Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-10-28T14:22:09.514Z Has data issue: false hasContentIssue false

Section 1 - Essential Background Knowledge

Published online by Cambridge University Press:  25 October 2024

Simon Gerhand
Affiliation:
Hywel Dda Health Board, NHS Wales
Get access
Type
Chapter
Information
The Neuropsychology of Dementia
A Clinician's Manual
, pp. 1 - 58
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Almeida-Meza, P., Steptoe, A., & Cadar, D. (2021). Is engagement in intellectual and social leisure activities protective against dementia risk? Evidence from the English Longitudinal Study of Ageing. Journal of Alzheimer’s Disease, 80(2), 555–65.Google ScholarPubMed
Alzheimer, A. (1907). Uber eine eigenaritage, schweren Erkrankung der Hirnrinde. Allgemeine Zeitschrift für Psychiatrie und phychish-Gerichtliche Medizin (Berlin), 25, 1134.Google Scholar
Alzheimer’s Disease International. (2015). World Alzheimer Report 2015: The Global Impact of Dementia. www.alz.co.uk/research/WorldAlzheimerReport2015.pdf.Google Scholar
Alzheimer’s Society (2020c). What causes young onset dementia? https://bit.ly/3SdEkAJ.Google Scholar
American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders, 4th ed. Washington, DC: American Psychiatric Association.Google Scholar
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington, DC: American Psychiatric Association.Google Scholar
Avila, J., Santa-María, I., Pérez, M., Hernández, F., & Moreno, F. (2006). Tau phosphorylation, aggregation, and cell toxicity. Journal of Biomedicine & Biotechnology, 2006(3), 74539. https://doi.org/10.1155%2FJBB%2F2006%2F74539.Google ScholarPubMed
Bates, M. E., Bowden, S. C., & Barry, D. (2002). Neurocognitive impairment associated with alcohol use disorders: Implications for treatment. Experimental and Clinical Psychopharmacology, 10(3), 193212.CrossRefGoogle ScholarPubMed
Bessen, R. A., & Marsh, R. F. (1992). Biochemical and physical properties of the prion protein from two strains of the transmissible mink encephalopathy agent. Journal of Virology, 66, 2096–101.CrossRefGoogle ScholarPubMed
Binder, L. I., Frankfurter, A., & Rebhun, L. I. (1985). The distribution of tau in the mammalian central nervous system. Journal of Cell Biology, 101(4), 1371–8.Google ScholarPubMed
Braak, H., & Braak, E. (1997). Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiology of Aging, 18(4), 351–7.CrossRefGoogle ScholarPubMed
Braak, H., Thal, D. R., Ghebremedhin, E., & Del Tredici, K. (2011). Stages of the pathologic process in Alzheimer disease: Age categories from 1 to 100 years. Journal of Neuropathology & Experimental Neurology, 70(11), 960–9.CrossRefGoogle ScholarPubMed
Cacace, R., Sleegers, K., & Van Broeckhoven, C. (2016). Molecular genetics of early-onset Alzheimer’s disease revisited. Alzheimer’s & Dementia, 12(6), 733–48.CrossRefGoogle ScholarPubMed
Cervós‐Navarro, J., & Schumacher, K. (1994). Neurofibrillary pathology in progressive supranuclear palsy (PSP). Journal of Neural Transmission, Suppl; 42, 153–64.CrossRefGoogle ScholarPubMed
Chen, H., Epstein, J., & Stern, E. (2010). Neural plasticity after acquired brain injury: Evidence from functional neuroimaging. Physical Medicine and Rehabilitation, 2(125), S306S312.Google ScholarPubMed
Collinge, J., Beck, J., Campbell, T., Estibeiro, K., & Will, R. G. (1996a) Prion protein gene analysis in new variant cases of Creutzfeldt–Jakob disease. Lancet, 348, 56.CrossRefGoogle ScholarPubMed
Day, E., Bentham, P., Callaghan, R., Kuruvilla, T., & George, S. (2004). Thiamine for Wernicke‐Korsakoff syndrome in people at risk from alcohol abuse. Cochrane Database of Systematic Reviews (1).CrossRefGoogle ScholarPubMed
de Silva, R., Lashley, T., Strand, C., et al. (2006). An immunohistochemical study of cases of sporadic and inherited frontotemporal lobar degeneration using 3R- and 4R-specific tau monoclonal antibodies. Acta Neuropathologica, 111, 329–40.CrossRefGoogle ScholarPubMed
Deary, I. J., Corley, J., Gow, A. J., et al. (2009). Age-associated cognitive decline. British Medical Bulletin, 92, 135–52.CrossRefGoogle ScholarPubMed
Delacourte, A. (2001). The molecular parameters of tau pathology: Tau as a killer and a witness. In Tolnay, M. & Probst, A. (Eds.), Neuropathology and the Genetics of Dementia (pp. 519). New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Delacourte, A., Sergeant, N., Wattez, A., et al. (1998) Vulnerable neuronal subsets in Alzheimer’s and Pick’s disease are distinguished by their tau isoform distribution and phosphorylation. Annals of Neurology, 43, 193204.CrossRefGoogle ScholarPubMed
Dichgans, M., & Leys, D. (2017). Vascular cognitive impairment. Circulation Research, 120, 573–91.CrossRefGoogle ScholarPubMed
Enciu, A.-M., & Popescu, B. (2013). Is there a causal link between inflammation and dementia? Biomedical Research International, 2013, Article ID 316495.CrossRefGoogle Scholar
Fornito, A., Zalesky, A., & Breakspeare, M. (2015). The connectomics of brain disorders. Nature Reviews: Neuroscience, 16, 159–72.CrossRefGoogle ScholarPubMed
Fox, N. (2019). Imaging in dementia. Journal of Neurological Sciences, 405 (supplement), 1617.CrossRefGoogle Scholar
Gibb, W. R. G., Esiri, M. M., & Lees, A. J. (1987). Clinical and pathological features of diffuse cortical Lewy body disease (Lewy body dementia). Brain, 110, 1131–53.CrossRefGoogle ScholarPubMed
