Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T03:41:42.550Z Has data issue: false hasContentIssue false

5 - The neonatal synaptic big bang

from Section 1 - Making of the brain

Published online by Cambridge University Press:  01 March 2011

Hugo Lagercrantz
Affiliation:
Karolinska Institutet, Stockholm
M. A. Hanson
Affiliation:
Southampton General Hospital
Laura R. Ment
Affiliation:
Yale University, Connecticut
Donald M. Peebles
Affiliation:
University College London
Get access

Summary

Introduction

Making one synapse

Each synaptic contact is a highly complex molecular machine that extracts and integrates the numerous signals circulating among the neurons (neurotransmitters, neuromodulators, trophic factors, hormones, ions, larges families of intercellular adhesion molecules, etc.), within each neuron (the multiple and diverse cascades of intracellular signaling pathways), and along each neuron (action potentials, electrotonic depolarizations, etc.). Synapses are involved in selecting and maintaining traces of the pertinent signals required for an individual's cognitive performances. It takes 30–120 minutes to build one complete synapse between two neurons cultivated in vitro (Lohmann & Bonhoeffer, 2008). Hundreds (or thousands?) of distinct classes of molecules as diverse as cytoskeletal proteins, cell adhesion molecules, ion channels, receptors, phosphatases, phosphorylases, glycolipids, and calcium-binding proteins are assembled into multiple, highly organized scaffoldings in the presynaptic and postsynaptic compartments, and in the synaptic cleft (Samuels et al., 2007). They ensure efficient, fluctuating synaptic neurotransmission (timescale – milliseconds) and the structural stability of the mature synapse (timescale – months or years). The low affinities of these assembled proteins, as well as the mobility of the pharmacological receptors (Levi et al., 2008) also allow the molecular reorganizations associated with synaptic plasticity (timescale – seconds to weeks). These mechanisms, which ensure both stability and plasticity of the synapse, may be dependent on the high metabolic activity observed in human brain imaging.

Each synapse is a structural and functional point of articulation between the two sets of constraints presented by the genome and the environment.

