type 2 diabetes. Neurotox Res. 2018;33(4):868–75.CrossRefGoogle ScholarPubMed
Bonifačić, D, Toplak, A, Benjak, I, et al. Monocytes and monocyte chemoattractant protein 1 (MCP-1) as early predictors of disease outcome in patients with cerebral ischemic stroke. Wien Klin Wochenschr. 2016;128(1-2):20–7.CrossRefGoogle ScholarPubMed
Song, T-J, Cho, H-J, Chang, Y, et al. low plasma proportion of omega 3-polyunsaturated fatty acids predicts poor outcome in acute non-cardiogenic ischemic stroke patients. J Stroke Cerebrovasc Dis. 2015;17(2):168–76.Google ScholarPubMed
Quan, W, Chen, Z, Yang, X, et al. Mean platelet volume/platelet count ratio as a predictor of 90-day outcome in large artery atherosclerosis stroke patients. Int J Neurosci. 2017;127(11):1019–27.CrossRefGoogle ScholarPubMed
Gao, F, Chen, C, Lyu, J, et al. Association between platelet distribution width and poor outcome of acute ischemic stroke after intravenous thrombolysis. Neuropsychiatr Dis Treat. 2018;14:2233–9.CrossRefGoogle ScholarPubMed
Xie, D, Xiang, W, Weng, Y, et al. Platelet volume indices for the prognosis of acute ischemic stroke patients with intravenous thrombolysis. Int J Neurosci. 2019;129(4):344–9.CrossRefGoogle ScholarPubMed
Altintas, O, Altintas, MO, Tasal, A, Kucukdagli, OT, Asil, T. The relationship of platelet-to-lymphocyte ratio with clinical outcome and final infarct core in acute ischemic stroke patients who have undergone endovascular therapy. Neurol Res. 2016;38(9):759–65.CrossRefGoogle ScholarPubMed
Chen, Z, Huang, Y, Li, S, et al. Platelet-to-white blood cell ratio: a prognostic predictor for 90-day outcomes in ischemic stroke patients with intravenous thrombolysis. J Stroke Cerebrovasc Dis. 2016;25(10):2430–8.CrossRefGoogle ScholarPubMed
Jin, P, Li, X, Chen, J, et al. Platelet-to-neutrophil ratio is a prognostic marker for 90-days outcome in acute ischemic stroke. J Clin Neurosci. 2019;63:110–5.CrossRefGoogle ScholarPubMed
Pikija, S, Cvetko, D, Hajduk, M, Trkulja, V. Higher mean platelet volume determined shortly after the symptom onset in acute ischemic stroke patients is associated with a larger infarct volume on CT brain scans and with worse clinical outcome. Clin Neurol Neurosurg. 2009;111(7):568–73.CrossRefGoogle Scholar
Mayda-Domaç, F, Misirli, H, Yilmaz, M. Prognostic role of mean platelet volume and platelet count in ischemic and hemorrhagic stroke. J Stroke Cerebrovasc Dis. 2010;19(1):6672.CrossRefGoogle ScholarPubMed
Arévalo-Lorido, JC, Carretero-Gómez, J, Álvarez-Oliva, A, et al. Mean platelet volume in acute phase of ischemic stroke, as predictor of mortality and functional outcome after 1 year. J Stroke Cerebrovasc Dis. 2013;22(4):297303.CrossRefGoogle ScholarPubMed
Peng, F, Zheng, W, Li, F, et al. Elevated mean platelet volume is associated with poor outcome after mechanical thrombectomy. J Neurointerv Surg. 2018;10(1):25–8.CrossRefGoogle ScholarPubMed
Oji, S, Tomohisa, D, Hara, W, et al. Mean platelet volume is associated with early neurological deterioration in patients with branch atheromatous disease: involvement of platelet activation. J Stroke Cerebrovasc Dis. 2018;27(6):1624–31.CrossRefGoogle ScholarPubMed