Giraud, T. D., Thompson, J. L., Pandharipande, P. P., et al. (2018). Clinical phenotypes of delirium during critical illness and severity of subsequent long-term cognitive impairment: A prospective cohort study. The Lancet, 6(3), 213–22.Google Scholar
Glenner, C. C., & Wong, C. W. (1984). Alzheimer’s disease: Initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochemistry and Biophysical Research Communications, 120, 885–90.CrossRefGoogle ScholarPubMed
Goldman, M. S. (1983). Cognitive impairment in chronic alcoholics: Some cause for optimism. American Psychologist, 38(10), 1045–54.CrossRefGoogle ScholarPubMed
Harvey, R. J., Skelton-Robinson, M., & Rossor, M. N. (2003). The prevalence and causes of dementia in people under the age of 65 years. Journal of Neurology, Neurosurgery and Psychiatry, 74, 1206–9.CrossRefGoogle ScholarPubMed
Hervé, D., & Chabriat, H. (2010). CADASIL. Journal of Geriatric Psychiatry and Neurology, 23(4), 269–76.CrossRefGoogle ScholarPubMed
Ho, A. K. (2019). Huntington’s disease. In Hocking, D. R., Bradshaw, J. L., & Fielding, J. (Eds.), Degenerative Disorders of the Brain (pp. 88155). Oxford: Routledge.CrossRefGoogle Scholar
Iliff, J. J., Wang, M., Liao, Y., et al. (2012). A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science Translational Medicine, 4(147), 147ra111. https://doi.org/10.1126/scitranslmed.3003748.CrossRefGoogle ScholarPubMed
Jamadar, S. (2019). Brain circuitry in ageing and neurodegenerative disease. In Hocking, D. R., Bradshaw, J. L. and Fielding, J. (Eds.), Degenerative Disorders of the Brain (pp. 131). New York: Routledge.Google Scholar
Jessen, N. A., Munk, A. S. F., Lundgaard, I., & Nedergaard, M. (2015). The glymphatic system: A beginner’s guide. Neurochemical Research, 40, 2583–99.CrossRefGoogle ScholarPubMed
Kalish, V. B., Gillham, J. E., & Unwin, B. K. (2014). Delirium in older persons: Evaluation and management. American Family Physician, 90(3), 150–8.Google ScholarPubMed
Kanaan, N. M., Himmelstein, D. S., Ward, S. M., Combs, B., & Binder, L. I. (2015). Tau protein: Biology and pathobiology. In LeDoux, M. S (Ed.), Movement Disorders: Genetics and Models, 2nd ed. (pp. 857–74). London: Academic Press.Google Scholar
Katzman, R., Aronson, M., & Fuld, P., et al. (1989). Development of dementing illnesses in an 80-year-old volunteer cohort. Annals of Neurology, 25, 317324.CrossRefGoogle Scholar
Kelley, B. J., Boeve, B. F., & Josephs, K. A. (2008). Young-onset dementia: Demographic and etiologic characteristics of 235 patients. Archives of Neurology, 65, 1502–8.CrossRefGoogle ScholarPubMed
Keum, J. W., Shin, A., Gillis, T., et al. (2016). The HTT CAG-expansion mutation determines age at death but not disease duration in Huntington disease. American Journal of Human Genetics, 98(2), 287–98.CrossRefGoogle Scholar
Kukreja, D., Günther, U., & Popp, J. (2015). Delirium in the elderly: Current problems with increasing geriatric age. Indian Journal of Medical Research, 142(6), 655–62.Google ScholarPubMed
Laforce, R Jr., Soucy, J. P., Sellami, L., et al. (2018). Molecular imaging in dementia: Past, present and future. Alzheimer’s and Dementia, 14(11), 1522–52.CrossRefGoogle ScholarPubMed
Lakhan, S. E., Kirchgessner, A., & Hofer, M. (2009). Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. Journal of Translational Medicine, 7, 97.CrossRefGoogle ScholarPubMed
Lim, A., Tsuang, D., Kukull, W., et al. (1999). Cliniconeuropathological correlation of Alzheimer’s disease in a community-based case series. Journal of the American Geriatric Society, 47, 564–9.CrossRefGoogle Scholar
Loy, C. T., Schofield, P. R., Turner, A., & Kwok, J. B. J. (2014). The genetics of dementia. Lancet, 383, 828–40.CrossRefGoogle ScholarPubMed
MacDonald, M. E., Ambrose, C. M., Duyao, M. P., et al. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell, 72(6), 971–83.CrossRefGoogle Scholar
MacQueen, G. M., & Memedovich, K. A. (2016). Cognitive dysfunction in major depression and bipolar disorder: Assessment and treatment. Psychiatry and Clinical Neurosciences, 71(1), 1827.CrossRefGoogle ScholarPubMed
Mason, A., Holmes, C., & Edwards, C. (2019). Inflammation and dementia: Using rheumatoid arthritis as a model to develop treatments? Autoimmunity Reviews, 17(9), 919–25.Google Scholar
Mathews, J. D., Glasse, R., & Lindenbaum, S. (1968). Kuru and cannibalism. The Lancet, 292, 449–52.CrossRefGoogle Scholar
Matthews, F. E., Stephan, B. C. M., Robinson, L., et al. (2016). A two-decade dementia incidence comparison from the cognitive function and ageing studies I & II. Lancet, 382, 1405–12. https://doi.org/10.1038/ncomms11398.Google Scholar
McDermott, L. M., & Ebmeier, K. P. (2009). A meta-analysis of depression severity and cognitive function. Journal of Affective Disorders, 119(1), 18.CrossRefGoogle ScholarPubMed
McKhann, G., Drachman, D., Folstein, M., et al. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34, 939–44.CrossRefGoogle ScholarPubMed
McKhann, G. M., Knopman, D. S., Chertkow, H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association Workgroups on Diagnostic Guidelines for Alzheimer’s Disease. Alzheimer’s & Dementia, 7, 263–9.CrossRefGoogle ScholarPubMed
Mees, I., Tran, H., Renoir, T., & Hannan, A. J. (2019). Experience-dependent modulation of neurodegenerative disorders: Huntington’s disease as an exemplar. In Hocking, D. R., Bradshaw, J. L. & Fielding, J. (Eds.), Degenerative Disorders of the Brain. Oxford: Routledge.Google Scholar