Type
Chapter
Information
The Newborn Brain
Neuroscience and Clinical Applications
, pp. 71 - 84
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, A. (2007). Model behaviour. Nature, 450, 6–7.CrossRefGoogle ScholarPubMed
Alonso, M., Ortega-Pérez, I., Grubb, M. S., et al. (2008). Experience-induced regulation of constitutive neurogenesis in the adult olfactory system. Journal of Neuroscience, 28, 11089–102.CrossRefGoogle Scholar
Anderson, S. A., Classey, J. D., Condé, F., et al. (1995). Synchronous development of pyramidal neuron dendritic spines and parvalbumin-immunoreactive chandelier neuron axon terminals in layer III of macaque prefrontal cortex. Neuroscience, 67, 7–22.CrossRefGoogle Scholar
Ascoli, G. A., Alonso-Nanclares, L., Anderson, S. A., et al. (2008). Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex. Nature Reviews Neuroscience, 9, 557–68.Google ScholarPubMed
Bartoletti, A., Medini, P., Berardi, N., et al. (2004). Environmental enrichment prevents effects of dark-rearing in the rat visual cortex. Nature Neuroscience, 7, 215–16.CrossRefGoogle ScholarPubMed
Ben-Ari, Y., Gaiarsa, J. L., Tyzio, R., et al. (2007). GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiological Reviews, 87, 1215–84.CrossRefGoogle ScholarPubMed
Benavides-Piccione, R., Ballesteros-Yáñez, I., DeFelipe, J., et al. (2002). Cortical area and species differences in dendritic spine morphology. Journal of Neurocytology, 31, 337–46.CrossRefGoogle ScholarPubMed
Berardi, N., Pizzorusso, T., & Maffei, L. (2000). Critical periods during sensory development. Current Opinion in Neurobiology, 10, 138–45.CrossRefGoogle ScholarPubMed
Bourgeois, J. P. (1997). Synaptogenesis, heterochrony, and epigenesis in the mammalian neocortex. Acta Paediatrica Supplement, 422, 27–33.CrossRefGoogle ScholarPubMed
Bourgeois, J. P. (2005). Synaptogenèses et épigenèses cérébrales. Médecine/Science, 21, 428–33.CrossRefGoogle Scholar
Bourgeois, J. P. & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13, 2801–20.CrossRefGoogle ScholarPubMed
Bourgeois, J. P. & Rakic, P. (1996). Synaptogenesis in the occipital cortex of the macaque monkey devoid of retinal input from early embryonic stages. European Journal of Neuroscience, 8, 942–50.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., Jastreboff, P. J., & Rakic, P. (1989). Synaptogenesis in the visual cortex of normal and preterm monkeys: evidence for intrinsic regulation of synaptic overproduction. Proceedings of the National Academy of Sciences of the U S A, 86, 4297–301.CrossRefGoogle ScholarPubMed
Bourgeois, J. P., Goldman-Rakic, P. S., & Rakic, P. (1994). Synaptogenesis in the prefrontal cortex of the rhesus monkey. Cerebral Cortex, 4, 78–96.CrossRefGoogle Scholar
Bourgeron, T. (2007). The possible interplay of synaptic and clock genes in autism spectrum disorders. Cold Spring Harbor Symposia on Quantitative Biology, 72, 645–54.CrossRefGoogle ScholarPubMed
Bourgeron, T. (2009). Cell adhesion molecules in synaptopathies. In The Sticky Synapse – Cell Adhesion Molecules and Their role in Synapse Formation and Maintenance, eds. Umemori, H. & Hortsch, M.. New York: Springer Science and Business Media, pp.141–58.Google Scholar
Bradbury, E. J., Moon, L. D. F., Popat, R. J., et al. (2002). Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature, 416, 636–40.CrossRefGoogle ScholarPubMed
Braitenberg, V. & Schüz, A. (1998). Cortex: Statistics and Geometry of Neuronal Connectivity. Berlin: Springer.CrossRefGoogle Scholar
Burkhalter, A., Bernardo, K. L., & Charles, V. (1993). Development of local circuits in human visual cortex. Journal of Neuroscience, 13, 1916–31.CrossRefGoogle ScholarPubMed
Cáceres, M., Lachuer, J., Zapala, M. A., et al. (2003). Elevated gene expression levels distinguish human from non-human primate brains. Proceedings of the National Academy of Sciences of the U S A, 100, 13030–5.CrossRefGoogle ScholarPubMed