İnanç, Y, Giray, S, İnanç, Y. Mean platelet volume, C-reactive protein, and prognosis in patients with acute ischemic stroke following intravenous thrombolytic treatment. Med Sci Monit. 2018;24:3782–8.CrossRefGoogle ScholarPubMed
Staszewski, J, Pogoda, A, Data, K, et al. The mean platelet volume on admission predicts unfavorable stroke outcomes in patients treated with IV thrombolysis. Clin Interv Aging. 2019;14:493503.CrossRefGoogle ScholarPubMed
Du, J, Wang, Q, He, B, et al. Association of mean platelet volume and platelet count with the development and prognosis of ischemic and hemorrhagic stroke. Int J Lab Hematol. 2016;38(3):233–9.CrossRefGoogle ScholarPubMed
Chen, X, Liu, Z, Miao, J, et al. High stress hyperglycemia ratio predicts poor outcome after mechanical thrombectomy for ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(6):1668–73.CrossRefGoogle ScholarPubMed
Marulaiah, SK, Reddy, MP, Basavegowda, M, Ramaswamy, P, Adarsh, LS. Admission hyperglycemia an independent predictor of outcome in acute ischemic stroke: A longitudinal study from a tertiary care hospital in South India. Niger J Clin Pract. 2017;20(5):573–80.Google ScholarPubMed
Jing, J, Pan, Y, Zhao, X, et al. Insulin resistance and prognosis of nondiabetic patients with ischemic stroke: the ACROSS-China study (Abnormal Glucose Regulation in Patients With Acute Stroke Across China). Stroke. 2017;48(4):887–93.CrossRefGoogle ScholarPubMed
Pan, Y, Jing, J, Chen, W, et al. Post-glucose load measures of insulin resistance and prognosis of nondiabetic patients with ischemic stroke. J Am Heart Assoc. 2017;6(1).CrossRefGoogle ScholarPubMed
Bielewicz, J, Kurzepa, J, Czekajska-Chehab, E, Stelmasiak, Z, Bartosik-Psujek, H. Does serum Tau protein predict the outcome of patients with ischemic stroke? J Mol Neurosci. 2011;43(3):241–5.CrossRefGoogle ScholarPubMed
Wang, Y, Zhou, S, Bao, J, Pan, S, Zhang, X. Low T3 levels as a predictor marker predict the prognosis of patients with acute ischemic stroke. Int J Neurosci. 2017;127(7):559–66.CrossRefGoogle ScholarPubMed
Suda, S, Muraga, K, Kanamaru, T, et al. Low free triiodothyronine predicts poor functional outcome after acute ischemic stroke. J Neurol Sci. 2016;368:8993.CrossRefGoogle ScholarPubMed
Dhital, R, Poudel, DR, Tachamo, N, et al. Ischemic stroke and impact of thyroid profile at presentation: a systematic review and meta-analysis of observational studies. J Stroke Cerebrovasc Dis. 2017;26(12):2926–34.CrossRefGoogle ScholarPubMed
Suda, S, Aoki, J, Shimoyama, T, et al. Low free triiodothyronine at admission predicts poststroke infection. J Stroke Cerebrovasc Dis. 2018;27(2):397403.CrossRefGoogle ScholarPubMed
Jiang, X, Xing, H, Wu, J, et al. Prognostic value of thyroid hormones in acute ischemic stroke – a meta analysis. Sci Rep. 2017;7(1):16256.CrossRefGoogle ScholarPubMed
Suda, S, Shimoyama, T, Nagai, K, et al. Low free triiodothyronine predicts 3-month poor outcome after acute stroke. J Stroke Cerebrovasc Dis. 2018;27(10):2804–9.CrossRefGoogle ScholarPubMed
Feng, X, Zhou, X, Yu, F, et al. Low-normal free triiodothyronine and high leukocyte levels in relation to stroke severity and poor outcome in acute ischemic stroke with intracranial atherosclerotic stenosis. Int J Neurosci. 2019;129(7):635–41.CrossRefGoogle ScholarPubMed
