Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T00:20:26.638Z Has data issue: false hasContentIssue false

Chapter 13 - Prognostication in Sepsis-Associated Encephalopathy

from Part I - Disease-Specific Prognostication

Published online by Cambridge University Press:  14 November 2024

David M. Greer
Affiliation:
Boston University School of Medicine and Boston Medical Center
Neha S. Dangayach
Affiliation:
Icahn School of Medicine at Mount Sinai and Mount Sinai Health System
Get access

Summary

Sepsis, a life-threatening dysregulated host response to infection, represents the leading cause of death among adults in US hospitals and remains one of the most prevalent causes of death in children worldwide.[1,2] Every year in the United States, 1 in 1,000 people will become septic, and over half of these will require intensive care.[3,4] The estimated 5-year mortality related to sepsis approaches 80%.[5] Following the widespread implementation of sepsis guidelines, 3-year absolute mortality has significantly decreased by 20%.[6] The increased survivorship of sepsis patients has prompted the investigation of long-term outcomes including cognitive, psychiatric, functional, and quality-of-life sequelae.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kutko, MC, Calarco, MP, Flaherty, MB, et al. Mortality rates in pediatric septic shock with and without multiple organ system failure. Pediatr Crit Care Med. 2003;4:333–7.CrossRefGoogle ScholarPubMed
Lagu, T, Rothberg, MB, Shieh, MS, et al. Hospitalizations, costs, and outcomes of severe sepsis in the United States 2003 to 2007. Crit Care Med. 2012;40:754–61.CrossRefGoogle ScholarPubMed
Iwashyna, TJ, Cooke, CR, Wunsch, H, Kahn, JM. Population burden of long-term survivorship after severe sepsis in older Americans. J Am Geriatr Soc. 2012;60:1070–7.CrossRefGoogle ScholarPubMed
Stevenson, EK, Rubenstein, AR, Radin, GT, Wiener, RS, Walkey, AJ. Two decades of mortality trends among patients with severe sepsis: a comparative meta-analysis. Crit Care Med. 2014;42:625–31.CrossRefGoogle ScholarPubMed
Iwashyna, TJ, Ely, EW, Smith, DM, Langa, KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. 2010;304:1787–94.CrossRefGoogle ScholarPubMed
Castellanos-Ortega, A, Suberviola, B, Garcia-Astudillo, LA, et al. Impact of the Surviving Sepsis Campaign protocols on hospital length of stay and mortality in septic shock patients: results of a three-year follow-up quasi-experimental study. Crit Care Med. 2010;38:1036–43.CrossRefGoogle ScholarPubMed
Widmann, CN, Heneka, MT. Long-term cerebral consequences of sepsis. Lancet Neurol. 2014;13:630–6.CrossRefGoogle ScholarPubMed
Gofton, TE, Young, GB. Sepsis-associated encephalopathy. Nat Rev Neurol. 2012;8:557–66.CrossRefGoogle ScholarPubMed
Lamar, CD, Hurley, RA, Taber, KH. Sepsis-associated encephalopathy: review of the neuropsychiatric manifestations and cognitive outcome. J Neuropsychiatry Clin Neurosci. 2011;23:237–41.CrossRefGoogle ScholarPubMed
Chaudhry, N, Duggal, AK. Sepsis associated encephalopathy. Adv Med. 2014;2014:762320.CrossRefGoogle ScholarPubMed
Papadopoulos, MC, Davies, DC, Moss, RF, Tighe, D, Bennett, ED. Pathophysiology of septic encephalopathy: a review. Crit Care Med. 2000;28:3019–24.CrossRefGoogle ScholarPubMed
Consales, G, De Gaudio, AR. Sepsis associated encephalopathy. Minerva Anestesiol. 2005;71:3952.Google ScholarPubMed
Jacob, A, Brorson, JR, Alexander, JJ. Septic encephalopathy: inflammation in man and mouse. Neurochem Int. 2011;58:472–6.CrossRefGoogle ScholarPubMed
Davies, DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours. J Anat. 2002;200:639–46.Google ScholarPubMed