Callaway, E. M. & Katz, L. C. (1990). Emergence and refinement of clustered horizontal connections in cat striate cortex. Journal of Neuroscience, 10, 1134–53.CrossRefGoogle ScholarPubMed
Champagne, D. L., Bagot, R. C., Hasselt, F., et al. (2008). Maternal care and hippocampal plasticity, altered synaptic functioning, and differential responsiveness to glucocorticoids and stress. Journal of Neuroscience, 28, 6037–45.CrossRefGoogle Scholar
Chang, E. F. & Merzenich, M. M. (2003). Environmental noise retards auditory cortical development. Science, 300, 498–502.CrossRefGoogle ScholarPubMed
Changeux, J. P. & Danchin, A. (1976). Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature, 264, 705–12.CrossRefGoogle ScholarPubMed
Chugani, H. T., Phelps, M. E., & Mazziotta, J. C. (1987). Positron emission tomography study of human brain functional development. Annals of Neurology, 22, 487–97.CrossRefGoogle ScholarPubMed
Cotman, C. W. & Bertchtold, N. C. (2002). Exercise: a behavioral intervention to enhance brain health and plasticity. Trends in Neurosciences, 25, 295–301.CrossRefGoogle Scholar
Enard, W., Khaitovich, P., Klose, J., et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science, 296, 340–3.CrossRefGoogle ScholarPubMed
Fagiolini, M., Pizzorusso, T., Berardi, N., et al. (1994). Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation. Vision Research, 34, 709–20.CrossRefGoogle ScholarPubMed
Frankle, W. G., Lerma, J., & Laruelle, M. (2003). The synaptic hypothesis of schizophrenia. Neuron, 39, 205–16.CrossRefGoogle ScholarPubMed
Fuster, J. M. (2001). The prefrontal cortex – an update: time is the essence. Neuron, 30, 319–33.CrossRefGoogle ScholarPubMed
Fuxe, K., Dahlström, A., Höistad, M., et al. (2007). From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Research Reviews, 55, 17–54.CrossRefGoogle ScholarPubMed
Geschwind, D. H. & Levitt, P. (2007). Autism spectrum disorders: developmental disconnection syndromes. Current Opinion in Neurobiology, 17, 103–11.CrossRefGoogle ScholarPubMed
Goddard, C. A., Butts, D. A., & Shatz, C. J. (2007). Regulation of CNS synapses by neuronal MHC class I. Proceedings of the National Academy of Sciences of the U S A, 104, 6828–33.CrossRefGoogle ScholarPubMed
Goldberg, J. L. (2004). Intrinsic neuronal regulation of axon and dendrite growth. Current Opinion in Neurobiology, 14, 551–7.CrossRefGoogle ScholarPubMed
Granger, B., Tekaia, F., Sourd, A. M., et al. (1995). Tempo of neurogenesis and synaptogenesis in the primate cingulate mesocortex: comparison with the neocortex. Journal of Comparitive Neurology, 360, 363–76.CrossRefGoogle ScholarPubMed
Granier-Deferre, C., Schaal, B., & DeCasper, A. J. (2004). Prémices fœtales de la cognition. In Le Développement du Nourrison, ed. Lécuyer, R.. Paris: Dunod, pp. 59–94.Google Scholar
Hayakawa, T., Angata, T., Lewis, A. L., et al. (2005). A human-specific gene in microglia. Science, 309, 1693–4.Google ScholarPubMed
Helmeke, C., Ovtscharoff, W., Poeggel, G., et al. (2001). Juvenile emotional experience alters synaptic inputs on pyramidal neurons in the anterior cingulate cortex. Cerebral Cortex, 11, 717–27.CrossRefGoogle ScholarPubMed
Hooks, B. M. & Chen, C. (2007). Critical periods in the visual system: changing views for a model of experience-dependent plasticity. Neuron, 56, 312–26.CrossRefGoogle ScholarPubMed
Horton, J. C. & Hocking, D. R. (1996). An adult-like pattern of ocular dominance columns in striate cortex of newborn monkeys prior to visual experience. Journal of Neuroscience, 16, 1791–807.CrossRefGoogle ScholarPubMed
Huttenlocher, P. R. & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. Journal of Comparative Neurology, 387, 167–78.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Jacobs, B., Chugani, H. T., Allada, V., et al. (1995). Developmental changes in brain metabolism in sedated rhesus macaques and vervets monkeys revealed by positron emission tomography. Cerebral Cortex, 3, 222–33.CrossRefGoogle Scholar