Li, L-Q, Xu, X-Y, Li, W-Y, Hu, X-Y, Lv, W. The prognostic value of total T3 after acute cerebral infarction is age-dependent: a retrospective study on 768 patients. BMC Neurol. 2019;19(1):54.CrossRefGoogle ScholarPubMed
Cho, H-J, Kim, S-S, Sung, S-M, Jung, D-S. Impact of thyroid autoantibodies on functional outcome in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(7):1915–20.CrossRefGoogle ScholarPubMed
Brea, D, Blanco, M, Sobrino, T, Ramos-Cabrer, P, Castillo, J. [The levels of expression of toll-like receptors 2 and 4 in neutrophils are associated with the prognosis of ischaemic stroke patients]. Rev Neurol. 2011;52(1):12–9.Google ScholarPubMed
Seet, RCS, Kasiman, K, Gruber, J, et al. Is uric acid protective or deleterious in acute ischemic stroke? A prospective cohort study. Atherosclerosis. 2010;209(1):215–19.CrossRefGoogle ScholarPubMed
Kurzepa, J, Bielewicz, J, Stelmasiak, Z, Bartosik-Psujek, H. Serum bilirubin and uric acid levels as the bad prognostic factors in the ischemic stroke. Int J Neurosci. 2009;119(12):2243–9.CrossRefGoogle ScholarPubMed
Wang, P, Li, X, He, C, et al. Hyperuricemia and prognosis of acute ischemic stroke in diabetic patients. Neurol Res. 2019;41(3):250–6.CrossRefGoogle ScholarPubMed
Cuadrado-Godia, E, Ois, A, Garcia-Ramallo, E, et al. Biomarkers to predict clinical progression in small vessel disease strokes: prognostic role of albuminuria and oxidized LDL cholesterol. Atherosclerosis. 2011;219(1):368–72.CrossRefGoogle ScholarPubMed
Das, S, Yadav, U, Ghosh, KC, et al. A clinical study of ischaemic strokes with micro-albuminuria for risk stratification, short-term predictive value and outcome. J Indian Med Assoc. 2012;110(12):908–10, 919.Google Scholar
Li, F, Chen, Q-X, Peng, B, et al. Microalbuminuria in patients with acute ischemic stroke. Neurol Res. 2019;41(6):498503.Google ScholarPubMed
Turetsky, A, Goddeau, RP Jr, Henninger, N. Low serum vitamin D is independently associated with larger lesion volumes after ischemic stroke. J Stroke Cerebrovasc Dis. 2015;24(7):1555–63.CrossRefGoogle ScholarPubMed
Park, K-Y, Chung, P-W, Kim, YB, et al. Serum vitamin D status as a predictor of prognosis in patients with acute ischemic stroke. Cerebrovasc Dis. 2015;40(1–2):7380.CrossRefGoogle ScholarPubMed
Daumas, A, Daubail, B, Legris, N, et al. Association between admission serum 25-hydroxyvitamin D levels and functional outcome of thrombolyzed stroke patients. J Stroke Cerebrovasc Dis. 2016;25(4):907–13.CrossRefGoogle ScholarPubMed
Xu, T, Zhong, C, Xu, T, et al. Serum 25-hydroxyvitamin D deficiency predicts long-term poor prognosis among ischemic stroke patients without hyperglycaemia. Clin Chim Acta. 2017;471:81–5.CrossRefGoogle ScholarPubMed
Wei, Z-N, Kuang, J-G. Vitamin D deficiency in relation to the poor functional outcomes in nondiabetic patients with ischemic stroke. Biosci Rep. 2018;38(2):BSR20171609.CrossRefGoogle Scholar
Alfieri, DF, Lehmann, MF, Oliveira, SR, et al. Vitamin D deficiency is associated with acute ischemic stroke, C-reactive protein, and short-term outcome. Metab Brain. Dis 2017;32(2):493502.CrossRefGoogle ScholarPubMed