Mestre, H., Mori, Y., & Nedergaard, M. (2020). The brain’s glymphatic system: Current controversies. Trends in Neurosciences, 43(7), 458–66.CrossRefGoogle ScholarPubMed
Moore, K. M., Nicholas, J., Grossman, M., et al. (2020). Age at symptom onset and death and disease duration in genetic frontotemporal dementia: An international retrospective cohort study. Lancet Neurology, 19(2), 145–56.CrossRefGoogle ScholarPubMed
Moulaert, V. R., Verbunt, J. A., van Heugten, C. M., Wade, D. T. (2009). Cognitive impairments in survivors of out-of-hospital cardiac arrest: A systematic review. Resuscitation, 80(3), 297305.CrossRefGoogle ScholarPubMed
Neumann, M., Sampathu, D. M., Kwong, L. K., et al. (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 314(5796), 130–3.CrossRefGoogle ScholarPubMed
Nolan, M., Talbot, K., & Ansorge, O. (2016). Pathogenesis of FUS-associated ALS and FTD: insights from rodent models. Acta Neuropathologica Communications, 4, 99. https://doi.org/10.1186/s40478-016-0358-8.CrossRefGoogle ScholarPubMed
Nucci, M., Mapelli, D., & Mondini, S. (2012). Cognitive Reserve Index questionnaire (CRIq): A new instrument for measuring cognitive reserve. Ageing Clinical and Experimental Research, 24(3), 218–26.Google ScholarPubMed
Nudo, R. J. (2011). Neural basis of recovery after brain injury. Journal of Communication Disorders, 44(5), 515–20.CrossRefGoogle Scholar
Petersen, R. C. (2016). Mild cognitive impairment. Dementia, 22(2), 404–18.Google ScholarPubMed
Petersen, R. C., Smith, G. E., Waring, S. C., et al. (1999). Mild cognitive impairment: Clinical characterisation and outcome. Archives of Neurology, 56(3), 303–8.CrossRefGoogle ScholarPubMed
Platt, F. M., d’Azzo, A., Davidson, B. L., et al. (2018). Lysosomal storage diseases. Nature Reviews Disease Primers, 4, 27.CrossRefGoogle ScholarPubMed
Prince, M. et al. (2014). Dementia UK: Update Second Edition report produced by King’s College London and the London School of Economics for the Alzheimer’s Society. www.alzheimers.org.uk/sites/default/files/migrate/downloads/dementia_uk_update.pdf.Google Scholar
Ridley, N. J., Draper, B., & Withall, A. (2013). Alcohol-related dementia: An update of the evidence. Alzheimers Research and Therapy, 5(1), 3.CrossRefGoogle ScholarPubMed
Rosso, S. M., Kamphorst, W., de Graaf, B., et al. (2001). Familial frontotemporal dementia with ubiquitin-positive inclusions is linked to chromosome 17q21–2. Brain, 124(Pt 10), 1948–57.CrossRefGoogle Scholar
Roy, R., Niccolini, F., Pagano, G., et al. (2016). Cholinergic imaging in dementia spectrum disorders. European Journal of Nuclear Medicine & Molecular Imaging, 43, 1376–86.CrossRefGoogle ScholarPubMed
Sachdeva, A., Chandra, M., Choudhary, M., Dayal, P., & Anand, K. S. (2016). Alcohol-related dementia and neurocognitive impairment: A review study. International Journal of High Risk Behaviors & Addiction, 5(3), e27976.CrossRefGoogle ScholarPubMed
Salthouse, T. (2010). Selective review of cognitive ageing. Journal of the International Neuropsychological Society, 16, 754–60.CrossRefGoogle Scholar
Sampson, E. L., Warren, J. D., & Rossor, M. N. (2004). Young onset dementia. Postgraduate Medical Journal, 80, 125–39.CrossRefGoogle ScholarPubMed
Saunders, A. M., Blennow, K., Breteler, M. M. B., et al. (1993). Association of apolipoprotein E allele ϵ4 with late-onset familial and sporadic Alzheimer’s disease. Neurology, 43(8), 1467.CrossRefGoogle ScholarPubMed
Schneider, J. A., Arvanitakis, Z., Bang, W., & Bennett, D. A. 2007. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology, 69(24), 2197–204.CrossRefGoogle ScholarPubMed
Schoenberg, M. R., & Duff, K. (2011). Dementias and mild cognitive impairment in adults. In Schoenberg, M. R. & Scott, J. G. (Eds.), The Little Black Book of Neuropsychology. New York: Springer.CrossRefGoogle Scholar
Selkoe, D., & Hardy, J. (2016). The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Molecular Medicine, 8(6), 595608.CrossRefGoogle ScholarPubMed
Seshadri, S., Drachman, D. A., & Lippa, C. F. (1995). Apolipoprotein E epsilon 4 allele and the lifetime risk of Alzheimer’s disease: What physicians know, and what they should know. Archives of Neurology, 52, 1074–9.CrossRefGoogle ScholarPubMed
Sinclair, D. A., & LaPlante, M. D. (2019). Lifespan: Why We Age – And Why We Don’t Have To. New York: Atria Books.Google Scholar
Slooter, A. J., Cruts, M., Kalmijn, S., et al. (1998). Risk estimates of dementia by apolipoprotein E genotypes from a population-based incidence study: The Rotterdam Study. Archives of Neurology, 55(7), 964–8.CrossRefGoogle ScholarPubMed
Spillantini, M. G., Crowther, R. A., Jakes, R., et al. (1998). α‐Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469–73.Google ScholarPubMed
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8, 448–60.CrossRefGoogle ScholarPubMed
Thomson, A. D., Cook, C. C., Touquet, R., & Henry, J. A. (2002). The Royal College of Physicians report on alcohol: Guidelines for managing Wernicke’s encephalopathy in the accident and emergency. Alcohol and Alcoholism, 37(6), 513–21.CrossRefGoogle ScholarPubMed
Trembath, M. K., Horton, Z. A., Tippett, L., et al. (2010). A retrospective study on the impact of lifestyle on age at onset of Huntington’s disease. Movement Disorders, 25(10), 1444–50.CrossRefGoogle Scholar
Trojanowski, J., Goedert, M., & Iwatsubo, T., et al. (1998). Fatal attractions: Abnormal protein aggregation and neuron death in Parkinson’s disease and Lewy body dementia. Cell Death & Differentiation, 5, 832–7.CrossRefGoogle ScholarPubMed
