Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-18T22:20:11.513Z Has data issue: false hasContentIssue false
This chapter is part of a book that is no longer available to purchase from Cambridge Core

4 - Quantum fields on time-dependent backgrounds: Particle creation

from II - BASICS OF NONEQUILIBRIUM QUANTUM FIELD THEORY

Esteban A. Calzetta
Affiliation:
Universidad de Buenos Aires, Argentina
Bei-Lok B. Hu
Affiliation:
University of Maryland, College Park
Get access

Summary

Beginning with this chapter we will introduce quantum field theory (QFT) and develop the necessary ideas and methods which form the basis of nonequilibrium (NEq) QFT. We focus on quantum field systems in external fields or in a time-varying background spacetime. The latter is included here because many basic concepts and techniques in QFT in external fields were developed historically in the area of QFT in curved spacetimes, especially in time-dependent backgrounds used in relativistic cosmology. Cosmology is also the arena where some of the basic tenets of NEqQFT were established and tested out.

In a dynamical background some basic concepts of QFT need to be reexamined. We point out the problem in straightforwardly extending the methodology of Minkowski spacetime QFT, such as the definition of particles by way of instantaneous diagonalization of the Hamiltonian. The vacuum state defined this way is nonviable since particles are being created as the system evolves. We introduce the Bogoliubov transformation between two sets of mode functions of the field, and discuss how two different particle models defined at different times are related to each other. Particle creation is a nonadiabatic process. We introduce the nth order adiabatic vacuum and number state as the proper way to construct a QFT in dynamical backgrounds. We derive expressions for spontaneous particle production as parametric amplification of vacuum fluctuations, and stimulated production as amplification of particles already present in the quantum or thermal state.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×