Grau, AJ, Boddy, AW, Dukovic, DA, et al. Leukocyte count as an independent predictor of recurrent ischemic events. Stroke. 2004;35(5):1147–52.CrossRefGoogle ScholarPubMed
Elkind, MSV, Cheng, J, Rundek, T, Boden-Albala, B, Sacco, RL. Leukocyte count predicts outcome after ischemic stroke: the Northern Manhattan Stroke Study. J Stroke Cerebrovasc Dis. 2004;13(5):220–7.CrossRefGoogle ScholarPubMed
Nardi, K, Milia, P, Eusebi, P, et al. Admission leukocytosis in acute cerebral ischemia: influence on early outcome. J Stroke Cerebrovasc Dis. 2012;21(8):819–24.CrossRefGoogle ScholarPubMed
Nikanfar, M, Shaafi, S, Hashemilar, M, Oskouii, DS, Goldust, M. Evaluating role of leukocytosis and high sedimentation rate as prognostic factors in acute ischemic cerebral strokes. Pak J Biol Sci. 2012;15(8):386–90.CrossRefGoogle ScholarPubMed
Kumar, AD, Boehme, AK, Siegler, JE, et al. Leukocytosis in patients with neurologic deterioration after acute ischemic stroke is associated with poor outcomes. J Stroke Cerebrovasc Dis. 2013;22(7):e111–7.CrossRefGoogle ScholarPubMed
Ye, J-K, Zhang, J-T, Kong, Y, et al. [Relationship between white blood cell count, neutrophils ratio and erythrocyte sedimentation rate and short clinical outcomes among patients with acute ischemic stroke at hospital admission]. Zhonghua Liu Xing Bing Xue Za Zhi. 2012;33(9):956–60.Google ScholarPubMed
Kim, J, Song, T-J, Park, JH, et al. Different prognostic value of white blood cell subtypes in patients with acute cerebral infarction. Atherosclerosis. 2012;222(2):464–7.CrossRefGoogle ScholarPubMed
Wu, J, Zhang, J, Xu, T, et al. [Neutrophil ratio/blood glucose and poor short outcome among patients with acute ischemic stroke]. Zhonghua Liu Xing Bing Xue Za Zhi. 2014;35(7):861–4.Google ScholarPubMed
Heikinheimo, T, Putaala, J, Haapaniemi, E, Kaste, M, Tatlisumak, T. Leucocyte count in young adults with first-ever ischaemic stroke: associated factors and association on prognosis. Int J Stroke. 2015;10(2):245–50.CrossRefGoogle ScholarPubMed
Furlan, JC, Vergouwen, MDI, Fang, J, Silver, FL. White blood cell count is an independent predictor of outcomes after acute ischaemic stroke. Eur J Neurol. 2014;21(2):215–22.CrossRefGoogle ScholarPubMed
Qu, X, Shi, J, Cao, Y, Zhang, M, Xu, J. Prognostic value of white blood cell counts and c-reactive protein in acute ischemic stroke patients after intravenous thrombolysis. Curr Neurovasc Res. 2018;15(1):1017.CrossRefGoogle ScholarPubMed
Zheng, X, Zeng, N, Wang, A, et al. Prognostic value of white blood cell in acute ischemic stroke patients. Curr Neurovasc Res. 2018;15(2):151–7.CrossRefGoogle ScholarPubMed
Malhotra, K, Goyal, N, Chang, JJ, et al. Differential leukocyte counts on admission predict outcomes in patients with acute ischaemic stroke treated with intravenous thrombolysis. Eur J Neurol. 2018;25(12):1417–24.CrossRefGoogle ScholarPubMed
Chen, J, Zhang, Z, Chen, L, et al. Correlation of changes in leukocytes levels 24 hours after intravenous thrombolysis with prognosis in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. 2018;27(10):2857–62.CrossRefGoogle ScholarPubMed
Shi, J, Peng, H, You, S, et al. Increase in neutrophils after recombinant tissue plasminogen activator thrombolysis predicts poor functional outcome of ischaemic stroke: a longitudinal study. Eur J Neurol. 2018;25(4):687.CrossRefGoogle ScholarPubMed