Trottier, Y. V., Biancalana, J. L., & Mandel, J. (1994). Instability of CAG repeats in Huntingtons disease: Relation to parental transmission and age of onset. Journal of Medical Genetics, 31(5), 377–82.CrossRefGoogle ScholarPubMed
Vaou, O. E., Lin, S. H., Branson, C., et al. (2018). Sleep and dementia. Current Sleep Medicine Reports, 4, 134–42.CrossRefGoogle Scholar
Walker, M. (2018). Why we sleep. Penguin Books Limited.Google Scholar
Winblad, B., Palmer, K., Kivipelto, M., et al. (2004). Mild cognitive impairment – Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256, 240–6.CrossRefGoogle Scholar
Woods, J. A., Wilund, K. R., Martin, S. A., & Kistler, B. (2012). Exercise, inflammation and aging. Aging and Disease, 3(1), 130–40.Google ScholarPubMed
World Health Organization (2018). International Classification of Diseases, 11th edition.Google Scholar

References

Albert, M. S., DeKosky, S. T., Dickson, D., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 7 (3), 270–9.CrossRefGoogle ScholarPubMed
American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision. Washington, DC, American Psychiatric Association.Google Scholar
Antonelli Incalzi, R., Marra, C., Giordano, A., et al. (2003). Cognitive impairment in chronic obstructive pulmonary disease. Journal of Neurology, 250(3), 325–32.CrossRefGoogle ScholarPubMed
Barnett, J. H., Blackwell, A. D., Sahakian, B. J., & Robbins, T. W. (2015). The Paired Associates Learning (PAL) test: 30 years of CANTAB translational neuroscience from laboratory to bedside in dementia research. In Robbins, T. W. & Sahakian, B. J. (Eds.), Translational Neuropsychopharmacology: Current Topics in Behavioral Neurosciences (pp. 449–74). Cham: Springer.Google Scholar
Bayer, A. J. (2018). The role of biomarkers and imaging in the clinical diagnosis of dementia. Age and Ageing, 47, 641–3.CrossRefGoogle ScholarPubMed
Beach, T. G., Monsell, S. E., Phillips, L. E., & Kukull, W. (2012). Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. Journal of Neuropathology & Experimental Neurology, 71, 266–73.CrossRefGoogle ScholarPubMed
Beynon, R., Sterne, J. A., Wilcock, G., et al. (2012). Is MRI better than CT for detecting a vascular component to dementia? A systematic review and meta-analysis. BMC Neurology, 12, 110.CrossRefGoogle Scholar
Borson, S., Scanlan, J., Brush, M., Vitaliano, P., & Dokmak, A. (2000). The Mini-Cog: A cognitive ‘vital signs’ measure for dementia screening in multi-lingual elderly. International Journal of Geriatric Psychiatry, 15, 1021–7.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
Boustani, M., Campbell, N., Munger, S., Maidment, I., & Fox, C. (2008). Impact of anticholinergics on the aging brain: A review and practical application. Aging Health, 4(3), 311–20.CrossRefGoogle Scholar
Brodaty, H., Pond, D., Kemp, N. M., et al. (2002). The GPCOG: A new screening test for dementia designed for general practice. Journal of the American Geriatrics Society, 50 (3), 530–4.CrossRefGoogle ScholarPubMed
Bucks, R., Ashworth, D., Wilcock, G., & Siegfried, K. (1996). Assessment of activities of daily living in dementia: development of the Bristol Activities of Daily Living Scale. Age and Ageing, 25, 113–20.CrossRefGoogle ScholarPubMed
Clark, C. M., & Ewbank, D. C. (1996). Performance of the dementia severity rating scale: a caregiver questionnaire for rating severity in Alzheimer disease. Alzheimer Disease and Associated Disorders, 10(1), 31–9.Google Scholar
DeBettignies, B. H., Mahurin, R. K., & Pirozzolo, F. J. (1990). Insight for impairment in independent living skills in Alzheimer’s disease and multi-infarct dementia. Journal of Clinical and Experimental Neuropsychology, 12, 355–63.CrossRefGoogle ScholarPubMed
Elvevag, B., & Goldberg, T. E. (2000). Cognitive impairment in schizophrenia is the core of the disorder. Critical Reviews in Neurobiology, 14, 121.CrossRefGoogle ScholarPubMed
Farias, S. T., Munga, S. D., Reed, B. R., et al. (2008). The measurement of everyday cognition (ECog): Scale development and psychometric properties. Neuropsychology, 22 (4), 531–44.CrossRefGoogle ScholarPubMed
Fisher, A. G. (1994). Assessment of Motor and Processing Skill. Unpublished test manual. Department of Occupational Therapy, Colorado State University, Fort Collins. CO.Google Scholar
Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12 (3), 189–98.Google Scholar
Giebel, C. M., & Challis, D. (2017). Sensitivity of the mini-mental state examination, Montreal cognitive assessment and the Addenbrooke’s cognitive examination III to everyday activity impairments in dementia: An exploratory study. International Journal of Geriatric Psychiatry, 32 (10), 1085–93.CrossRefGoogle ScholarPubMed
Harper, L., Barkhof, F., Scheltens, P., Schott, J., & Fox, N. (2014). An algorithmic approach to structural imaging in dementia. Journal of Neurology, Neurosurgery and Psychiatry, 85, 692–8.CrossRefGoogle ScholarPubMed
Hart, R. P., Wade, J. B., & Martelli, M. F. (2003). Cognitive impairment in patients with chronic pain: The significance of stress. Current Science Inc, 7, 116–26.CrossRefGoogle ScholarPubMed
Harvey, P. D., & Keefe, R. S. (2001). Studies of cognitive change in patients with schizophrenia following novel antipsychotic treatment. American Journal of Psychiatry, 158(2), 176–84.CrossRefGoogle ScholarPubMed
