Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T11:44:53.993Z Has data issue: false hasContentIssue false

15 - Malignant hyperthermia

from Section 4 - Metabolic disorders

Published online by Cambridge University Press:  19 October 2009

M. Joanne Douglas
Affiliation:
Department of Anesthesia, BC Women's Hospital, Vancouver, Canada
David R. Gambling
Affiliation:
University of California, San Diego
M. Joanne Douglas
Affiliation:
University of British Columbia, Vancouver
Robert S. F. McKay
Affiliation:
University of Kansas
Get access

Summary

Introduction

Malignant hyperthermia (MH) is an inherited disorder of skeletal muscle, which produces a hypermetabolic syndrome when susceptible individuals (MHS) are exposed to the triggering anesthetic agents. The known triggering agents are volatile anesthetics (halothane, isoflurane, enflurane, sevoflurane, and desflurane) and succinylcholine. They act by causing a sudden increase in intramyoplasmic calcium (Ca2+), which results in increased skeletal muscle metabolism. The diagnostic characteristics of acute MH are acidosis (combined metabolic and respiratory), muscle dysfunction (increased creatinine kinase [CK], myoglobinuria, rigidity, hyperkalemia) and evidence of inheritance. Although called malignant hyperthermia, marked elevation of temperature is often a late sign but may occur as early as 15 minutes following initiation of a volatile anesthetic agent in fulminant MH. The increase in intracellular Ca2+ may be due to a mutation in the ryanodine receptor such that the threshold stimulus for Ca2+ release is lowered or a defect in modulation at the receptor.

In a study of MH in susceptible swine, Ryan et al. demonstrated the sequence of events during a reaction. An increase in free myoplasmic Ca2+ precedes the increase in end-tidal CO2, followed by a decrease in arterial oxygen saturation (SaO2). These changes are followed by tachycardia and lastly hyperthermia. Dantrolene reversed these in the same order. Hypermetabolism (increased end-tidal CO2) begins when the intracellular Ca2+ increases above 0.6–0.7 μM, while muscle contracture and rigidity occur with a level above 1.0 μM.