Jamain, S., Radyushkin, K., Hammerschmidt, K., et al. (2008). Reduced social interaction and ultrasonic communication in a mouse model of monogenic heritable autism. Proceedings of the National Academy of Sciences of the U S A, 105, 1710–15.CrossRefGoogle Scholar
Kerszberg, M. (2003). Genes, neurons and codes: remarks on biological communication. BioEssays, 25, 699–708.CrossRefGoogle ScholarPubMed
Kleim, J. A., Lussnig, E., Schwarz, E. R., et al. (1996). Synaptogenesis and FOS expression in the motor cortex of the adult rat after motor skill learning. Journal of Neuroscience, 16, 4529–35.CrossRefGoogle ScholarPubMed
Kozorovitskiy, Y., Hughes, M., Lee, K., et al. (2006). Fatherhood affects dendritic spines and vasopressin V1a receptors in the primate prefrontal cortex. Nature Neuroscience, 9, 1094–5.CrossRefGoogle ScholarPubMed
Krubitzer, L. (2007). The magnificent compromise: cortical field evolution in mammals. Neuron, 56, 201–8.CrossRefGoogle ScholarPubMed
Lander, E. S., Linton, L. M., Birren, B., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409, 860–921.CrossRefGoogle ScholarPubMed
Larsen, E. (2005). Developmental origins of variation. In Variation: A Central Concept in Biology, eds. Hallgrímsson, B. & Hall, B. K.. Amsterdam: Elsevier, pp. 113–29.CrossRefGoogle Scholar
Leone, D. P., Srinivasan, K., Chen, B., et al. (2008). The determination of projection neuron identity in the developing cerebral cortex. Current Opinion in Neurobiology, 18, 28–35.CrossRefGoogle ScholarPubMed
Levi, S., Schweizer, C., Bannai, H., et al. (2008). Homeostatic regulation of synaptic GlyR numbers driven by lateral diffusion. Neuron, 59, 261–73.CrossRefGoogle ScholarPubMed
Livet, J., Weissman, T. A., Kang, H., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450, 56–63.CrossRefGoogle Scholar
Lohmann, C. & Bonhoeffer, T. (2008). A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia. Neuron, 59, 253–60.CrossRefGoogle ScholarPubMed
Low, N. C. & Hardy, J. (2007). What is a schizophrenic mouse?Neuron, 54, 348–402.CrossRefGoogle ScholarPubMed
Lund, J. & Holbach, S. M. (1991). Postnatal development of thalamic recipient neurons in the monkey striate cortex: I. Comparison of spine acquisition and dendritic growth of layer 4C alpha and beta spiny stellate neurons. Journal of Comparative Neurology, 309, 115–28.CrossRefGoogle ScholarPubMed
Maya Vetencourt, J. F., Sale, A., Viegi, A., et al. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science, 320, 385–8.CrossRefGoogle ScholarPubMed
McGee, A. W., Yang, Y., Fischer, Q. S., et al. (2005). Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor. Science, 309, 2222–6.CrossRefGoogle ScholarPubMed
Millard, S. S. & Zipursky, S. L. (2008). Dscam-mediated repulsion controls tiling and self-avoidance. Current Opinion in Neurobiology, 18, 84–9.CrossRefGoogle ScholarPubMed
Morishita, H. & Hensch, T. K. (2008). Critical period revisited: impact on vision. Current Opinion in Neurobiology, 18, 101–7.CrossRefGoogle ScholarPubMed
Murphy, K. M., Beston, B. R., Boley, P. M., et al. (2005). Development of human visual cortex: a balance between excitatory and inhibitory plasticity mechanisms. Developmental Psychobiology, 46, 209–21.CrossRefGoogle ScholarPubMed
Nimchinsky, E. A., Gilissen, E., Allman, J. M., et al. (1999). A neuronal morphologic type unique to humans and great apes. Proceedings of the National Academy of Sciences of the U S A, 96, 5268–73.CrossRefGoogle ScholarPubMed
Pizzorusso, T., Medini, L., Berardi, N., et al. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science, 298, 1248–51.CrossRefGoogle ScholarPubMed
Rabinowitch, I. & Segev, I. (2008). Two opposing plasticity mechanisms pulling a single synapse. Trends in Neurosciences, 31, 377–83.CrossRefGoogle ScholarPubMed