Hobus, P. P. M., Boshuizen, H. P. A., & Schmidt, H. G. (1990). Expert-novice differences in the role of contextual factors in early medical diagnosis. Paper presented at the Annual Meeting of the American Educational Research Association (Boston, MA, 16–20 April 1990).Google Scholar
Hodges, J. R., & Larner, A. J. (2017). Addenbrooke’s Cognitive Examinations: ACE, ACE-R, ACE-III, ACEapp, and M-ACE. In Larner, A. J (Ed.) Cognitive Screening Instruments: A Practical Approach, Second Edition. Berlin: Springer, pp. 109–37.Google Scholar
Hsieh, S., Schubert, S., Hoon, C., Mioshi, E., & Hodges, J. R. (2013). Validation of the Addenbrooke’s cognitive examination III in frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 36(3–4), 242–50.CrossRefGoogle ScholarPubMed
Jorm, A. F. (1994). A short from of the Informant Questionnaire on Cognitive Decline in the Elderly (QICODE): Development and cross-validation. Psychological Medicine, 24 (1), 145–53.CrossRefGoogle Scholar
Jorm, A. F., Scott, R., & Jacomb, P. A. (1989). Assessment of cognitive decline in dementia by informant questionnaire. International Journal of Geriatric Psychiatry, 4, 35–9.CrossRefGoogle Scholar
Kalish, V. B., Gillham, J. E., & Unwin, B. K. (2014). Delirium in older persons: Evaluation and management. American Family Physician, 90 (3), 150–8.Google ScholarPubMed
Katzman, R., Brown, T., & Fuld, P., et al. (1983) Validation of a short orientation–memory–concentration test of cognitive impairment. American Journal of Psychiatry, 40 (6), 734–9.Google Scholar
Kolodner, J. (1983). Towards an understanding of the role of experience in the evolution form novice to expert. International Journal of Man-Machine Studies, 19 (5), 497518.CrossRefGoogle Scholar
Lenehan, M. E., Klekociuk, S. Z., & Summers, M. J. (2012). Absence of a relationship between subjective memory complaint and objective memory impairment in mild cognitive impairment (MCI): Is it time to abandon subjective memory complaint as an MCI diagnostic criterion? International Psychogeriatrics, 24 (9), 1505–14.CrossRefGoogle ScholarPubMed
Lin, F. R., Metter, E. J., O’Brien, R. J., et al. (2011). Hearing loss and incident dementia. Archives of Neurology, 68 (2), 214–20.CrossRefGoogle ScholarPubMed
Liu, C. M., & Lee, C. T. C. (2019). Association of hearing loss with dementia. JAMA Network Open, 2(7), e198112.CrossRefGoogle ScholarPubMed
Lodeiro-Fernández, L., Lorenzo-López, L., Maseda, A., et al. (2015). The impact of hearing loss on language performance in older adults with different stages of cognitive function. Clinical Interventions in Aging, 695702.Google Scholar
MacKenzie, N. E., Kowalchuk, C., Agarwal, S. M., et al. (2018). Antipsychotics, metabolic adverse effects, and cognitive function in schizophrenia. Frontiers in Psychiatry, 9, 622.CrossRefGoogle ScholarPubMed
Macnamara, A., Schinazi, V. R., Chen, C., Coussens, S., & Loetscher, T. (2021). Vision impairments reduce cognitive test performance. Nature Aging, 1, 975–6.CrossRefGoogle ScholarPubMed
Mara, C., Cappa, A., & Fuso, L. (2003). Cognitive impairment in chronic obstructive pulmonary disease: A neuropsychological and spect study. Journal of Neurology, 250 (3), 325–32.Google Scholar
Mathuranath, P. S., Nestor, P. J., Berrio, G. E., Rakowicz, W., & Hodges, J. R. (2000). A brief cognitive test battery to differentiate Alzheimer’s disease and frontotemporal dementia. Neurology, 55 (11), 1613–20.CrossRefGoogle ScholarPubMed
McKeith, I. G., Boeve, B. F., & Dickson, D. W., et al. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology, 89, 88100.CrossRefGoogle ScholarPubMed
Merriam-Webster (2020). Merriam-Webster’s Dictionary and Thesaurus: Revised and Updated. Springfield: Merriam-Webster Incorporated.Google Scholar
Moelter, S. T., Glenn, M. A., Xie, S. X., et al. (2015). The Dementia Severity Rating Scale predicts clinical dementia rating sum of boxes scores. Alzheimer Disease and Associated Disorders, 29(2), 158–60.CrossRefGoogle ScholarPubMed
Nasreddine, Z. S., Phillips, N. A., Bédirian, V., et al. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–9.CrossRefGoogle Scholar
National Institute of Clinical Excellence (NICE) (2018). Dementia: Assessment, management and support for people living with dementia and their carers. https://www.nice.org.uk/guidance/ng97.Google Scholar
Orleans-Foley, S., Isaacs, J., & Cook, L. (2018). Neuroimaging for dementia diagnosis Guidance from the London Dementia Clinical Network. www.england.nhs.uk/london/wp-content/uploads/sites/8/2019/09/Neuroimaging-for-dementia-diagnosis-London-Dementia-Clinical-Network.pdf.Google Scholar
Parfenov, V. A., Zakharov, V. V., Kabaeva, A. R., & Vakhnina, N. V. (2020). Subjective cognitive decline as a predictor of future cognitive decline: A systematic review. Dementia & Neuropsychologia, 14(3), 248–57.CrossRefGoogle ScholarPubMed
Pfeffer, R. I., Kurosaki, T. T., Harrah, C. H., Jr., et al. (1982). Measurement of functional activities in older adults in the community. Journal of Gerontology, 37 (3), 323–9.CrossRefGoogle ScholarPubMed
Rikkert, M. G., Tona, K. D., Janssen, L., et al. (2011). Validity, reliability, and feasibility of clinical staging scales in dementia: a systematic review. American Journal of Alzheimer’s Disease and Other Dementias, 26(5), 357–65.Google ScholarPubMed
Salluh, J. I., Wang, H., Schneider, E. B., et al. (2015). Outcome of delirium in critically ill patients: systematic review and meta-analysis. British Medical Journal (Clinical research ed.), 350, h2538.Google ScholarPubMed