Polito, A, Eischwald, F, Maho, AL, et al. Pattern of brain injury in the acute setting of human septic shock. Crit Care. 2013;17:R204.CrossRefGoogle Scholar
Zhang, QH, Sheng, ZY, Yao, YM. Septic encephalopathy: when cytokines interact with acetylcholine in the brain. Mil Med Res. 2014;1:20.Google ScholarPubMed
Szatmári, S, Végh, T, Csomós, Á, et al. Impaired cerebrovascular reactivity in sepsis-associated encephalopathy studied by acetazolamide test. Crit Care. 2010;14:R50.CrossRefGoogle ScholarPubMed
Sharshar, T, Annane, D, de la Grandmaison, GL, et al. The neuropathology of septic shock. Brain Pathol. 2004;14:2133.CrossRefGoogle ScholarPubMed
Tang, AT, Choi, JP, Kotzin, JJ, et al. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature. 2017;545:305–10.CrossRefGoogle ScholarPubMed
Singer, BH, Dickson, RP, Denstaedt, SJ, et al. Bacterial dissemination to the brain in sepsis. Am J Respir Crit Care Med. 2018;197:747–56.CrossRefGoogle Scholar
Bozza, FA, D’Avila, JC, Ritter, C, Sonneville, R, Sharshar, T, Dal-Pizzol, F. Bioenergetics, mitochondrial dysfunction, and oxidative stress in the pathophysiology of septic encephalopathy. Shock (Augusta, Ga). 2013;39 Suppl 1:1016.CrossRefGoogle ScholarPubMed
Sprung, CL, Peduzzi, PN, Shatney, CH, et al. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med. 1990;18:801–6.CrossRefGoogle ScholarPubMed
Eidelman, LA, Putterman, D, Putterman, C, Sprung, CL. The spectrum of septic encephalopathy. Definitions, etiologies, and mortalities. JAMA. 1996;275:470–3.CrossRefGoogle ScholarPubMed
Zhang, LN, Wang, XT, Ai, YH, et al. Epidemiological features and risk factors of sepsis-associated encephalopathy in intensive care unit patients: 2008–2011. Chin Med J (Engl). 2012;125:828–31.Google ScholarPubMed
Suchyta, MR, Jephson, A, Hopkins, RO. Neurologic changes during critical illness: brain imaging findings and neurobehavioral outcomes. Brain Imaging Behav. 2010;4:2234.CrossRefGoogle ScholarPubMed
Raicevic, R, Jovicic, A, Dimitrijevic, R, Surbatovic, M, Marenovic, T. [Septic encephalopathy–prognostic value of the intensity of consciousness disorder to the outcome of sepsis]. Vojnosanit Pregl. 2001;58:151–6.Google Scholar
Semmler, A, Widmann, CN, Okulla, T, et al. Persistent cognitive impairment, hippocampal atrophy and EEG changes in sepsis survivors. J Neurol Neurosurg Psychiatry. 2013;84:62–9.CrossRefGoogle ScholarPubMed
Gunther, ML, Morandi, A, Krauskopf, E, et al. The association between brain volumes, delirium duration, and cognitive outcomes in intensive care unit survivors: the VISIONS cohort magnetic resonance imaging study. Crit Care Med. 2012;40:2022–32.CrossRefGoogle ScholarPubMed
Guerra, C, Hua, M, Wunsch, H. Risk of a diagnosis of dementia for elderly medicare beneficiaries after intensive care. Anesthesiology. 2015;123:1105–12.CrossRefGoogle ScholarPubMed
Shah, FA, Pike, F, Alvarez, K, et al. Bidirectional relationship between cognitive function and pneumonia. Am J Respir Crit Care Med. 2013;188:586–92.CrossRefGoogle ScholarPubMed
Jackson, JC, Gordon, SM, Ely, EW, Burger, C, Hopkins, RO. Research issues in the evaluation of cognitive impairment in intensive care unit survivors. Intensive Care Med. 2004;30:2009–16.CrossRefGoogle ScholarPubMed
Girard, TD, Jackson, JC, Pandharipande, PP, et al. Delirium as a predictor of long-term cognitive impairment in survivors of critical illness. Crit Care Med. 2010;38:1513–20.CrossRefGoogle ScholarPubMed
Hopkins, RO, Weaver, LK, Pope, D, et al. Neuropsychological sequelae and impaired health status in survivors of severe acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999;160:50–6.CrossRefGoogle ScholarPubMed