Xue, J, Huang, W, Chen, X, et al. Neutrophil-to-lymphocyte ratio is a prognostic marker in acute ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(3):650–7.CrossRefGoogle ScholarPubMed
Qun, S, Tang, Y, Sun, J, et al. Neutrophil-to-lymphocyte ratio predicts 3-month outcome of acute ischemic stroke. Neurotox Res. 2017;31(3):444–52.CrossRefGoogle ScholarPubMed
Zhang, J, Ren, Q, Song, Y, et al. Prognostic role of neutrophil-lymphocyte ratio in patients with acute ischemic stroke. Medicine. 2017;96(45):e8624.CrossRefGoogle ScholarPubMed
Duan, Z, Wang, H, Wang, Z, et al. Neutrophil-lymphocyte ratio predicts functional and safety outcomes after endovascular treatment for acute ischemic stroke. Cerebrovasc Dis. 2018;45(5–6):221–7.CrossRefGoogle ScholarPubMed
Pektezel, MY, Yilmaz, E, Arsava, EM, Topcuoglu, MA. Neutrophil-to-lymphocyte ratio and response to intravenous thrombolysis in patients with acute ischemic stroke. J Stroke Cerebrovasc Dis. 2019;28(7):1853–9.CrossRefGoogle ScholarPubMed
Maestrini, I, Strbian, D, Gautier, S, et al. Higher neutrophil counts before thrombolysis for cerebral ischemia predict worse outcomes. Neurology. 2015;85(16):1408–16.CrossRefGoogle ScholarPubMed
Pikija, S, Sztriha, LK, Killer-Oberpfalzer, M, et al. Neutrophil to lymphocyte ratio predicts intracranial hemorrhage after endovascular thrombectomy in acute ischemic stroke. J Neuroinflammation. 2018;15(1):319.CrossRefGoogle ScholarPubMed
Inanc, Y, Inanc, Y. The effects of neutrophil to lymphocyte and platelet to lymphocyte ratios on prognosis in patients undergoing mechanical thrombectomy for acute ischemic stroke. Ann Ital Chir. 2018;89:367–73.Google ScholarPubMed
Liberale, L, Montecucco, F, Bonaventura, A, et al. Monocyte count at onset predicts poststroke outcomes during a 90-day follow-up. Eur J Clin Invest. 2017;47(10):702–10.CrossRefGoogle ScholarPubMed
Ren, H, Liu, X, Wang, L, Gao, Y. Lymphocyte-to-monocyte ratio: a novel predictor of the prognosis of acute ischemic stroke. J Stroke Cerebrovasc Dis. 2017;26(11):2595–602.CrossRefGoogle ScholarPubMed
De Smedt, A, Brouns, R, Uyttenboogaart, M, et al. Insulin-like growth factor I serum levels influence ischemic stroke outcome. Stroke. 2011;42(8):2180–5.CrossRefGoogle ScholarPubMed
Osthoff, M, Katan, M, Fluri, F, et al. Mannose-binding lectin deficiency is associated with smaller infarction size and favorable outcome in ischemic stroke patients. PLoS One. 2011;6(6):e21338.CrossRefGoogle ScholarPubMed
Zhang, Z-G, Wang, C, Wang, J, et al. Prognostic value of mannose-binding lectin: 90-day outcome in patients with acute ischemic stroke. Mol Neurobiol. 2015;51(1):230–9.CrossRefGoogle ScholarPubMed
Song, F-Y, Wu, M-H, Zhu, L-H, et al. Elevated serum mannose-binding lectin levels are associated with poor outcome after acute ischemic stroke in patients with type 2 diabetes. Mol Neurobiol. 2015;52(3):1330–40.CrossRefGoogle ScholarPubMed
Deng, Q-W, Li, S, Wang, H, et al. The short-term prognostic value of the triglyceride-to-high-density lipoprotein cholesterol ratio in acute ischemic stroke. Aging Dis. 2018;9(3):498506.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×