MH and inheritance

MH is inherited in an autosomal dominant fashion with variable penetrance.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gronert, G. A.Malignant hyperthermia. Anesthesiology 1980; 53: 395–423.Google Scholar
Thomas, D. W., Dev, V. J. & Whitehead, M. J.Malignant hyperpyrexia and isoflurane. A case report. Br. J. Anaesth. 1987; 59: 1196–8.Google Scholar
Wedel, D. J., Iaizzo, P. A. & Milde, J. H.Desflurane is a trigger of malignant hyperthermia in susceptible swine. Anesthesiology 1991; 74: 508–12.Google Scholar
Wedel, D. J., Gammel, S. A., Milde, J. H.et al. Delayed onset of malignant hyperthermia induced by isoflurane and desflurane compared with halothane in susceptible swine. Anesthesiology 1993; 78: 1138–44.Google Scholar
Shulman, M., Braverman, B., Ivankovich, A. D.et al. Sevoflurane triggers malignant hyperthermia in swine. (letter) Anesthesiology 1981; 54: 259–60.Google Scholar
Fu, E. S., Scharf, J. E., Mangar, D.et al. Malignant hyperthermia involving the administration of desflurane. Can. J. Anaesth. 1996; 43: 687–90.Google Scholar
Ducart, A., Adnet, P., Renaud, B.et al. Malignant hyperthermia during sevoflurane administration. Anesth. Analg. 1995; 80: 609–11.Google Scholar
Ryan, J. F., Lopez, J. R., Sanchez, V. B.et al. Myoplasmic calcium changes precede metabolic and clinical signs of porcine malignant hyperthermia. Anesth. Analg. 1994; 79: 1007–11.Google Scholar
Rosenbaum, H. K. & Miller, J. D.Malignant hyperthermia and myotonic disorders. Anesth. Clin. N. Am. 2002; 20: 623–64.Google Scholar
Levitt, R. C.Prospects for the diagnosis of malignant hyperthermia susceptibility using molecular genetic approaches. Anesthesiology 1992; 76: 1039–48.Google Scholar
Fujii, J., Otsu, K., Zorzato, F.et al. Identification of a mutation of the porcine ryanodine receptor associated with malignant hyperthermia. Science 1991; 253: 448–51.Google Scholar
MacLennan, D. H., Duff, C., Zorzato, F.et al. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature 1990; 343: 559–61.Google Scholar
McCarthy, T. V., Healy, J. M. S., Heffron, J. J. A.et al. Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12–13.2. Nature 1990; 343: 562–4.Google Scholar
Serfas, K. D., Bose, D., Patel, L.et al. Comparison of the segregation of the RYR1 C1840 T mutation with segregation of the caffeine/halothane contracture test results for malignant hyperthermia susceptibility in a large Manitoba Mennonite family. Anesthesiology 1996; 84: 322–9.Google Scholar
Wallace, A. J., Wooldridge, W., Kingston, H. M.et al. Malignant hyperthermia – a large kindred linked to the RYR1 gene. Anaesthesia 1996; 51: 16–23.Google Scholar
Healy, J. M. S., Heffron, J. J. A., Lehane, M.et al. Diagnosis of susceptibility to malignant hyperthermia with flanking DNA markers. Br. Med. J. 1991; 303: 1225–8.Google Scholar
Ball, S. P., Dorkins, H. R., Ellis, F. R.et al. Genetic linkage analysis of chromosome 19 markers in malignant hyperthermia. Br. J. Anaesth. 1993; 70: 70–5.Google Scholar
Hogan, K., Couch, F., Powers, P. A.et al. A cysteine-for-arginine substitution (R614C) in the human skeletal muscle calcium release channel cosegregates with malignant hyperthermia. Anesth. Analg. 1992; 75: 441–8.Google Scholar
Gillard, E. F., Otsu, K., Fujii, J.et al. A substitution of cysteine for arginine 614 in the ryanodine receptor is potentially causative of human malignant hyperthermia. Genomics 1991; 11: 751–5.Google Scholar
Fagerlund, T. H., Islander, G., Twetman, E. R.et al. A search for the RYR1 gene mutation in 41 Swedish families with predisposition to malignant hyperthermia. Clin. Genet. 1995; 84: 12–16.Google Scholar
Hogan, K.Prospects for the noninvasive presymptomatic diagnosis of malignant hyperthermia susceptibility using molecular genetic techniques. Anesthesiol. Clin. N. Am. 1994; 12: 571–97.Google Scholar
Larach, M. G.Should we use muscle biopsy to diagnose malignant hyperthermia susceptibility?Anesthesiology 1993; 79: 1–4.Google Scholar
Sambuughin, N., Holley, H., Muldoon, S.et al. Screening of the entire ryanodine receptor type 1 coding region for sequence variants associated with malignant hyperthermia susceptibility in the North American population. Anesthesiology 2005; 102: 515–21.Google Scholar
Litman, R. S. & Rosenberg, H.Malignant hyperthermia. Update on susceptibility testing. J.A.M.A. 2005; 293: 2918–24.Google Scholar
Girard, T., Jöhr, M., Schaefer, C. & Urwyler, A.Perinatal diagnosis of malignant hyperthermia susceptibility. Anesthesiology 2006; 104: 1353–4.Google Scholar
Ording, H.Incidence of malignant hyperthermia in Denmark. Anesth. Analg. 1985; 64: 700–4.Google Scholar