Hopkins, RO, Weaver, LK, Collingridge, D, et al. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. Am J Respir Crit Care Med. 2005;171:340–7.CrossRefGoogle ScholarPubMed
Grasselli, G, Zangrillo, A, Zanella, A, et al. Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy region, Italy. JAMA. 2020;323(16):1574–81.CrossRefGoogle ScholarPubMed
Al-Dalahmah, O, Thakur, KT, Nordvig, AS, et al. Neuronophagia and microglial nodules in a SARS-CoV-2 patient with cerebellar hemorrhage. Acta Neuropathol Commun. 2020;8:17.CrossRefGoogle Scholar
Thakur, KT, Miller, EH, Glendinning, MD, et al. COVID-19 neuropathology at Columbia University Irving Medical center/New York Presbyterian Hospital. Brain. 2021;144(9):26962708.CrossRefGoogle ScholarPubMed
Tan, Y-K, Goh, C, Leow, AS, et al. COVID-19 and ischemic stroke: a systematic review and meta-summary of the literature. J Thromb Thrombolysis. 2020;50:587–95.CrossRefGoogle ScholarPubMed
Boehme, AK, Doyle, K, Thakur, KT, et al. Disorders of consciousness in hospitalized patients with COVID-19: the role of the systemic inflammatory response syndrome. Neurocrit Care. 2022;36(1):8996.CrossRefGoogle ScholarPubMed
Huang, C, Huang, L, Wang, Y, et al. 6-month consequences of COVID-19 in patients discharged from hospital: a cohort study. Lancet. 2021;397:220–32.CrossRefGoogle ScholarPubMed
Barichello, T, Sayana, P, Giridharan, VV, et al. Long-term cognitive outcomes after sepsis: a translational systematic review. Mol Neurobiol. 2019;56:186251.CrossRefGoogle ScholarPubMed
Barichello, T, Martins, MR, Reinke, A, et al. Cognitive impairment in sepsis survivors from cecal ligation and perforation. Crit Care Med. 2005;33:221–3; discussion 262–223.Google ScholarPubMed
Barichello, T, Martins, MR, Reinke, A, et al. Long-term cognitive impairment in sepsis survivors. Crit Care Med. 2005;33:1671.CrossRefGoogle ScholarPubMed
Semmler, A, Frisch, C, Debeir, T, et al. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. Exp Neurol. 2007;204:733–70.CrossRefGoogle Scholar
Streck, EL, Comim, CM, Barichello, T, Quevedo, J. The septic brain. Neurochem Res. 2008;33:2171–7.CrossRefGoogle ScholarPubMed
Davydow, DS, Hough, CL, Langa, KM, Iwashyna, TJ. Symptoms of depression in survivors of severe sepsis: a prospective cohort study of older Americans. Am J Geriatr Psychiatry. 2013;21:887–97.CrossRefGoogle ScholarPubMed
Tuon, L, Comim, CM, Antunes, MM, et al. Imipramine reverses the depressive symptoms in sepsis survivor rats. Intensive Care Med. 2007;33:2165–7.CrossRefGoogle ScholarPubMed
Myhren, H, Ekeberg, O, Toien, K, Karlsson, S, Stokland, O. Posttraumatic stress, anxiety and depression symptoms in patients during the first year post intensive care unit discharge. Crit Care. 2010;14:R14.CrossRefGoogle ScholarPubMed
Schelling, G, Stoll, C, Kapfhammer, HP, et al. The effect of stress doses of hydrocortisone during septic shock on posttraumatic stress disorder and health-related quality of life in survivors. Crit Care Med. 1999;27:2678–83.CrossRefGoogle ScholarPubMed
Yende, S, Austin, S, Rhodes, A, et al. Long-term quality of life among survivors of severe sepsis: analyses of two international trials. Crit Care Med. 2016;44:1461–7.CrossRefGoogle ScholarPubMed
Heyland, DK, Hopman, W, Coo, H, Tranmer, J, McColl, MA. Long-term health-related quality of life in survivors of sepsis. Short Form 36: a valid and reliable measure of health-related quality of life. Crit Care Med. 2000;28:35993605.CrossRefGoogle ScholarPubMed
Bakhuizen, SE, de Haan, TR, Teune, MJ, et al. Meta-analysis shows that infants who have suffered neonatal sepsis face an increased risk of mortality and severe complications. Acta Paediatr. 2014;103:1211–18.CrossRefGoogle ScholarPubMed