Rakic, P. (2007). The radial edifice of cortical architecture: from neuronal silhouettes to genetic engineering. Brain Research Reviews, 55, 204–19.CrossRefGoogle ScholarPubMed
Rakic, P., Bourgeois, J. P., Eckenhoff, M. E., et al. (1986). Concurrent overproduction of synapses in diverse regions of the primate cerebral cortex. Science, 232, 232–5.CrossRefGoogle ScholarPubMed
Rodman, H. R. (1994). Development of the inferior temporal cortex in the monkey. Cerebral Cortex, 5, 484–98.CrossRefGoogle Scholar
Rutishauser, U. (2008). Polyscialic acid in the plasticity of the developing and adult vertebrate nervous system. Nature Reviews Neuroscience, 9, 26–35.CrossRefGoogle ScholarPubMed
Sale, A., Maya Vetencourt, J. F., Medini, P., et al. (2007). Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nature Neuroscience, 10, 679–81.CrossRefGoogle ScholarPubMed
Samuels, B. A., Hsueh, Y., Shu, T., et al. (2007). Cdk5 promotes synaptogenesis by regulating the subcellular distribution of the MAGUK family member CASK. Neuron, 56, 823–37.CrossRefGoogle ScholarPubMed
Shapiro, L., Love, J., & Colman, D. R. (2007). Adhesion molecules in the nervous system: structural insights into function and diversity. Annual Review of Neuroscience, 30, 451–74.CrossRefGoogle ScholarPubMed
Spolidoro, M., Sale, A., Berardi, N., et al. (2009). Plasticity in the adult brain: lessons from the visual system. Experimental Brain Research, 190, 335–41.CrossRefGoogle Scholar
Stevens, B., Allen, N. J., Vazquez, L. E., et al. (2007). The classical complement cascade mediates CNS synapse elimination. Cell, 131, 1164–78.CrossRefGoogle ScholarPubMed
Sullivan, R., Wilson, D. A., Feldon, J., et al. (2006). The International Society for Developmental Psychobiology Annual Meeting Symposium: impact of early life experiences on brain and behavioral development. Developmental Psychobiology, 48, 583–602.CrossRefGoogle ScholarPubMed
Sutcliffe, J. S. (2008). Insights into the pathogenesis of autism. Science, 321, 208–9.CrossRefGoogle ScholarPubMed
Takeichi, M. (2007). The cadherin superfamily in neuronal connections and interactions. Nature Reviews Neuroscience, 8, 11–20.CrossRefGoogle ScholarPubMed
Tyzio, R., Cossart, R., Khalilov, I., et al. (2006). Maternal oxytocin triggers a transient inhibitory switch in GABA signaling in the fetal brain during delivery. Science, 314, 1788–92.CrossRefGoogle ScholarPubMed
Valor, L. M., Charlesworth, P., Humphreys, L., et al. (2007). Network activity-independent coordinated gene expression program for synapse assembly. Proceedings of the National Academy of Sciences of the U S A, 104, 4658–63.CrossRefGoogle ScholarPubMed
Venter, J. C., Adams, M. D., Myers, E. W., et al. (2001). The sequence of the human genome. Science, 291, 1304–51.CrossRefGoogle ScholarPubMed
Wang, X. (2004). The unexpected consequences of a noisy environment. Trends in Neurosciences, 27, 364–6.CrossRefGoogle ScholarPubMed
Wang, Y., Markram, H., Goodman, P. H., et al. (2006). Heterogeneity in the pyramidal network of the medial prefrontal cortex. Nature Neuroscience, 9, 534–42.CrossRefGoogle ScholarPubMed
White, E. L. (2007). Reflections on the specificity of synaptic connections. Brain Research Reviews, 55, 422–9.CrossRefGoogle ScholarPubMed
Zecevic, N. (1998). Synaptogenesis in layer I of the human cerebral cortex in the first half of gestation. Cerebral Cortex, 8, 245–52.CrossRefGoogle ScholarPubMed
Zecevic, N. & Rakic, P. (1991). Synaptogenesis in the monkey somatosensory cortex. Cerebral Cortex, 1, 510–23.CrossRefGoogle ScholarPubMed
Zecevic, N., Bourgeois, J. P., & Rakic, P. (1989). Synaptic density in the motor cortex of the rhesus monkey during fetal and postnatal life. Brain Research Developmental Brain Research, 50, 11–31.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×