Hannallah, R. S. & Kaplan, R. F.Jaw relaxation after a halothane/succinylcholine sequence in children. Anesthesiology 1994; 81: 99–103.Google Scholar
Spek, A. F., Fang, W. B., Ashton-Miller, J. A.et al. The effects of succinylcholine on mouth opening. Anesthesiology 1987; 67: 459–65.Google Scholar
Littleford, J. A., Patel, L. R., Bose, D.et al. Masseter muscle spasm in children: implication of continuing the triggering anesthetic. Anesth. Analg. 1991; 72: 151–60.Google Scholar
Allen, G. C. & Rosenberg, H.Malignant hyperthermia susceptibility in adult patients with masseter muscle rigidity. Can. J. Anaesth. 1990; 37: 31–5.Google Scholar
Denborough, M., Hopkinson, K. C., O'Brien, R. O.et al. Overheating alone can trigger malignant hyperthermia in piglets. Anaesth. Intensive Care 1996; 24: 348–54.Google Scholar
Iaizzo, P. A., Kehler, C. H., Carr, R. J.et al. Prior hypothermia attenuates malignant hyperthermia in susceptible swine. Anesth. Analg. 1996; 82: 803–9.Google Scholar
Nelson, T. E.Porcine malignant hyperthermia: critical temperatures for in vivo and in vitro responses. Anesthesiology 1990; 73: 449–54.Google Scholar
Gronert, G. A., Ahern, C. P., Milde, J. H.et al. Effect of CO2, calcium, digoxin and potassium on cardiac and skeletal muscle metabolism in malignant hyperthermia susceptible swine. Anesthesiology 1986; 64: 24–8.Google Scholar
Maccani, R. M., Wedel, D. J. & Hofer, R. E.Norepinephrine does not potentiate porcine malignant hyperthermia. Anesth. Analg. 1996; 82: 790–5.Google Scholar
Urwyler, A., Censier, K., Seeberger, M. D.et al. In vitro effect of ephedrine, adrenaline, noradrenaline and isoprenaline on halothane-induced contractures in skeletal muscle from patients potentially susceptible to malignant hyperthermia. Br. J. Anaesth. 1993; 70: 76–9.Google Scholar
Gronert, G. A. & White, D. A.Failure of norepinephrine to initiate porcine malignant hyperthermia. Pflugers Archiv. 1988; 411: 226–8.Google Scholar
Fiege, M., Wappler, F., Weisshorn, R.et al. Induction of malignant hyperthermia in susceptible swine by 3,4-methylenedioxymethamphetamine (“Ecstasy”). Anesthesiology 2003; 99: 1132–6.Google Scholar
Habib, A. S., Millar, S., Deballi, P. 3rd & Muir, H. A.Anesthetic management of a ventilator-dependent parturient with the King-Denborough syndrome. Can. J. Anesth. 2003; 50: 589–92.Google Scholar
Abel, D. E. & Grotegut, C. A.King syndrome in pregnancy. Obstet. Gynecol. 2003; 101: 1146–9.Google Scholar
Larach, M. G., Localio, A. R., Allen, G. C.et al. A clinical grading scale to predict malignant hyperthermia susceptibility. Anesthesiology 1994; 80: 771–9.Google Scholar
Nelson, T. E., Lin, M., Zapata-Sudo, G. & Sudo, R. T.Dantrolene sodium can increase or attenuate activity of skeletal muscle ryanodine receptor calcium release channel. Clinical implications. Anesthesiology 1996; 84: 1368–79.Google Scholar
Pessah, I. N.Complex pharmacology of malignant hyperthermia. (editorial) Anesthesiology 1996; 84: 1275–9.Google Scholar
Ørding, H., Hedengran, A. M. & Skovgaard, L. T.Evaluation of 119 anaesthetics received after investigation for susceptibility to malignant hyperthermia. Acta Anaesthesiol. Scand. 1991; 35: 711–16.Google Scholar
Allen, G. C., Rosenberg, H. & Fletcher, J. E.Safety of general anesthesia in patients previously tested negative for malignant hyperthermia susceptibility. Anesthesiology 1990; 72: 619–22.Google Scholar
Islander, G. & Ranklev-Twetman, E.Evaluation of anaesthesia in malignant hyperthermia negative patients. Acta Anaesthesiol. Scand. 1995; 39: 819–21.Google Scholar
Strazis, K. P. & Fox, A. W.Malignant hyperthermia: a review of published cases. Anesth. Analg. 1993; 77: 297–304.Google Scholar
Liebenschutz, F., Mai, C. & Pickerodt, V. W. A.Increased carbon dioxide production in two patients with malignant hyperthermia and its control by dantrolene. Br. J. Anaesth. 1979; 51: 899–903.Google Scholar
Lips, F. J., Newland, M. & Dutton, G.Malignant hyperthermia triggered by cyclopropane during cesarean section. Anesthesiology 1982; 56: 144–6.Google Scholar
Douglas, M. J., O'Connor, G. A. & Allanson, J. E.Malignant hyperthermia in British Columbia. British Columbia Medical Journal 1983; 25: 299–300.Google Scholar
Cupryn, J. P., Kennedy, A. & Byrick, R. J.Malignant hyperthermia in pregnancy. Am. J. Obstet. Gynecol. 1984; 150: 327–8.Google Scholar
Tettambel, M.Malignant hyperthermia in an obstetric patient. J. Amer. Osteopathic. Assoc. 1980; 79: 773–5.Google Scholar
Fricker, R. M., Hoerauf, K. H., Drewe, J. & Kress, H. G.Secretion of dantrolene into breast milk after acute therapy of a suspected malignant hyperthermia crisis during cesarean section. Anesthesiology 1998; 89: 1023–5.Google Scholar