Kaur, J, Singhi, P, Singhi, S, Malhi, P, Saini, AG. Neurodevelopmental and behavioral outcomes in children with sepsis-associated encephalopathy admitted to pediatric intensive care unit: a prospective case control study. J Child Neurol. 2016;31:683–90.CrossRefGoogle ScholarPubMed
Bronner, MB, Knoester, H, Sol, JJ, et al. An explorative study on quality of life and psychological and cognitive function in pediatric survivors of septic shock. Pediatr Crit Care Med. 2009;10:636–42.CrossRefGoogle Scholar
Zenaide, PV, Gusmao-Flores, D. Biomarkers in septic encephalopathy: a systematic review of clinical studies. Rev Bras Ter Intensiva. 2013;25:5662.CrossRefGoogle ScholarPubMed
Iacobone, E, Bailly-Salin, J, Polito, A, et al. Sepsis-associated encephalopathy and its differential diagnosis. Crit Care Med. 2009;37:S331–6.CrossRefGoogle ScholarPubMed
Pierrakos, C, Vincent, JL. Sepsis biomarkers: a review. Crit Care. 2010;14:R15.CrossRefGoogle ScholarPubMed
Piazza, O, Russo, E, Cotena, S, Esposito, G, Tufano, R. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. Br J Anaesth. 2007;99:518–21.CrossRefGoogle Scholar
Berger, RP, Adelson, PD, Pierce, MC, et al. Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg. 2005;103:61–8.Google ScholarPubMed
Isgro, MA, Bottoni, P, Scatena, R. Neuron-specific enolase as a biomarker: biochemical and clinical aspects. Adv Exp Med Biol. 2015;867:125–43.CrossRefGoogle ScholarPubMed
Nguyen, DN, Spapen, H, Su, F, et al. Elevated serum levels of S-100beta protein and neuron-specific enolase are associated with brain injury in patients with severe sepsis and septic shock. Crit Care Med. 2006;34:1967–74.CrossRefGoogle ScholarPubMed
Yao, B, Zhang, LN, Ai, YH, Liu, ZY, Huang, L. Serum S100beta is a better biomarker than neuron-specific enolase for sepsis-associated encephalopathy and determining its prognosis: a prospective and observational study. Neurochem Res. 2014;39:1263–9.CrossRefGoogle ScholarPubMed
Zhang, LN, Wang, XH, Wu, L, et al. Diagnostic and predictive levels of calcium-binding protein A8 and tumor necrosis factor receptor-associated factor 6 in sepsis-associated encephalopathy: a prospective observational study. Chin Med J (Engl). 2016;129:1674–81.Google ScholarPubMed
Wu, L, Ai, ML, Feng, Q, et al. Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. J Crit Care. 2019;52:172–9.CrossRefGoogle ScholarPubMed
Ehler, J, Petzold, A, Wittstock, M, et al. The prognostic value of neurofilament levels in patients with sepsis-associated encephalopathy – a prospective, pilot observational study. PLoS One. 2019;14:e0211184.CrossRefGoogle ScholarPubMed
van den Boogaard M, , Kox, M, Quinn, KL, et al. Biomarkers associated with delirium in critically ill patients and their relation with long-term subjective cognitive dysfunction; indications for different pathways governing delirium in inflamed and noninflamed patients. Crit Care. 2011;15:R297.CrossRefGoogle ScholarPubMed
Fioretto, JR, Martin, JG, Kurokawa, CS, et al. Interleukin-6 and procalcitonin in children with sepsis and septic shock. Cytokine. 2008;43:160–4.CrossRefGoogle ScholarPubMed
Orhun, G, Tuzun, E, Ozcan, PE, et al. Association between inflammatory markers and cognitive outcome in patients with acute brain dysfunction due to sepsis. Noro Psikiyatr Ars. 2019;56:6370.Google ScholarPubMed
Hsu, AA, Fenton, K, Weinstein, S, et al. Neurological injury markers in children with septic shock. Pediatr Crit Care Med. 2008;9:245–51.CrossRefGoogle ScholarPubMed