Schubert, C., Denmark, T. K., Crandall, B., Grome, A., & Pappas, J. (2013). Characterizing novice-expert differences in macrocognition: An exploratory study of cognitive work in the emergency department. Annals of Emergency Medicine, 61 (1), 96109.CrossRefGoogle ScholarPubMed
Scott, J., Spector, A., Orrell, M., et al. (2017). Limited validity of the Hospital Anxiety and Depression Scale (HADS) in dementia: Evidence from a confirmatory factor analysis. International Journal of Geriatric Psychiatry, 32 (7), 805–13.Google Scholar
Shin, S. Y., Katz, P., Wallhagen, M., & Julian, L. (2012). Cognitive impairment in persons with rheumatoid arthritis. Arthritis Care & Research, 64 (8), 1144–50.CrossRefGoogle ScholarPubMed
Siciliano, M., Chiorri, C., Passaniti, C., et al. (2019). Comparison of alternate and original forms of the Montreal Cognitive Assessment (MoCA): An Italian normative study. Neurological Sciences, 40(4), 691702.CrossRefGoogle ScholarPubMed
Tomaszewski Farias, S., Mungas, D., Harvey, D. J., et al. (2011). The measurement of everyday cognition: Development and validation of a short form of the Everyday Cognition scales. Alzheimer’s & Dementia, 7 (6), 593601.CrossRefGoogle Scholar
Vogels, R. L., Oosterman, J. M., Van Harten, B., et al. (2007). Profile of cognitive impairment in chronic heart failure. Journal of the American Geriatrics Society, 55 (11), 1764–70.CrossRefGoogle ScholarPubMed
Winblad, B., Palmer, K., Kivipelto, M., et al. (2004). Mild cognitive impairment – beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. Journal of Internal Medicine, 256(3), 240–6.CrossRefGoogle Scholar
Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandanavia, 67, 361–70.CrossRefGoogle ScholarPubMed

References

Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12 (10), 366–75.CrossRefGoogle ScholarPubMed
Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: Neural substrates of parallel processing. Trends in Neurosciences, 13 (7), 266271.CrossRefGoogle ScholarPubMed
Arts, N., Walvoort, S., & Kessels, R. (2017). Korsakoff’s syndrome: A critical review. Neuropsychiatric Disease and Treatment, 13, 2875–90.CrossRefGoogle ScholarPubMed
Basso, A., Capitani, E., Laiacona, M., & Zanobio, M. E. (1985). Crossed aphasia: One or more syndromes? Cortex, 21(1), 2545.CrossRefGoogle ScholarPubMed
Bayne, T., Brainard, D., Byrne, R. W., et al. (2019). What is cognition? Current Biology, 29 (13), R608R615.CrossRefGoogle ScholarPubMed
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108 (3), 624.CrossRefGoogle ScholarPubMed
Brodmann, K. (1909). Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth.Google Scholar
Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4 (6), 215–22.CrossRefGoogle ScholarPubMed
Chance, S. A., & Crow, T. J. (2007). Distinctively human: Cerebral lateralisation and language in Homo sapiens. Journal of Anthropological Science, 85, 83100.Google Scholar
Cloutman, L. L. (2013). Interaction between dorsal and ventral processing streams: where, when and how?. Brain and Language, 127(2), 251–63.CrossRefGoogle Scholar
Crutch, S. J., Schott, J. M., Rabinovici, G. D., et al. (2017). Consensus classification of posterior cortical atrophy. Alzheimer’s & Dementia, 13 (8), 870–84.CrossRefGoogle ScholarPubMed
Damasio, A. R. (1989). The brain binds entities and events by multiregional activation from convergence zones. Neural Computation, 1 (1), 123–32.CrossRefGoogle Scholar
Damasio, A. R. (1999). The Feeling of What Happens: Body and Emotion in the Making of Consciousness. New York: Harcourt.Google Scholar
DeLong, M., & Wichmann, T. (2010). Changing views of basal ganglia circuits and circuit disorders. Clinical EEG and Neuroscience, 41 (2), 61–7.CrossRefGoogle ScholarPubMed
Duncan, S., & Barrett, L. F. (2007). Affect is a form of cognition: A neurobiological analysis. Cognition and Emotion, 21 (6), 1184–211.CrossRefGoogle ScholarPubMed
Dusoir, H., Kapur, N., Byrnes, D. P., McKinstry, S., & Hoare, R. D. (1990). The role of diencephalic pathology in human memory disorder: Evidence from a penetrating paranasal brain injury. Brain, 113 (6), 1695–706.CrossRefGoogle ScholarPubMed
Ferguson, M. A., Lim, C., Cooke, D., et al. (2019). A human memory circuit derived from brain lesions causing amnesia. Nature Communications, 10 (1), 19.CrossRefGoogle ScholarPubMed
Florio, T. M., Scarnati, E., Rosa, I., et al. (2018). The basal ganglia: More than just a switching device. CNS Neuroscience & therapeutics, 24 (8), 677–84.CrossRefGoogle ScholarPubMed
Fornito, A., Zalesky, A., & Breakspeare, M. (2015). The connectomics of brain disorders. Nature Reviews: Neuroscience, 16, 159–72.CrossRefGoogle ScholarPubMed
Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76 (11), 1006–14.CrossRefGoogle ScholarPubMed
LeDoux, J. (1996). The Emotional Brain. New York; Simon & Schuster.Google Scholar
Lee, A., Robbins, T. W., & Owen, A. M. (2000). Episodic memory meets working memory in the frontal lobe: Functional neuroimaging studies of encoding and retrieval. Critical Reviews in Neurobiology, 14(3–4), 165–97.CrossRefGoogle ScholarPubMed
MacLean, P. D. (1990). The Triune Brain in Evolution: Role in Paleocerebral Functions. New York: Springer Science & Business Media.Google Scholar
Macpherson, T., & Hikida, T. (2019). Role of basal ganglia neurocircuitry in the pathology of psychiatric disorders. Psychiatry and Clinical Neurosciences, 73 (6), 289301.CrossRefGoogle ScholarPubMed