Wadhwa, R. K.Obstetric anesthesia for a patient with malignant hyperthermia susceptibility. Anesthesiology 1977; 46: 63–4.Google Scholar
Khalil, S. N., Williams, J. P. & Bourke, D. L.Management of a malignant hyperthermia susceptible patient in labor with 2-chloroprocaine epidural anesthesia. Anesth. Analg. 1983; 62: 119–21.Google Scholar
Sorosky, J. I., Ingardia, C. J. & Botti, J. J.Diagnosis and management of susceptibility to malignant hyperthermia in pregnancy. Am. J. Perinatol. 1989; 6: 46–8.Google Scholar
Douglas, M. J. & McMorland, G. H.The anaesthetic management of the malignant hyperthermia susceptibility parturient. Can. Anaesth. Soc. J. 1986; 33: 371–8.Google Scholar
Willatts, S. M.Malignant hyperthermia susceptibility: management during pregnancy and labour. Anaesthesia 1979; 34: 41–6.Google Scholar
Lucy, S. J.Anaesthesia for caesarean delivery of a malignant hyperthermia susceptible parturient. Can. J. Anaesth. 1994; 41: 1220–6.Google Scholar
Hinkle, A. J. & Dorsch, J. A.Maternal masseter muscle rigidity/neonatal fasciculations after induction for emergency cesarean section. Anesthesiology 1993; 79: 175–7.Google Scholar
Rout, C. C., Rocke, D. A., Levin, J.et al. A reevaluation of the role of crystalloid preload in the prevention of hypotension associated with spinal anesthesia for elective cesarean section. Anesthesiology 1993; 79: 262–9.Google Scholar
Gronert, G. A. & Milde, J. H.Variations in onset of porcine malignant hyperthermia. Anesth. Analg. 1981; 60: 499–503.Google Scholar
Abouleish, E., Abboud, T., Lechevalier, T.et al. Rocuronium (Org 9426) for caesarean section. Br. J. Anaesth. 1994; 73: 336–41.Google Scholar
Mitchell, L. W. & Leighton, B. L.Warmed diluent speeds dantrolene reconstitution. Can. J. Anesth. 2003; 50: 127–30.Google Scholar
Iaizzo, P. A., Kehler, C. H., Zink, R. S.et al. Thermal response in acute porcine malignant hyperthermia. Anesth. Analg. 1996; 82: 782–9.Google Scholar
Beebe, J. J. & Sessler, D. I.Preparation of anesthesia machines for patients susceptible to malignant hyperthermia. Anesthesiology 1988; 69: 395–400.Google Scholar
McGraw, T. T. & Keon, T. P.Malignant hyperthermia and the clean machine. Can. J. Anaesth. 1989; 36: 530–2.Google Scholar
Hankins, G. D. V., Berryman, G. K., Scott, R. T.et al. Maternal arterial desaturation with 15-methyl prostaglandin F2alpha for uterine atony. Obstet. Gynecol. 1988; 72: 367–9.Google Scholar
Phelan, J. P., Meguiar, R. V., Matey, D. & Newman, C.Dramatic pyrexic and cardiovascular response to intravaginal prostaglandin E2. Am. J. Obstet. Gynecol. 1978; 132: 28–32.Google Scholar
Hughes, W. A. & Hughes, S. C.Hemodynamic effects of prostaglandin E2. Anesthesiology 1989; 70: 713–16.Google Scholar
Sim, A. T. R., White, M. D. & Denborough, M. A.The effect of oxytocin on porcine malignant hyperpyrexia susceptible skeletal muscle. Clin. Exper. Pharmacol. Physiol. 1987; 14: 605–10.Google Scholar
Nanson, J. K. & Sheikh, A.Anaesthesia for emergency caesarean section in a parturient with bleeding placenta praevia and a potentially malignant hyperthermia-susceptible fetus. Int. J. Obstet. Anesth. 2000; 9: 276–8.Google Scholar
Pollock, N. A. & Langton, E. E.Management of malignant hyperthermia susceptible parturients. Anaesth. Intensive Care 1997; 25: 398–407.Google Scholar
Sewall, K., Flowerdew, R. M. M. & Bromberger, P.Severe muscular rigidity at birth: malignant hyperthermia syndrome?Can. Anaesth. Soc. J. 1980; 27: 279–82.Google Scholar
Craft, J. B., Goldberg, N. H., Lim, M.et al. Cardiovascular effects and placental passage of dantrolene in the maternal–fetal sheep model. Anesthesiology 1988; 68: 68–72.Google Scholar
Morison, D. H.Placental transfer of dantrolene. (letter) Anesthesiology 1983; 59: 265.Google Scholar
Shime, J., Gare, D., Andrews, J. & Britt, B.Dantrolene in pregnancy: lack of adverse effects on the fetus and newborn infant. Am. J. Obstet. Gynecol. 1988; 159: 831–4.Google Scholar
Weingarten, A. E., Korsh, J. I., Neumann, G. G.et al. Postpartum uterine atony after intravenous dantrolene. Anesth. Analg. 1987; 66: 269–70.Google Scholar
Shin, Y. K., Kim, Y. D., Collea, J. V.et al. Effect of dantrolene sodium on contractility of isolated human uterine muscle. Int. J. Obstet. Anesth. 1995; 4: 197–200.Google Scholar
Karan, S. M., Lojeski, E. W., Haynes, D. H.et al. Intravenous lecithin-coated microcrystals of dantrolene are effective in the treatment of malignant hyperthermia: an investigation in rats, dogs, and swine. Anesth. Analg. 1996; 82: 796–802.Google Scholar
Krause, T., Gerbershagen, M. U., Fiege, M., Weiβhorn, R. & Wappler, F.Dantrolene – a review of its pharmacology, therapeutic use and new developments. Anaesthesia 2004; 59: 364–73.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×