Hamed, SA, Hamed, EA, Abdella, MM. Septic encephalopathy: relationship to serum and cerebrospinal fluid levels of adhesion molecules, lipid peroxides and S-100B protein. Neuropediatrics. 2009;40:6672.CrossRefGoogle ScholarPubMed
Bersani, I, Auriti, C, Ronchetti, MP, et al. Use of early biomarkers in neonatal brain damage and sepsis: state of the art and future perspectives. Biomed Res Int. 2015;2015:253520.CrossRefGoogle ScholarPubMed
Young, GB, Bolton, CF, Archibald, YM, Austin, TW, Wells, GA. The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiol. 1992;9:145–52.CrossRefGoogle ScholarPubMed
Hosokawa, K, Gaspard, N, Su, F, et al. Clinical neurophysiological assessment of sepsis-associated brain dysfunction: a systematic review. Crit Care. 2014;18:674.CrossRefGoogle ScholarPubMed
Oddo, M, Carrera, E, Claassen, J, Mayer, SA, Hirsch, LJ. Continuous electroencephalography in the medical intensive care unit. Crit Care Med. 2009;37:2051–6.CrossRefGoogle ScholarPubMed
Fox, J, Lekoubou, A, Bishu, KG, Ovbiagele, B. Seizure comorbidity boosts odds of 30-day readmission after an index hospitalization for sepsis. Epilepsy Behav. 2019;95:148–53.CrossRefGoogle ScholarPubMed
Azabou, E, Magalhaes, E, Braconnier, A, et al. Early standard electroencephalogram abnormalities predict mortality in septic intensive care unit patients. PLoS One. 2015;10:e0139969.CrossRefGoogle ScholarPubMed
Berisavac, II, Padjen, VV, Ercegovac, MD, et al. Focal epileptic seizures, electroencephalography and outcome of sepsis associated encephalopathy-A pilot study. Clin Neurol Neurosurg. 2016;148:60–6.CrossRefGoogle ScholarPubMed
Gilmore, EJ, Gaspard, N, Choi, HA, et al. Acute brain failure in severe sepsis: a prospective study in the medical intensive care unit utilizing continuous EEG monitoring. Intensive Care Med. 2015;41:686–94.CrossRefGoogle ScholarPubMed
Helderman, JB, Welch, CD, Leng, X, O’Shea, TM. Sepsis-associated electroencephalographic changes in extremely low gestational age neonates. Early Hum Dev. 2010;86:509–13.CrossRefGoogle ScholarPubMed
Urtecho, J, Snapp, M, Sperling, M, et al. Hospital mortality in primary admissions of septic patients with status epilepticus in the United States. Crit Care Med. 2013;41:1853–62.CrossRefGoogle ScholarPubMed
Kafa, IM, Bakirci, S, Uysal, M, Kurt, MA. Alterations in the brain electrical activity in a rat model of sepsis-associated encephalopathy. Brain Res. 2010;1354:217–26.CrossRefGoogle Scholar
Zauner, C, Gendo, A, Kramer, L, et al. Impaired subcortical and cortical sensory evoked potential pathways in septic patients. Crit Care Med. 2002;30:1136–9.CrossRefGoogle ScholarPubMed
Sharshar, T, Carlier, R, Bernard, F, et al. Brain lesions in septic shock: a magnetic resonance imaging study. Intensive Care Med. 2007;33:798806.CrossRefGoogle ScholarPubMed
Piazza, O, Cotena, S, De Robertis, E, Caranci, F, Tufano, R. Sepsis associated encephalopathy studied by MRI and cerebral spinal fluid S100B measurement. Neurochem Res. 2009;34:1289–92.CrossRefGoogle ScholarPubMed
Stubbs, DJ, Yamamoto, AK, Menon, DK. Imaging in sepsis-associated encephalopathy–insights and opportunities. Nat Rev Neurol. 2013;9:551–61.CrossRefGoogle ScholarPubMed
Jackson, AC, Gilbert, JJ, Young, GB, Bolton, CF. The encephalopathy of sepsis. Can J Neurol Sci. 1985;12:303–7.CrossRefGoogle ScholarPubMed
Szatmari, S, Vegh, T, Csomos, A, et al. Impaired cerebrovascular reactivity in sepsis-associated encephalopathy studied by acetazolamide test. Crit Care. 2010;14:R50.CrossRefGoogle ScholarPubMed
Fulesdi, B, Szatmari, S, Antek, C, et al. Cerebral vasoreactivity to acetazolamide is not impaired in patients with severe sepsis. J Crit Care. 2012;27:337–43.CrossRefGoogle Scholar