Marshall, C. R., Hardy, C. J., Volkmer, A., et al. (2018). Primary progressive aphasia: a clinical approach. Journal of Neurology, 265 (6), 1474–90.CrossRefGoogle ScholarPubMed
McMonagle, P., Deering, F., Berliner, Y., & Kertesz, A. (2006). The cognitive profile of posterior cortical atrophy. Neurology, 66 (3), 331–8.CrossRefGoogle ScholarPubMed
Milner, B., & Scoville, W. (1957). Loss of recent memory after bilateral hippocampal lesions. The Journal of Neurology, Neurosurgery and Psychiatry, 20, 1121.Google Scholar
Neisser, U. (1967). Cognitive Psychology. New York: Appleton-Century-Crofts.Google Scholar
Papez, J. W. (1937). A proposed mechanism of emotion. Archives of Neurology and Psychiatry, 38, 725–43.CrossRefGoogle Scholar
Penfield, W., & Boldrey, E. (1937). Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain, 60(4), 389443.CrossRefGoogle Scholar
Petersen, S. E., & Posner, M. I. (2012). The attention system of the human brain: 20 years after. Annual Review of Neuroscience, 35, 7389.CrossRefGoogle ScholarPubMed
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 2542.CrossRefGoogle ScholarPubMed
Scott, J. G., & Schoenberg, M. R. (2012). Language problems and assessment: The aphasic patient. In Schoenberg, M. R. & Scott, J. G. (Eds.), The Little Black Book of Neuropsychology (pp. 159–78). New York: Springer.Google Scholar
Simonyan, K. (2019). Recent advances in understanding the role of the basal ganglia. F1000Research, 8.CrossRefGoogle ScholarPubMed
Strotzer, M. (2009). One century of brain mapping using Brodmann areas. Clinical Neuroradiology, 19 (3), 179–86.CrossRefGoogle ScholarPubMed
Swannberg, M. M., Nasreddine, Z. S., Meendez, M. F., & Cummings, J. L. (2007). Speech and Language. In Goetz, C. G. (Ed.), Textbook of Clinical Neurology, vol 35 (pp. 7998). Philadelphia: Elsevier Health Sciences.CrossRefGoogle Scholar
Taylor, K. I., & Regard, M. (2003). Language in the right cerebral hemisphere: Contributions from reading studies. Physiology, 18(6), 257–61.CrossRefGoogle ScholarPubMed
Tsapkini, K., Frangakis, C., & Hillis, A. E. (2011). The function of the left anterior temporal pole: Evidence from acute stroke and infarct volume. Brain, 134(10), 3094–105.CrossRefGoogle ScholarPubMed
Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In Ingle, D. J., Goodale, M. A., & Mansfield, R. J. W. (Eds.), Analysis of Visual Behavior (pp. 549–86). Cambridge, MA: MIT Press.Google Scholar
von Monakow, C. (1914). Die Localization im Grosshirn und der Abbau der Funktion durch korticale Herde. Wiesbaden: J. F. Bergmann.Google Scholar
Wang, J., Ke, J., Zhou, C., & Yin, C. (2018). Amnesia due to the injury of papez circuit following isolated fornix column infarction. Journal of Stroke and Cerebrovascular Diseases, 27 (5), 1431–3.CrossRefGoogle Scholar

References

Brooks, B. L., Iverson, G. L., Feldman, H. H., & Holdnack, J. A. (2009). Minimizing misdiagnosis: Psychometric criteria for possible or probable memory impairment. Dementia and Geriatric Cognitive Disorders, 27, 439–50.CrossRefGoogle ScholarPubMed
Burgess, P., & Shallice, T. (1997). The Hayling and Brixton Tests: Test Manual. Bury St. Edmunds: Thames Valley Test Company.Google Scholar
Burgess, P. (2003). Assessment of executive function. In Halligan, P. W., Kischka, U. & Marshall, J. C (Eds.), Handbook of Clinical Neuropsychology. Oxford, Oxford University Press.Google Scholar
Cimino, C. R. (2000). Principles of neuropsychological interpretation. In Vanderploeg, R. D. (Ed.), Clinician’s Guide to Neuropsychological Assessment, 2nd ed. London: Lawrence Erlbaum Associates.Google Scholar
Crawford, J. R., & Allan, K. M. (1997). Estimating premorbid WAIS-R IQ with demographic variables: Regression equations derived from a UK sample. The Clinical Neuropsychologist, 11 (2), 192–7.CrossRefGoogle Scholar
Crawford, J. R., Cochrane, R. H. B., Besson, J. A. O., Parker, D. M., & Stewart, L. E. (1990). Premorbid IQ estimates obtained by combining the NART and demographic variables: Construct validity. Personality and Individual Differences, 11(2), 209–10.CrossRefGoogle Scholar
Crawford, J. R., Nelson, H. E., Blackmore, L., Cochrane, R. H. B., & Allan, K. M. (1990). Estimating premorbid intelligence by combining the NART and demographic variables: An examination of the NART standardisation sample and supplementary equations. Personality and Individual Differences, 11 (11), 1153–7.CrossRefGoogle Scholar
Dean, A., Victor, T., Boone, K., Philpott, L., & Hess, R. (2009) Dementia and effort test performance. The Clinical Neuropsychologist, 23 (1), 133–52.CrossRefGoogle ScholarPubMed
Ellis, A. W., & Young, A. W. (1988). Human Cognitive Neuropsychology. London: Psychology Press.Google Scholar
Fodor, J. (1983). The Modularity of Mind. Cambridge, MA. MIT Press.CrossRefGoogle Scholar
Gerhand, S., Jones, C. A., & Hacker, D. (2021). Effort testing, performance validity, and the importance of context and consistency. In Moore, P. S., Brifcani, S., & Worthington, A. (Eds.), Neuropsychological Aspects of Brain Injury Litigation (pp. 89115). London: Routledge.CrossRefGoogle Scholar
Green, P. (2003). Word Memory Test for Windows: User’s Manual and Program. Edmonton: Green’s Publishing.Google Scholar
Green, P. (2004). Manual for the Medical Symptom Validity Test. Edmonton: Green’s Publishing.Google Scholar
Green, P. (2008). Test Manual for the Nonverbal Medical Symptom Validity Test. Edmonton: Green’s Publishing.Google Scholar