Matta, BF, Stow, PJ. Sepsis-induced vasoparalysis does not involve the cerebral vasculature: indirect evidence from autoregulation and carbon dioxide reactivity studies. Br J Anaesth. 1996;76:790–4.CrossRefGoogle Scholar
Terborg, C, Schummer, W, Albrecht, M, et al. Dysfunction of vasomotor reactivity in severe sepsis and septic shock. Intensive Care Med. 2001;27:1231–4.CrossRefGoogle ScholarPubMed
Taccone, FS, Castanares-Zapatero, D, Peres-Bota, D, et al. Cerebral autoregulation is influenced by carbon dioxide levels in patients with septic shock. Neurocrit Care. 2010;12:3542.CrossRefGoogle ScholarPubMed
Rosenblatt, K, Walker, KA, Goodson, C, et al. Cerebral autoregulation-guided optimal blood pressure in sepsis-associated encephalopathy: a case series. J Intensive Care Med. 2020;35(12):1453–64.CrossRefGoogle ScholarPubMed
Reis, C, Akyol, O, Araujo, C, et al. Pathophysiology and the monitoring methods for cardiac arrest associated brain injury. Int J Mol Sci. 2017;18(1):129.CrossRefGoogle ScholarPubMed
Taccone, FS, Su, F, Pierrakos, C, et al. Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care. 2010;14:R140.CrossRefGoogle ScholarPubMed
Rosengarten, B, Hecht, M, Auch, D, et al. Microcirculatory dysfunction in the brain precedes changes in evoked potentials in endotoxin-induced sepsis syndrome in rats. Cerebrovasc Dis. 2007;23:140–7.CrossRefGoogle ScholarPubMed
Nishioku, T, Dohgu, S, Takata, F, et al. Detachment of brain pericytes from the basal lamina is involved in disruption of the blood–brain barrier caused by lipopolysaccharide-induced sepsis in mice. Cell Mol Neurobiol. 2009;29:309–16.CrossRefGoogle ScholarPubMed
Lemstra, AW, Groen in’t Woud, JC, Hoozemans, JJ, et al. Microglia activation in sepsis: a case–control study. J Neuroinflammation. 2007;4:4.CrossRefGoogle ScholarPubMed
van Gool WA, , van de Beek, D, Eikelenboom, P. Systemic infection and delirium: when cytokines and acetylcholine collide. Lancet. 2010;375:773–5.CrossRefGoogle ScholarPubMed
Gamal, M, Moawad, J, Rashed, L, et al. Evaluation of the effects of Eserine and JWH-133 on brain dysfunction associated with experimental endotoxemia. J Neuroimmunol. 2015;281:916.CrossRefGoogle ScholarPubMed
Abramova, AY, Pertsov, SS, Kozlov, AY, et al. Cytokine levels in rat blood and brain structures after administration of lipopolysaccharide. Bull Exp Biol Med. 2013;155:417–20.CrossRefGoogle ScholarPubMed
Imamura, Y, Wang, H, Matsumoto, N, et al. Interleukin-1beta causes long-term potentiation deficiency in a mouse model of septic encephalopathy. Neuroscience. 2011;187:63–9.CrossRefGoogle Scholar
Alexander, JJ, Jacob, A, Cunningham, P, Hensley, L, Quigg, RJ. TNF is a key mediator of septic encephalopathy acting through its receptor, TNF receptor-1. Neurochem Int. 2008;52:447–56.CrossRefGoogle ScholarPubMed
Sharshar, T, Gray, F, Lorin de la Grandmaison, G, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362:17991805.CrossRefGoogle ScholarPubMed
Satta, MA, Jacobs, RA, Kaltsas, GA, Grossman, AB. Endotoxin induces interleukin-1beta and nitric oxide synthase mRNA in rat hypothalamus and pituitary. Neuroendocrinology. 1998;67:109–16.CrossRefGoogle ScholarPubMed
Eckel, B, Ohl, F, Bogdanski, R, Kochs, EF, Blobner, M. Cognitive deficits after systemic induction of inducible nitric oxide synthase: a randomised trial in rats. Eur J Anaesthesiol. 2011;28:655–63.CrossRefGoogle ScholarPubMed
Weberpals, M, Hermes, M, Hermann, S, et al. NOS2 gene deficiency protects from sepsis-induced long-term cognitive deficits. J Neurosci. 2009;29:14177–84.CrossRefGoogle ScholarPubMed
Cepinskas, G, Wilson, JX. Inflammatory response in microvascular endothelium in sepsis: role of oxidants. J Clin Biochem Nutr. 2008;42:175–84.CrossRefGoogle ScholarPubMed
Brealey, D, Karyampudi, S, Jacques, TS, et al. Mitochondrial dysfunction in a long-term rodent model of sepsis and organ failure. Am J Physiol Regul Integr Comp Physiol. 2004;286:R491–7.CrossRefGoogle Scholar
Crouser, ED, Julian, MW, Blaho, DV, Pfeiffer, DR. Endotoxin-induced mitochondrial damage correlates with impaired respiratory activity. Crit Care Med. 2002;30:276–84.CrossRefGoogle ScholarPubMed
Barichello, T, Machado, RA, Constantino, L, et al. Antioxidant treatment prevented late memory impairment in an animal model of sepsis. Crit Care Med. 2007;35:2186–90.CrossRefGoogle Scholar
Gao, R, Kan, MQ, Wang, SG, Yang, RH, Zhang, SG. Disrupted tryptophan metabolism induced cognitive impairment in a mouse model of sepsis-associated encephalopathy. Inflammation. 2016;39:550–60.CrossRefGoogle Scholar
Cassol, OJ Jr, Comim, CM, Constantino, LS, et al. Acute low dose of MK-801 prevents memory deficits without altering hippocampal DARPP-32 expression and BDNF levels in sepsis survivor rats. J Neuroimmunol. 2011;230:4851.CrossRefGoogle ScholarPubMed
Fang, J, Lian, Y, Xie, K, Cai, S, Wen, P. Epigenetic modulation of neuronal apoptosis and cognitive functions in sepsis-associated encephalopathy. Neurol Sci. 2014;35:283–8.CrossRefGoogle ScholarPubMed
Lavy, S, Stein, H. Convulsions in septicemic patients treated by penicillin. The value of electroencephalograph examination. Arch Surg. 1970;100:225–8.CrossRefGoogle ScholarPubMed
Ter Horst, HJ, van Olffen, M, Remmelts, HJ, de Vries, H, Bos, AF. The prognostic value of amplitude integrated EEG in neonatal sepsis and/or meningitis. Acta Paediatr. 2010;99:194200.CrossRefGoogle ScholarPubMed
Azabou, E, Magalhaes, E, Braconnier, A, et al. Early standard electroencephalogram abnormalities predict mortality in septic intensive care unit patients. PLoS One. 2015;10:e0139969.CrossRefGoogle ScholarPubMed
Velissaris, D, Pantzaris, ND, Skroumpelou, A, et al. Electroencephalographic abnormalities in sepsis patients in correlation to the calculated prognostic scores: a case series. J Transl Int Med. 2018;6:176–80.CrossRefGoogle Scholar
Nielsen, RM, Urdanibia-Centelles, O, Vedel-Larsen, E, et al. Continuous EEG monitoring in a consecutive patient cohort with sepsis and delirium. Neurocrit Care. 2020;32(1):121–30.CrossRefGoogle Scholar
Bartynski, WS, Boardman, JF, Zeigler, ZR, Shadduck, RK, Lister, J. Posterior reversible encephalopathy syndrome in infection, sepsis, and shock. AJNR Am J Neuroradiol. 2006;27:2179–90.Google ScholarPubMed
Morandi, A, Gunther, ML, Vasilevskis, EE, et al. Neuroimaging in delirious intensive care unit patients: a preliminary case series report. Psychiatry (Edgmont). 2010;7:2833.Google ScholarPubMed
Shankar, J, Banfield, J. Posterior reversible encephalopathy syndrome: a review. Can Assoc Radiol J. 2017;68:147–53.CrossRefGoogle ScholarPubMed
Sutter, R, Chalela, JA, Leigh, R, et al. Significance of parenchymal brain damage in patients with critical illness. Neurocrit Care. 2015;23:243–52.CrossRefGoogle ScholarPubMed
Ehler, J, Barrett, LK, Taylor, V, et al. Translational evidence for two distinct patterns of neuroaxonal injury in sepsis: a longitudinal, prospective translational study. Crit Care. 2017;21:262.CrossRefGoogle ScholarPubMed
Orhun, G, Esen, F, Ozcan, PE, et al. neuroimaging findings in sepsis-induced brain dysfunction: association with clinical and laboratory findings. Neurocrit Care. 2019;30:106–17.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×