Green, P., Montijo, J., & Brockhaus, R. (2011). High specificity of the word memory test and medical symptom validity test in groups with severe verbal memory impairment. Applied Neuropsychology, 18, 8694.CrossRefGoogle ScholarPubMed
Greiffenstein, M. F., Baker, W. J., & Gola, T. (1994). Validation of malingered amnesia measures with a large clinical sample. Psychological Assessment, 6, 218–24.CrossRefGoogle Scholar
Heilbronner, R. L., Sweet, J. J., Morgan, J. E., et al. (2009). American Academy of Clinical Neuropsychology consensus conference statement on the neuropsychological assessment of effort, response bias, and malingering. The Clinical Neuropsychologist, 23, 1093–129.CrossRefGoogle ScholarPubMed
Jacobson, N. S., & Truax, P. (1991). Clinical significance: A statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting & Clinical Psychology, 59, 1219.CrossRefGoogle ScholarPubMed
Jacobson, N. S., Follett, W. C., & Revenstorf, D. (1984). Psychotherapy outcome research – methods for reporting variability and evaluating clinical significance. Behavior Therapy, 15 (4), 336–52.CrossRefGoogle Scholar
Kaufman, A. S., Lichtenberger, E., Fletcher-Janzen, E., & Kaufman, N. L. (2005). Essentials of KABC-II Assessment. Hoboken: Wiley.Google Scholar
Larrabee, G. J. (2012). Performance validity and symptom validity in neuropsychological assessment. Journal of the International Neuropsychological Society, 18 (4), 625–31.CrossRefGoogle ScholarPubMed
Lenherr, S., & Gerhand, S. (2012). A survey of neuropsychological test use among DON members. British Psychological Society, Division of Neuropsychology Newsletter, 11 (2), 912.Google Scholar
Lezak, M., Howieson, D., Bigler, E., & Tranel, D. (2012). Neuropsychological Assessment (4th ed.). Oxford: Oxford University Press.Google Scholar
McCarter, R. J., Walton, N. H., Brooks, D. N., & Powell, G. E. (2009). Effort testing in contemporary UK neuropsychological practice. The Clinical Neuropsychologist, 23, 1050–66.CrossRefGoogle ScholarPubMed
McGuire, C., Crawford, S., & Evans, J. J. (2017). Effort testing in dementia assessment: A systematic review. Archives of Clinical Neuropsychology, 34, 114–31.Google Scholar
McMillan, T. M., Anderson, S., Baker, G., et al. (2009). Assessment of Effort in Clinical Testing of Cognitive Functioning for Adults. Leicester: British Psychological Society.Google Scholar
Meehl, P. E., & Rosen, A. (1955) Antecedent probability and the efficiency of psychometric signs, patterns, or cutting scores. Psychological Bulletin, 52, 194216.CrossRefGoogle ScholarPubMed
Morley, S. (2018). Single Case Methods in Clinical Psychology: A Practical Guide. New York: Routledge.Google Scholar
Nelson, H. E., & O’Connell, A. (1978). Dementia: The estimation of premorbid intelligence levels using the New Adult Reading Test. Cortex, 14 (2), 234–44.CrossRefGoogle ScholarPubMed
Novitski, J., Steele, S., Karantzoulis, S., & Randolph, C. (2012). The repeatable battery for the assessment of neuropsychological status effort scale. Archives of Clinical Neuropsychology, 27, 190–5.CrossRefGoogle ScholarPubMed
Plaut, D. (1995). Double dissociation without modularity: Evidence from connectionist neuropsychology Journal of Clinical and Experimental Neuropsychology, 17(2), 291321.CrossRefGoogle ScholarPubMed
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The repeatable battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. Journal of Clinical & Experimental Neuropsychology, 20, 310–19.CrossRefGoogle ScholarPubMed
Rudman, N., Oyebode, J., Jones, C., & Bentham, P. (2011). An investigation into the validity of effort tests in a working age dementia population. Aging and Mental Health, 15 (1), 4757.CrossRefGoogle Scholar
Schinka, J. A., & Vanderpoeg, R. D. (2000). Estimating premorbid level of functioning. In Vanderploeg, R. D. (Ed.), Clinician’s Guide to Neuropsychological Assessment (2nd Ed.). London: Lawrence Earlbaum Associates.Google Scholar
Sherman, E., Slick, D., & Iversen, G. (2020). Multidimensional Malingering Criteria for neuropsychological assessment: A 20-year update of the Malingered Neuropsychological Dysfunction Criteria. Journal of Clinical and Experimental Neuropsychology, 35 (6), 735–64.Google ScholarPubMed
Teichner, G., & Wagner, M. T. (2004). The Test of Memory Malingering (TOMM): Normative data from cognitively intact, cognitively impaired, and elderly patients with dementia. Archives of Clinical Neuropsychology, 19 (3), 455–64.CrossRefGoogle ScholarPubMed
Tombaugh, T. N. (1996). The Test of Memory Malingering. Toronto: MultiHealth Systems.Google Scholar
Walter, J., Morris, J., Swier-Vosnos, A., & Pliskin, N. (2014). Effects of severity of dementia on a symptom validity measure. The Clinical Neuropsychologist, 28 (7), 1197–208.CrossRefGoogle ScholarPubMed
Warrington, E. (1996). The Camden Memory Tests – Manual. Hove: Psychology Press.Google Scholar
Wechsler, D. (1997a). WAIS‐III administration and scoring manual. San Antonio: Psychological Corporation.Google Scholar
Wechsler, D. (1997b). Wechsler Adult Intelligence Scale – III. New York: Psychological Corporation.Google Scholar
Wechsler, D. (2008a). Wechsler Adult Intelligence Scale (4th ed.). Technical and Interpretive Manual. San Antonia: NCS Pearson Inc.Google Scholar
Wechsler, D. (2008b). Wechsler Memory Scale (4th ed.). San Antonia: Pearson.Google Scholar
Wechsler, D. (2011). Test of Premorbid Functioning. UK version (TOPF UK). London: Pearson Assessment.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×